Иногда люди не вполне отчетливо различают работы по управлению проектом и работы жизненного цикла проекта, так как для успешного выполнения проекта необходимы работы обоих видов. Основное различие между ними заключается в том, что управление проектом сосредоточено на определении, планировании, мониторинге и контроле, а также на закрытии проекта. Работы же, связанные с фактическим созданием результатов поставки проекта, принято относить к "жизненному циклу" проекта. В процессе управления проектом создается его график, но подавляющее большинство работ в этом графике составляют именно работы жизненного цикла проекта, в результате выполнения которых появляется выходная продукция.

Несмотря на уникальность всех проектов, подобно тому, как существуют общие процессы управления, применимые к большинству проектов, существуют также и общие модели, которые могут служить руководством по определению жизненного цикла большинства проектов. Эти общие модели ценны тем, что экономят время проектным командам при разработке графика проекта.

Примером одной из моделей жизненного цикла является распространенная классическая модель "водопад". Эта модель представляет базовый подход, который может применяться в любом проекте. Чаще всего Вам приходится начинать с понимания требований к результату проекта, затем следуют проектирование результата, создание и тестирование результата, и завершаете Вы внедрением результата. Каждая из этих областей концентрации внимания называется фазой (фаза анализа, фаза проектирования, фаза реализации и т.д.). Классический "водопадный" подход - это модель жизненного цикла, которую Вы, вероятно, сможете применить, ничего не зная о методологиях и планируя проект "с чистого листа".

Что может быть проще? Даже если у Вас очень маленький проект, Вы все равно проходите эти базовые шаги, хотя бы даже проделывая некоторые из них в голове. К примеру, если у Вас 40-часовой (на одну рабочую неделю) проект разработки или улучшения документа, может показаться что Вы сразу же бросаетесь в фазу "Реализация". Но так ли это? Наиболее вероятно, что Вы получили какого-либо рода поручение с требованиями или пожеланиями, которые придется осмыслить (Анализ) и трансформировать в замысел будущего содержания (Проектирование). Затем вы воплощаете замысел (Реализация), проверяете результат (Тестирование) и передаете для использования (Внедрение).

Водопадная (каскадная) схема включает несколько важных операций, применимых ко всем проектам:

* составление плана действий по разработке системы;

* планирование работ, связанных с каждым действием;

* применение операции отслеживания хода выполнения действий с контрольными этапами.

Графическая иллюстрация “водопадной модели” проектного цикла

Рисунок.3 Водопадная модель жизненного цикла проекта

Преимущества водопадной (каскадной) модели.

Каскадная модель имеет преимущества, если ее использовать в проекте, для которого она достаточно приемлема.

a. Модель хорошо известна потребителям, не имеющих отношения к разработке и эксплуатации программ, и конечным пользователям.

b. Она упорядоченно справляется со сложностями и хорошо срабатывает для тех проектов, которые достаточно понятны, но все же трудно разрешимы.

c. Она доступна для понимания, так как преследуется простая цель - выполнить необходимые действия.

d. Она проста и удобна в применении, так как процесс разработки выполняется поэтапно.

e. Она отличается стабильностью требований.

f. Она представляет собой шаблон, в который можно поместить методы для выполнения анализа, проектирования, кодирования, тестирования и обеспечения.

g. Она позволяет участникам проекта, завершившим действия на выполняемой ими фазе, принять участие в реализации других проектов.

h. Она определяет процедуры по контролю за качеством. Каждые полученные данные подвергаются обзору. Такая процедура используется командой разработчиков для определения качества системы.

i. Ход выполнения проекта легко проследить с помощью использования временной шкалы (диаграммы Ганта), поскольку момент завершения каждой фазы используется в качестве стадии.

Недостатки каскадной модели.

При использовании каскадной модели для проекта, который трудно назвать подходящим для нее, проявляются следующие недостатки:

a. В основе модели лежит последовательная линейная структура, в результате чего попытка вернуться на одну или две фазы назад, чтобы исправить какую-либо проблему или недостаток, приведет к значительному увеличению затрат и сбою в графике.

b. У клиента не всегда есть возможность ознакомиться с системой заранее, это происходит лишь в самом конце жизненного цикла.

c. Клиент не имеет возможности воспользоваться промежуточными результатами, и отзывы пользователей нельзя передать обратно разработчикам. Поскольку готовый продукт не доступен вплоть до окончания процесса, пользователь принимает участие в процессе только в самом начале - при сборе требований, и в конце во время приемочных испытаний.

d. Каждая фаза является предпосылкой для выполнения последующих действий, что превращает такой метод в рискованный выбор для систем, не имеющих аналогов, так как он не поддается гибкому моделированию.

e. Для каждой фазы создаются результативные данные, которые по его завершении считается замороженными. Это означает, что они не должны изменяться на следующих этапах жизненного цикла продукта. Если элемент результативных данных какого-либо этапа изменяется, на проект окажет негативное влияние изменение графика, поскольку ни модель, ни план не были рассчитаны на внесение и разрешение изменения на более поздних этапах жизненного цикла.

f. Все требования должны быть известны в начале жизненного цикла, но клиенты не всегда могут сформулировать все четко заданные требования на этот момент разработки.

В то время, как "водопад" универсален и может применяться в любом проекте, другие модели жизненного цикла могут оказаться более результативными и эффективными в зависимости от характеристик проекта. Например, если Вы устанавливаете пакет программного обеспечения, Вы пропускаете фазы проектирования и реализации. Подобным же образом, если Вы занимаетесь опытно-конструкторскими разработками, Вы можете использовать специфическую модель жизненного цикла R&D проекта, учитывающую, что проделанная работа или часть ее может пойти в мусорную корзину. Другие важные модели жизненного цикла могут использоваться для ускорения проектов определенного вида. Проекты в области информационных технологий, к примеру, часто используют итеративную либо быструю (Agile development) разработку.

Ниже приведены некоторые другие модели жизненного цикла проекта:

Итеративный подход (англ. iteration -- повторение) -- выполнение работ параллельно с непрерывным анализом полученных результатов и корректировкой предыдущих этапов работы. Проект при этом подходе в каждой фазе развития проходит повторяющийся цикл: Планирование -- Реализация -- Проверка -- Оценка (англ. plan-do-check-act cycle).

Преимущества итеративного подхода:

1. снижение воздействия серьезных рисков на ранних стадиях проекта, что ведет к минимизации затрат на их устранение;

2. организация эффективной обратной связи проектной команды с потребителем (а также заказчиками, стейкхолдерами) и создание продукта, реально отвечающего его потребностям;

3. акцент усилий на наиболее важные и критичные направления проекта;

4. непрерывное итеративное тестирование, позволяющее оценить успешность всего проекта в целом;

5. раннее обнаружение конфликтов между требованиями, моделями и 6.реализацией проекта;

8. эффективное использование накопленного опыта;

9. реальная оценка текущего состояния проекта и, как следствие, большая 10.уверенность заказчиков и непосредственных участников в его успешном завершении.

Спиральная модель жизненного цикла проекта . В рамках этой модели рассматривается зависимость эффективности проекта от его стоимости с течением времени. На каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка.

Спиральная модель была впервые сформулирована Барри Боэмом (Barry Boehm) в 1988 году. Отличительной особенностью этой модели является специальное внимание рискам, влияющим на организацию жизненного цикла. Боэм формулирует “top-10” наиболее распространенных (по приоритетам) рисков

1. Дефицит специалистов.

2. Нереалистичные сроки и бюджет.

3. Реализация несоответствующей функциональности.

4. Разработка неправильного пользовательского интерфейса.

5. “Золотая сервировка”, перфекционизм, ненужная оптимизация и оттачивание деталей.

6. Непрекращающийся поток изменений.

7. Нехватка информации о внешних компонентах, определяющих окружение системы или вовлеченных в интеграцию.

8. Недостатки в работах, выполняемых внешними (по отношению к проекту) ресурсами.

9. Недостаточная производительность получаемой системы.

10. “Разрыв” в квалификации специалистов разных областей знаний.

Большая часть этих рисков связана с организационными и процессными аспектами взаимодействия специалистов в проектной команде.

Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации. Каждый виток разбит на 4 сектора:

оценка и разрешение рисков,

определение целей,

разработка и тестирование,

планирование.

Спиральная модель ориентирована на большие, дорогостоящие и сложные проекты.

Преимущества спиральной модели:

При использовании спиральной модели при выполнении проекта, для которого она в достаточной мере подходит, появляются следующие преимущества:

a Спиральная модель разрешает пользователям «увидеть» систему на ранних этапах, что обеспечивается посредством использования ускоренного прототипирования в жизненном цикле разработки проекта.

b Обеспечивается определение непреодолимых рисков без особых затрат.

c Модель разрешает пользователям активно принимать участие при планировании, анализе рисков, разработке, а также при выполнении оценочных действий.

d Она обеспечивает разбиение большого потенциального объема работы по разработке продукта на небольшие части.

e В модели предусмотрена возможность гибкого проектирования, поскольку в ней воплощены преимущества каскадной модели, и в то же время разрешены итерации по всем фазам этой же модели.

f Реализовано преимущество инкрементной модели, а именно выпуск инкрементов, сокращение графика посредством перекрывания инкрементов и неизменяемость ресурсов при постепенном росте системы.

Недостатки спиральной модели:

При использовании спиральной модели относительно проекта, для которого она не подходит в достаточной мере, проявляются следующие недостатки:

a Спираль может продолжаться до бесконечности.

b Большое количество промежуточных стадий может привести к необходимости в обработке внутренней дополнительной и внешней документации.

c Использование модели может стать дорогостоящим, так как время, затраченное на планирование, повторное определение целей, анализа рисков и прототипирование, может быть чрезмерным.

Инкрементная модель проектного цикла. Эта модель в большинстве случаев применяется при проведении сложных опытно-конструкторских работ, которые требуют большого количества участников, множества различных вопросов, которые необходимо решить. Ее суть заключается в разбиении большого объема работ на последовательность более мелких составляющих частей. Она представляет собой процесс частичной реализации всей системы и медленного наращивания функциональных возможностей или эффективности.

Эта модель предполагает разбиение жизненного цикла проекта на последовательность итераций, каждая из которых напоминает “мини-проект”, включая все фазы жизненного цикла в применении к созданию меньших фрагментов функциональности, по сравнению с проектом, в целом. Цель каждой итерации - получение работающей версии программной системы, включающей функциональность, определенную интегрированным содержанием всех предыдущих и текущей итерации. Результаты финальной итерации содержит всю требуемую функциональность продукта.

Преимущества инкрементной модели.

Применяя инкрементную модель при разработке проекта, для которого она подходит в достаточной мере, можно убедиться в следующих ее преимуществах:

a Не требуется заранее тратить средства на разработку всего проекта.

b В результате выполнения каждого инкремента получается функциональный продукт.

c Использование последовательных инкрементов позволяет объединить полученные пользователями опыт в виде усовершенствованного продукта, затратив при этом намного меньше средств, чем требуется для выполнения повторной разработки.

d Правило по принципу «разделяй и властвуй» позволяет разбить возникшую проблему на управляемые части, благодаря чему предотвращается формирование громоздких перечней требований, выдвигаемых перед командой разработчиков.

e В процессе разработки можно ограничить количество персонала таким образом, чтобы над поставкой каждого инкремента, последовательно работала одна и та же команда.

f В конце каждой инкрементной поставки существует возможность пересмотреть риски, связанного с затратами и соблюдением установленного графика.

g Поскольку переход из настоящего в будущее не происходит моментально, заказчик может привыкать к новой технологии постепенно.

h Риск распределяется на несколько меньших по размеру инкрементов, и не сосредоточен в одном большом проекте разработки.

Недостатки инкрементной модели.

При использовании этой модели относительно проекта, для которого она подходит не в достаточной мере, проявляются следующие недостатки:

a В модели не предусмотрены итерации в рамках каждого инкремента.

b Определение полной функциональной системы должно осуществляться в начале жизненного цикла, чтобы обеспечить определение инкрементов.

c Заказчик должен осознавать, что общие затраты на выполнение проекта не будут снижены.


Рис. 5.4.

Требования к разрабатываемой ПС, определенные на стадиях формирования и анализа, строго документируются в виде ТЗ и фиксируются на все время разработки проекта. Каждая стадия завершается выпуском полного комплекта документации (ТЗ, ЭП, ТП, РП), достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков. Критерием качества разработки при таком подходе является точность выполнения спецификаций ТЗ. Основное внимание разработчиков сосредоточивается на достижении оптимальных значений технических характеристик разрабатываемой ПС – производительности, объема занимаемой памяти и др.

Преимущества каскадной модели :

  • на каждой стадии формируется законченный набор проектной документации, отвечающей критериям полноты и согласованности;
  • выполняемые в логической последовательности стадии работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении ПС, для которых в самом начале проекта можно полно и четко сформулировать все требования. Пока все это контролируется стандартами и различными комиссиями госприемки, схема работает хорошо.

Недостатки каскадной модели :

  • выявление и устранение ошибок производится только на стадии тестирования, которое может существенно растянуться;
  • реальные проекты часто требуют отклонения от стандартной последовательности шагов;
  • цикл основан на точной формулировке исходных требований к ПС, реально в начале проекта требования заказчика определены лишь частично;
  • результаты работ доступны заказчику только по завершении проекта.

Итерационная модель ЖЦ ПС

С ростом коммерческих проектов выяснилось, что не всегда удается детально проработать проект будущей системы, поскольку многие аспекты ее функционирования в динамических сферах деятельности (бизнес) меняются, пока система создается. Потребовалось изменить процесс разработки так, чтобы гарантировать внесение необходимых исправлений после завершения какого-либо этапа разработки. Так появилась итерационная модель ЖЦ ПС, называемая моделью с промежуточным контролем или моделью с циклическим повторением фаз.


Рис. 5.5.


Рис. 5.6.

В такой ситуации огромное значение приобретает этап формулирования требований, составление спецификаций и создание плана системы. Программные архитекторы несут личную ответственность за все последующие изменения проектных решений. Объем документации исчисляется тысячами страниц, число утверждающих заседаний огромно. Многие проекты так никогда и не покидают этап планирования, впав в " паралич анализа". Одним из возможных путей исключения подобных ситуаций является макетирование (прототипирование).

Макетирование

Часто заказчик не может сформулировать требования по вводу, обработке или выводу данных для будущего программного продукта. Разработчик может сомневаться в приспособленности продукта к операционной системе, в форме диалога с пользователем или эффективности алгоритма. В таких случаях целесообразно использовать макетирование. Основная цель макетирования – снять неопределенность в требованиях заказчика. Макетирование (прототипирование) – процесс создания модели требуемого продукта.

Модель может принимать следующие формы.

  1. Бумажный макет (рисованная схема человеко-машинного диалога) или макет на основе ПК.
  2. Работающий макет, реализующий некоторую часть требуемых функций.
  3. Существующая программа, характеристики которой должны быть улучшены.

Как показано на рис.5.7 , макетирование основывается на многократном повторении итераций, в которых участвуют заказчик и разработчик.


Рис. 5.7.

Последовательность действий при макетировании представлена на рис.5.8 . Макетирование начинается со сбора и уточнения требований к создаваемой программной системе. Разработчик и заказчик совместно определяют цели ПО, устанавливают, какие требования известны, а какие предстоит доопределить. Затем выполняется быстрое проектирование. В нем сосредотачиваются на характеристиках, которые должны быть видимыми пользователю. Быстрое проектирование приводит к построению макета. Макет оценивается заказчиком и используется для уточнения требований к ПО. Итерации продолжаются до тех пор, пока макет не выявит все требования заказчика и даст возможность разработчику понять, что должно быть сделано.

Достоинства макетирования – возможность обеспечения определения полных требований к системе. Недостатки макетирования:

  • заказчик может принять макет за продукт;
  • разработчик может принять макет за продукт.

Следует пояснить суть недостатков. Когда заказчик видит работающую версию ПС, он перестает сознавать, что в погоне за работающим вариантом ПС оставлены нерешенными многие вопросы качества и удобства сопровождения системы. Когда же заказчику об этом говорит разработчик, то ответом может быть возмущение и требование скорейшего превращения макета в рабочий продукт. Это отрицательно сказывается на управлении разработкой ПО.


Рис. 5.8.

С другой стороны, для быстрого получения работающего макета разработчик часто идет на определенные компромиссы. Например, могут использоваться не самые подходящие языки программирования или операционная система. Для простой демонстрации может применяться неэффективный (простой) алгоритм. Спустя некоторое время разработчик забывает о причинах, по которым эти средства не подходят. В результате далеко не идеальный выбранный вариант интегрируется в систему.

Прежде чем рассматривать другие модели ЖЦ ПО, которые пришли на смену каскадной модели , следует остановиться на стратегиях конструирования программных систем. Именно стратегия конструирования ПО во многом определяет модель ЖЦ ПО.

Стратегии конструирования ПО

Существует три стратегии конструирования программных систем:

  • однократный проход (каскадная стратегия, рассмотренная выше) – линейная последовательность этапов конструирования;
  • инкрементная стратегия. В начале процесса определяются все пользовательские и системные требования, оставшаяся часть конструирования выполняется в виде последовательности версий. Первая версия реализует часть запланированных возможностей, следующая версия реализует дополнительные возможности и т. д., пока не будет получена полная система;
  • эволюционная стратегия. Система также строится в виде последовательности версий, но в начале процесса определяются не все требования. Требования уточняются в результате разработки версий. Характеристики стратегий конструирования ПО с соответствии с требованиями стандарта IEEE/EIA 12207 приведены в

В общем случае программная система помимо собственно программ содержит еще и аппаратное обеспечение, а также обычно рассматривается в окружении других программно-аппаратных систем.

Под жизненным циклом программной системы обычно понимают весь период времени существования программной системы, начинающийся с момента выработки первоначальной концепции системы и кончающийся тогда, когда система морально устаревает. Понятие ``жизненного цикла"" используется, когда предполагается, что программная система будет иметь достаточно большой срок действия, в отличие от экспериментального программирования, при котором программы прогоняются несколько раз и больше не используются.

Жизненный цикл традиционно моделируется в виде некоторого числа последовательных этапов (или стадий, фаз). В настоящее время не выработано общепринятого разбиения жизненного цикла программной системы на этапы. Иногда этап выделяется как отдельный пункт, иногда - входит в качестве составной части в более крупный этап. Могут варьироваться действия, производимые на том или ином этапе. Нет единообразия и в названиях этих этапов. Поэтому попытаемся вначале описать некоторый обобщенный жизненный цикл программной системы, а затем продемонстрируем несколько примеров различных жизненных циклов с указанием аналогий из этого обобщенного цикла.

Этапы жизненного цикла ПО

Жизненный цикл программного обеспечения - период разработки и эксплуатации программного обеспечения, в котором обычно выделяют этапы: -1- возникновение и исследование идеи; -2- анализ требований и проектирование; -3- программирование; -4- тестирование и отладка; -5- ввод программы в действие; -6- эксплуатация и сопровождение; -7- завершение эксплуатации.

Следует обратить внимание, что разбиение жизненного цикла на этапы иногда способствует затушевыванию некоторых важных аспектов создания программного обеспечения; особенно это проявляется по отношению к такому необходимому процессу, как итерационная реализация различных этапов жизненного цикла с целью исправления ошибок, изменения решений, которые оказались неправильными, или учета изменений в общих требованиях, предъявляемых к системе.

Примеры описания жизненного цикла

Рассмотрим несколько описаний жизненного цикла программного обеспечения, которые послужат своеобразным комментарием этапам обобщенного жизненного цикла.

В отечественных нормативных документах (например, ГОСТ ЕСПД) принято следующее разграничение на этапы, которое приводится с указанием аналогий из списка, данного в начале раздела:

    разработка технического задания (этапы 1 и 2);

    технический проект (третий этап до 3.2.1 включительно);

    рабочий проект (3.2.2, 4.2.1 и, частично, 4.2, 4.3);

    экспериментальное внедрение (4.2 и 4.3);

    сдача в промышленную эксплуатацию (этап 5);

    промышленная эксплуатация (этап 6).

Подобное описание имеет своим прообразом технологию разработки аппаратных средств и поэтому не вполне учитывает все отличительные особенности проектирования программ. Более подходящим выглядит описание жизненного цикла программного обеспечения, состоящее из 12 этапов, которые очень близки этапам обобщенного жизненного цикла (см. рис. 1.1). В скобках после имени фазы указывается аналог из обобщенного цикла. Практически все этапы заканчиваются проверкой результатов, полученных на соответствующем этапе.

Рис. 1.1 Пример жизненного цикла программных систем

    Начало проекта и планирование (этап 1). Определяются необходимые действия, планы и организация управления проектом. Определяются меры по обеспечению непрерывного выполнения фаз жизненного цикла.

    Анализ целевых требований (2.1). Определяются, без учета средств реализации, общие характеристики системы, которым она должна удовлетворять. Устанавливается, что и как должна делать система.

    Анализ системных требований (2.2). Описывается, как должны удовлетворятся запросы пользователя, в терминах конкретных функциональных понятий описываются действия предполагаемой системы, хранимые данные, используемый интерфейс - все это без учета физической реализации. Проверяется пригодность этих конкретных понятий.

    Проектирование системы (3.1). Устанавливается структура системы или, иначе говоря, ее архитектура в терминах основных компонентов этой системы и их предполагаемой реализации (аппаратной, программной, с помощью окружения и т.д.). Устанавливаются требования для каждого компонента, а также стратегию тестирования и интеграции.

    Предварительное проектирование программного обеспечения (3.2.1). Определение конкретных программных компонент, которые будут разрабатываться и внедряться в конечную систему. Проверка этого множества компонент на непротиворечивость общим требованиям к программному обеспечению. Определение функциональных, эксплуатационных и тестовых требований к каждому конкретному компоненту.

    Детальное проектирование программного обеспечения (3.2.2). В терминах используемых программных конструкций производится описание того, как каждый конкретный компонент будет разрабатываться. Описываются режимы использования каждого компонента в системе.

    Кодирование и тестирование программного обеспечения (4.1.1 и 4.1.2). Создание, тестирование отдельных модулей, документирование и приемка программных компонентов, которые составляют программную систему.

    Интеграция программного обеспечения (частично 4.2). Тестирование работоспособности и функциональной законченности программных частей системы в предсказуемом окружении (аппаратуре и окружающей среде).

    Интеграция системы (4.3). Тестирование работоспособности и функциональной законченности частей общей системы в целом.

    Приемка и поставка системы (5). Производится приемка системы заказчиком, и поставка ему системы.

    Эксплуатация и сопровождение системы (6). Выпуск последующих вариантов или версий системы, необходимость в которых возникает из-за устранений дефектов, отработки измененных требований и т.д.

    Завершение проекта (7). Формирование посториорной модели проектных действий с анализом достоинств, недостатков и т.д., и использование их в качестве основания для улучшения процесса разработки.

В качестве следующего примера рассмотрим неполный жизненный цикл программного обеспечения, без этапов эксплуатации и сопровождения (см. рис. 1.2). В этом варианте не фиксируется последовательность фаз или этапов, а предлагается перечень действий, которые должны быть выполнены на протяжении жизненного цикла программного обеспечения. Эти действия могут быть разбиты или, наоборот, сгруппированы в различные этапы, в зависимости от конкретных условий. Можно выделить следующие этапы жизненного цикла программных систем (в скобках, как и ранее, - аналоги из модели обобщенного цикла):

    этап планирования, который определяет и координирует действия по разработке программной системы (этап 1);

    этап разработки, на котором создается программная система:

    постановку задачи (этап 2),

    проектирование (3),

    кодирование (4.1.1),

    получение исполняемого кода (4.1.1, 4.3);

интегрированный этап, обеспечивающий коррекцию, проверку, и определение полноты программной системы, а также ее выпуск. Этот этап включает в себя верификацию, контроль за конфигурацией системы, оценку качества и проверку взаимодействия между этапами. Из названия этого этапа видно, что он выполняется совместно с другими этапами на протяжении жизненного цикла системы.

Рис. 1.2 Вариант упрощенного жизненного цикла программной системы.

Отсутствие интегрированного этапа в обобщенном жизненном цикле не означает, что проверка производится только там, где это явно указано в названии этапа (например 4.2.1 и 4.2). Каждый этап может считаться завершенным только тогда, когда результаты, полученные на данном этапе, были признаны удовлетворительными, а для этого необходимо производить проверку результатов на каждом этапе. В обобщенном жизненном цикле некоторые проверки были вынесены отдельными пунктами для демонстрации повышенных объемов, сложности и важности этих проверок.

Последовательность этапов жизненного цикла для разных программных систем определяется такими характеристиками как функциональные возможности, сложность, размер, устойчивость, использование ранее полученных результатов, разрабатываемая стратегия и аппаратное обеспечение.

На рис. 1.3. показана последовательность этапов разработки программного обеспечения для отдельных компонентов единой программной системы с различными жизненными циклами.

Рис. 1.3 Последовательность этапов разработки компонент программного обеспечения

Для компонента W из множества системных требований к единому продукту формируется подмножество требований, относящихся к данному компоненту, используются эти требования при формировании проекта программного компонента, реализовывают этот проект в исходном коде и тогда интегрирует компонент с аппаратурой. Компонент X показывает использование ранее разработанного программного обеспечения. Компонент Y показывает использование простой отдельной функции, которая может быть закодирована прямо на основе требований к программному обеспечению. Компонент Z показывает использование прототипной стратегии. Обычно, целями прототипирования является лучшее понимание требований к программному обеспечению и уменьшение технических рисков и рисков разработки при создании конечного продукта. Исходные требования используются как базис для получения прототипа. Этот прототип преобразуется в окружение, типичное для конкретного использования системы при разработке. Результатом преобразований является уточненные данные, которые используются для создания конечного программного продукта.

Практически все этапы жизненного цикла объединяются с верификацией.

Ранее говорилось о том, что сложную программную систему построить «простыми» методами невозможно. Ее разработка с неизбежностью будет тоже сложной деятельностью.

Разработка ПО имеет следующие специфические особенности:

    неформальный характер требований к ПО и формализованный основной объект разработки – программы;

    творческий характер разработки;

    дуализм ПО, которое, с одной стороны, является статическим объектом – совокупностью текстов, с другой стороны, – динамическим, поскольку при эксплуатации порождаются процессы обработки данных;

    при своем использовании (эксплуатации) ПО не расходуется и не изнашивается;

    «неощутимость», «воздушность» ПО, что подталкивает к безответственному переделыванию, поскольку легко стереть и переписать, чего не сделаешь при проектировании зданий и аппаратуры.

Привести такое предприятие к успеху возможно на основе общих принципов работы со сложными системами: организовав его в виде набора модулей, используя разные уровни абстракции, повторное использование отдельных элементов в разных местах так, чтобы изменения в таком элементе автоматически отражались всюду, где он используется.

Разработка ПО – разновидность человеческой деятельности. Выделить ее компоненты можно, определив набор задач, которые нужно решить для достижения конечной цели – построения достаточно качественной системы в рамках заданных сроков и ресурсов. Для решения каждой такой задачи организуется вспомогательная деятельность, к которой можно также применить декомпозицию на отдельные, более мелкие деятельности, и т.д. В итоге должно стать понятно, как решать каждую отдельную подзадачу и всю задачу целиком на основе имеющихся решений для подзадач.

В качестве примеров деятельностей, которые нужно проводить для построения программной системы, можно привести проектирование – выделение отдельных модулей и определение связей между ними с целью минимизации зависимостей между частями проекта и достижения лучшей его обозримости в целом,кодирование – разработку кода отдельных модулей, разработку пользовательской документации, которая необходима для достаточно сложной системы. Инженерия ПО (softwareengineering) – совокупность инженерных методов и средств создания ПО. Фундаментальная идея программной инженерии: проектирование ПО является формальным процессом, который можно изучать и совершенствовать.

Освоение и правильное применение методов и средств программной инженерии позволяет повысить качество, обеспечить управляемость процесса проектирования.

Программная инженерия применяется для удовлетворения требований заказчика ПО. Основные цели программной инженерии:

    системы должны создаваться в короткие сроки и соответствовать требованиям заказчика на момент внедрения;

    качество ПО должно быть высоким;

    разработка ПО должна быть осуществлена в рамках выделенного бюджета;

    системы должны работать на оборудовании заказчика, а также взаимодействовать с имеющемся ПО;

    системы должны быть легко сопровождаемыми и масштабируемыми

Однако для корректного с точки зрения инженерии и экономики рассмотрения вопросов создания сложных систем необходимо, чтобы были затронуты и вопросы эксплуатации системы, внесения в нее изменений, а также самые первые действия в ходе ее создания – анализ потребностей пользователей и выработка решений, «изобретение» функций, удовлетворяющих эти потребности. Без этого невозможно, с одной стороны, учесть реальную эффективность системы в виде отношения полученных результатов ко всем сделанным затратам и, с другой стороны, правильно оценивать в ходе разработки степень соответствия системы реальным нуждам пользователей и заказчиков.

Все эти факторы приводят к необходимости рассмотрения всей совокупности деятельности, связанной с созданием и использованием ПО , начиная с возникновения идеи о новом продукте и заканчивая удалением его последней копии. Весь период существования ПО, связанный с подготовкой к его разработке, разработкой, использованием и модификациями, начиная с того момента, когда принимается решение разработать/приобрести/собрать, до того момента, когда полностью прекращается всякое ее использование, называютжизненным циклом ПО .

Основным понятием программной инженерии является понятие жизненного цикла ПО .

Жизненный цикл (ЖЦ ) ПО (softwarelifecycle) – этот период времени, который начинается с момента принятия решения о необходимости создания ПО и заканчивается в момент его полного изъятия из эксплуатации.

С точки зрения статической структуры ЖЦ является совокупностью процессов ЖЦ.

Процесс ЖЦ – набор взаимосвязанных действий, преобразующих некоторые входные данные и ресурсы в выходные.

Каждый процесс характеризуется задачами, методами их решения, действующими лицами, результатами. Процессы ЖЦ протекают параллельно. Каждый процесс разделен на набор действий, каждое действие – на набор задач. Каждый процесс, действие или задача инициируется и выполняется по мере необходимости, причем не существует заранее определенных последовательностей выполнения:

    основные (приобретение, поставка, разработка, эксплуатация, сопровождение);

    вспомогательные (документирование, управление конфигурацией, обеспечение качества, верификация, аттестация, совместная оценка, аудит, разрешение проблем);

    организационные (управление, создание инфраструктуры, усовершенствование, обучение).

В ходе жизненного цикла ПО проходит через анализ предметной области, сбор требований, проектирование, кодирование, тестирование, сопровождение и др.виды деятельности . Каждый вид представляет собой достаточно однородный набор действий, выполняемых для решения одной задачи или группы тесно связанных задач в рамках разработки и поддержки эксплуатации ПО.

При этом создаются и перерабатываются различного рода артефакты - создаваемые человеком информационные сущности, документы в достаточно общем смысле, участвующие в качестве входных данных и получающиеся в качестве результатов различных деятельностей. Примерами артефактов являются: модель предметной области, описание требований, техническое задание, архитектура системы, проектная документация на систему в целом и на ее компоненты, прототипы системы и компонентов, собственно, исходный код, пользовательская документация, документация администратора системы, руководство по развертыванию, база пользовательских запросов, план проекта, и пр.

На различных этапах в создание и эксплуатацию ПО вовлекаются люди, выполняющие различные роли . Каждая роль может быть охарактеризована как абстрактная группа заинтересованных лиц, участвующих в деятельности по созданию и эксплуатации системы и решающих одни и те же задачи или имеющих одни и те же интересы по отношению к ней. Примерами ролей являются: бизнес-аналитик, инженер по требованиям, архитектор, проектировщик пользовательского интерфейса, программист-кодировщик, технический писатель, тестировщик, руководитель проекта по разработке, работник отдела продаж, конечный пользователь, администратор системы, инженер по поддержке и т.п.

Похоже, что общую структуру жизненного цикла любого ПО задать невозможно, поскольку она существенно зависит от целей, для которых это ПО разрабатывается или приобретается, и от решаемых им задач. Структура жизненного цикла будет существенно отличаться у программы для форматирования кода, которая сначала делалась программистом для себя, а впоследствии была признана перспективной в качестве продукта и переработана, и у комплексной системы автоматизации предприятия, которая с самого начала задумывалась как таковая. Тем не менее, часто определяют основные элементы структуры жизненного цикла в виде модели жизненного цикла ПО .

Модель жизненного цикла ПО выделяет конкретные наборы видов деятельности (обычно разбиваемых на еще более мелкие активности), артефактов, ролей и их взаимосвязи, а также дает рекомендации по организации процесса в целом. Эти рекомендации включают ответы на вопросы о том, какие артефакты являются входными данными у каких видов деятельности, а какие появляются в качестве результатов; в какие роли вовлечены в различные деятельности; как различные деятельности связаны друг с другом; каковы критерии качества полученных результатов; как оценить степень соответствия различных артефактов общим задачам проекта и когда можно переходить от одной деятельности к другой.

Жизненный цикл ПО является составной частью жизненного цикла программно-аппаратной системы, в которую это ПО входит. Поэтому часто различные его аспекты рассматриваются в связи с элементами жизненного цикла системы в целом.

Существует набор стандартов, определяющих различные элементы в структуре жизненных циклов ПО и программно-аппаратных систем. В качестве основных таких элементов выделяют технологические процессы - структурированные наборы деятельностей, решающих некоторую общую задачу или связанную совокупность задач, такие, как процесс сопровождения ПО, процесс обеспечения качества, процесс разработки документации и пр. Процессы могут определять разные этапы жизненного цикла и увязывать их с различными видами деятельностей, артефактами и ролями заинтересованных лиц.

Стоит отметить, что процессом (или технологическим процессом) называют и набор процессов, увязанных для совместного решения более крупной задачи, например, всю совокупность деятельностей, входящих в жизненный цикл ПО. Таким образом, процессы могут разбиваться на подпроцессы, решающие частные подзадачи той задачи, с которой работает общий процесс.

В рамках специфических моделей жизненного цикла, которые предписывают правила организации разработки ПО в рамках данной отрасли или организации, определяются более конкретные процессы разработки. Отличаются они от стандартов, прежде всего, большей детальностью и четким описанием связей между отдельными видами деятельности, определением потоков данных (документов и артефактов) в ходе жизненного цикла. Таких моделей довольно много, ведь фактически каждый раз, когда некоторая организация определяет собственный процесс разработки, в качестве основы этого процесса разрабатывается некоторая модель жизненного цикла ПО. В рамках данной лекции мы рассмотрим лишь несколько моделей. К сожалению, очень тяжело выбрать критерии, по которым можно было бы дать хоть сколько-нибудь полезную классификацию известных моделей жизненного цикла. Такими моделями ЖЦ могут быть:

    каскадная (водопадная);

    эволюционная;

    основанная на формальных преобразованиях;

    итерационные (пошаговая и спиральная).

Принципы каскадной модели : фиксация требований к системе в начале проекта; переход со стадии на стадию только после полного завершения работ на текущей стадии; недопустимость возврата на пройденные стадии; жесткая привязка процессов ЖЦ к стадиям ЖЦ.

Стадия формирования требований включает процессы, приводящие к созданию документа, описывающего поведение ПО с точки зрения внешнего по отношению к нему наблюдателя с фиксацией требований относительно его качества.

Проектирование охватывает процессы: разработку архитектуры ПО, разработку структур программ в его составе и их детальную спецификацию.

Реализация или кодирование включает процессы создания текстов программ на языках программирования.

На этапе тестирования производится собственно тестирование, а также отладка и оценка качества ПО.

Ввод в действие – это развертывание ПО на целевой вычислительной системе, обучение пользователей и т.п.

Эксплуатация ПО – это использование ПО для решения практических задач на компьютере путем выполнения ее программ.

Сопровождение ПО – это процесс сбора информации о качестве ПО в эксплуатации, устранения обнаруженных в нем ошибок, его доработки и модификации, а также извещения пользователей о внесенных в него изменениях.

Достоинства: на каждой стадии формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности; выполняемые в логичной последовательности стадии работ облегчают планирование сроков завершения всех работ и соответствующих затрат. Недостатки: позднее обнаружение проблем; выход из календарного графика, запаздывание с получением результатов; высокий риск создания системы, не удовлетворяющей изменившимся потребностям пользователей; избыточность документации; неравномерная нагрузка членов группы, работающей над проектом в ходе ЖЦ.

На самом деле невозможно двигаться строго поступательно, необходимо возвращаться, чтобы исправлять ошибки, сделанные на ранних стадиях, устранять недоделки, учитывать меняющиеся в ходе проекта требования. В этом кроется причина недостатков водопадной модели.

Особенности эволюционной модели : поэтапное уточнение требований к ПО с помощью прототипирования; параллельное осуществление анализа требований, разработки и верификации. Достоинства: полный учет требований заказчика, большее его участие в проекте; равномерная нагрузка на группу; раннее обнаружение проблем и их разрешение по мере возникновения. Недостатки: плохая документированность; запутанность создаваемого ПС и сложность внесения изменений; сложность планирования; необходимость специальных средств и технологий разработки ПС; годится лишь для небольших ПС (не более 50 Килострок).

Схема эволюционной модели ЖЦ

Особенности модели ЖЦ, основанной на формальных преобразованиях : использование специальных нотаций для формального описания требований; кодирование и тестирование заменяется процессом предобразования формальной спецификации в исполняемую программу. Достоинства: формальные методы гарантируют соответствие ПО спецификациям требований к ПО, т. о. вопросы надежности и безопасности решаются сами собой. Недостатки: большие системы сложно описать формальными спецификациями; требуются специально подготовленные и высококвалифицированные разработчики; есть зависимость от средств разработки и нотации спецификаций.

Особенности итерационных моделей :

    процесс разработки разбивается на последовательность шагов, выполняемых циклически;

    модель напоминает несколько последовательных «каскадов»;

    разные виды деятельности не привязаны намертво к определенным этапам разработки, а выполняются по мере необходимости, иногда повторяются, до тех пор, пока не будет получен нужный результат;

    с каждой пройденной итерацией ПО наращивается, в него интегрируются новые разработанные компоненты.

Рис. 3.1.3.-1 Схема пошаговой итерационной модели ЖЦ.

Особенности итерационной спиральной модели :

    общая структура действий на каждой итерации – планирование, определение задач, ограничений и вариантов решений, оценка предложенных решений и рисков, выполнение основных работ итерации и оценка их результатов;

    решение о начале новой итерации принимается на основе результатов предыдущей;

    досрочное прекращение проекта в случае обнаружения его нецелесообразности.

Достоинства итерационных моделей:

    полный учет требований заказчика, большее его участие в проекте;

    раннее обнаружение проблем и их разрешение по мере возникновения, уменьшение рисков на каждой итерации.

Недостатки итерационных моделей: сложность планирования; плохая документированность создаваемого ПО.

Рис. 3.1.3.-2 Схема спиральной модели ЖЦ

Проблемой современной программной инженерии являются «тяжелые» процессы. Характеристики «тяжелого» процесса :

    необходимость документировать каждое действие разработчиков;

    множество рабочих продуктов (в первую очередь - документов), создаваемых в бюрократической атмосфере;

    отсутствие гибкости;

    детерминированность (долгосрочное детальное планирование и предсказуемость всех видов деятельности, распределение человеческих ресурсов на длительный срок, охватывающий большую часть проекта.

Противоположностью «тяжелого» процесса является «легковесный» процесс – основа быстрой разработки ПО (agilesoftwaredevelopment). Быстрая разработка ориентируется на эффективную коммуникацию между разработчиками, высокую квалификацию разработчиков и другие факторы, позволяющие сократить расходы на «бюрократию». Принципы быстрой разработки:

    Диалог «лицом к лицу» – самый эффективный способ обмена информацией.

    Избыточная «тяжесть» технологии (дополнительные рабочие продукты, планы, диаграммы, документы) стоит дорого.

    Более многочисленные команды требуют более «тяжелых» технологий.

    Большая «тяжесть» процесса подходит для проектов с большей критичностью.

    Возрастание обратной связи и коммуникации сокращает потребность в промежуточных продуктах.

    Дисциплина, умение и понимание противостоят процессу, формальности и документированию.

    Потеря эффективности в некритических видах деятельности вполне допустима.

Под критичностью понимаются масштабы последствий отказа разрабатываемого ПО. Уровни критичности:

    потеря удобства;

    потеря важных данных и/или рабочего времени;

    потеря невозместимых средств, дорогостоящего оборудования;

    потеря человеческой жизни.

Основные направления развития современной программной инженерии:

    Управление требованиями

    Управление конфигурацией и изменениями

    Управление качеством ПО

    Итерационная разработка ПО

    Использование компонентной архитектуры (объектно-ориентированный подход)

    Визуальное моделирование ПО

Под моделью ЖЦ ПО понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении ЖЦ. Модель ЖЦ зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Стандарт ISO/IEC 12207 не предлагает конкретную модель ЖЦ и методы разработки ПО. Его положения являются общими для любых моделей ЖЦ, методов и технологий разработки ПО. Стандарт описывает структуру процессов ЖЦ ПО, но не конкретизирует в деталях, как реализовать или выполнить действия и задачи, включенные в эти процессы.

Модель ЖЦ любого конкретного ПО ЭИС определяет характер процесса его создания, который представляет собой совокупность упорядоченных во времени, взаимосвязанных и объединенных в стадии работ, выполнение которых необходимо и достаточно для создания ПО, соответствующего заданным требованиям. Под стадией создания ПО понимается часть процесса создания ПО, ограниченная некоторыми временными рамками и заканчивающаяся выпуском конкретного продукта (моделей ПО, программных компонентов, документации), определяемого заданными для данной стадии требованиями. Стадии создания ПО выделяются по соображениям рационального планирования и организации работ, заканчивающихся заданными результатами. В состав жизненного цикла ПО обычно включаются следующие стадии:

  • 1. Формирование требований к ПО.
  • 2. Проектирование.
  • 3. Реализация.
  • 4. Тестирование.
  • 5. Ввод в действие.
  • 6. Эксплуатация и сопровождение.
  • 7. Снятие с эксплуатации.

Стадия формирования требований к ПО. Она является одной из важнейших, поскольку определяет успех всего проекта. Данная стадия включает следующие этапы:

планирование работ, предваряющее работы над проектом. Основными задачами этапа являются: определение целей разработки, предварительная экономическая оценка проекта, построение плана-графика выполнения работ, создание и обучение совместной рабочей группы;

проведение обследования деятельности автоматизируемого объекта (организации), в рамках которого осуществляются: предварительное выявление требований к будущей системе; определение структуры организации; определение перечня целевых функций организации; анализ распределения функций по подразделениям и сотрудникам; выявление функциональных взаимодействий между подразделениями, информационных потоков внутри подразделений и между ними, внешних по отношению к организации объектов и внешних информационных взаимодействий; анализ существующих средств автоматизации деятельности организации;

построение моделей деятельности организации, предусматривающее обработку материалов обследования и построение двух видов моделей:

модели "AS-IS" ("как есть"), отражающей существующее на момент обследования положение дел в организации и позволяющей понять, каким образом функционирует данная организация, а также выявить узкие места и сформулировать предложения по улучшению ситуации;

модели "ТО-ВЕ" ("как должно быть"), отражающей представление о новых технологиях работы организации.

Каждая из моделей включает в себя полную функциональную и информационную модель деятельности организации, а также, в случае необходимости, модель, описывающую динамику поведения организации.

Переход от модели "AS-IS" к модели "ТО-ВЕ" может выполняться двумя способами:

  • 1. Совершенствованием существующих технологий на основе оценки их эффективности.
  • 2. Радикальным изменением технологий и перепроектированием бизнес-процессов (реинжиниринг бизнес-процессов).

Построенные модели имеют самостоятельное практическое значение. Например, модель "AS-IS" позволяет выявлять узкие места в существующих технологиях и предлагать рекомендации по решению проблем независимо от того, предполагается на данном этапе дальнейшая разработка ЭИС или нет. Кроме того, модель облегчает обучение сотрудников конкретным направлениям деятельности организации за счет использования наглядных диаграмм (известно, что "одна картинка стоит тысячи слов").

Стадия проектирования. Она, как правило, включает следующие этапы:

  • * разработка системного проекта. На этом этапе дается ответ на вопрос: "Что должна делать будущая система?", а именно: определяются архитектура системы, ее функции, внешние условия функционирования, интерфейсы и распределение функций между пользователями и системой, требования к программным и информационным компонентам, состав исполнителей и сроки разработки. Основу системного проекта составляют модели проектируемой ЭИС, которые строятся на основе модели "ТО-ВЕ". Документальным результатом этапа является техническое задание;
  • * разработка технического проекта. На этом этапе на основе системного проекта осуществляется собственно проектирование системы, включающее проектирование архитектуры системы и детальное проектирование. Таким образом, дается ответ на вопрос: "Как построить систему, чтобы она удовлетворяла предъявленным к ней требованиям?". Модели проектируемой ЭИС при этом уточняются и детализируются до необходимого уровня.

На каждой стадии могут выполняться несколько процессов, определенных в стандарте ISO/IEC 12207, и, наоборот, один и тот же процесс может выполняться на различных стадиях.

К настоящему времени наибольшее распространение получили следующие две основные модели ЖЦ ПО: каскадная модель (1970-1985 гг.) и спиральная модель (1986-1990 гг.).

В однородных ЭИС 70-х и 80-х гг. прикладное ПО представляло собой единое целое. Для разработки такого типа ПО применялся каскадный подход (другое название - водопад (waterfall)) (рис. 1.3). Принципиальной особенностью каскадного подхода является следующее: переход на следующую стадию осуществляется только после того, как будет полностью завершена работа на текущей стадии, и возвратов на пройденные стадии не предусматривается. Каждая стадия заканчивается получением некоторых результатов, которые служат в качестве исходных данных для следующей стадии. Требования к разрабатываемому ПО, определенные на стадии формирования требований, строго документируются в виде технического задания и фиксируются на все время разработки проекта. Каждая стадия завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков. Критерием качества разработки при таком подходе является точность выполнения спецификаций технического задания.

При этом основное внимание разработчиков сосредоточивается на достижении оптимальных значений технических характеристик разрабатываемого ПО: производительности, объема занимаемой памяти и др.

Преимущества применения каскадного способа заключаются в следующем:

на каждой стадии формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

выполняемые в логичной последовательности стадии работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении ЭИС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем чтобы предоставить разработчикам свободу реализовать их технически как можно лучше. В эту категорию попадают сложные системы с большим количеством задач вычислительного характера, системы реального времени и др.

В то же время этот подход обладает рядом недостатков, вызванных прежде всего тем, что реальный процесс создания ПО никогда полностью не укладывался в такую жесткую схему. Процесс создания ПО носит, как правило, итерационный характер: результаты очередной стадии часто вызывают изменения в проектных решениях, выработанных на более ранних стадиях. Таким образом, постоянно возникает потребность в возврате к предыдущим стадиям и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания ПО принимает иной вид (рис. 1.4).

Изображенную на рис. 1.4 схему часто относят к отдельной модели, так называемой модели с промежуточным контролем, в которой межстадийные корректировки обеспечивают большую надежность по сравнению с каскадной моделью, хотя и увеличивают весь период разработки.

Основным недостатком каскадного подхода являются существенное запаздывание с получением результатов и, как следствие, достаточно высокий риск создания системы, не удовлетворяющей изменившимся потребностям пользователей. Практика показывает, что на начальной стадии проекта полностью и точно сформулировать все требования к будущей системе не удается. Это объясняется двумя причинами:

  • 1. Пользователи не в состоянии сразу изложить все свои требования и не могут предвидеть, как они изменятся в ходе разработки.
  • 2. За время разработки могут произойти изменения во внешней среде, которые повлияют на требования к системе.

В рамках каскадного подхода требования к ЭИС фиксируются в виде технического задания на все время ее создания, а согласование получаемых результатов с пользователями производится только в точках, планируемых после завершения каждой стадии (при этом возможна корректировка результатов по замечаниям пользователей, если они не затрагивают требования, изложенные в техническом задании). Таким образом, пользователи могут внести существенные замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания ПО пользователи получают систему, не удовлетворяющую их потребностям. В результате приходится начинать новый проект, который может постигнуть та же участь.

Для преодоления перечисленных проблем в середине 80-х гг. была предложена спиральная модель ЖЦ (рис. 1.5). Ее принципиальной особенностью является следующее: прикладное ПО создается не сразу, как в случае каскадного подхода, а по частям с использованием метода прототипирования. Под прототипом понимается действующий программный компонент, реализующий отдельные функции и внешние интерфейсы разрабатываемого ПО. Создание прототипов осуществляется в несколько итераций, или витков спирали. Каждая итерация соответствует созданию фрагмента или версии ПО, на ней уточняются цели и характеристики проекта, оценивается качество полученных результатов и планируются работы следующей итерации. На каждой итерации производится тщательная оценка риска превышения сроков и стоимости проекта, чтобы определить необходимость выполнения еще одной итерации, степень полноты и точности понимания требований к системе, а также целесообразность прекращения проекта. Спиральная модель избавляет пользователей и разработчиков ПО от необходимости полного и точного формулирования требований к системе на начальной стадии, поскольку они уточняются на каждой итерации. Таким образом, углубляются и последовательно конкретизируются детали проекта, и в результате выбирается обоснованный вариант, который доводится до реализации.

Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждой стадии позволяет переходить на следующую стадию, не дожидаясь полного завершения работы на текущей. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.

Спиральная модель не исключает использования каскадного подхода на завершающих стадиях проекта в тех случаях, когда требования к системе оказываются полностью определенными.

Основная проблема спирального цикла - определение момента перехода на следующую стадию. Для ее решения необходимо ввести временные ограничения на каждую из стадий жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.