make

Утилита автоматически определяет, какие части большой программы должны быть перекомпилированы и команды для их перекомпиляции. Наиболее часто make используется для компиляции C-программ и содержит особенности, ориентированные именно на такие задачи, но можно использовать make с любым языком программирования. Более того, применение утилиты make не ограничивается программами. Можно использовать еe для описания любой задачи, где некоторые файлы должны автоматически порождаться из других всегда, когда те изменяются.

Прежде чем использовать make , необходимо создать файл, называемый make-файлом , который описывает отношения между файлами Вашей программы и содержит команды для обновления каждого файла. Обычно исполняемый файл зависит от объектных файлов, которые, в свою очередь, зависят от исходных файлов и файлов заголовков. Для имени make-файла рекомендуется название GNUmakefile , makefile или Makefile , причем поиск идет именно в указанном порядке. Если необходимо использовать нестандартное имя, то его можно передать явно через опцию -f .
Когда make-файл уже написан, достаточно выполнить в каталоге, где он находится, команду make . Простой make-файл состоит из правил (инструкций) следующего вида:

ПЕРЕМЕННАЯ = ЗНАЧЕНИЕ... ЦЕЛЬ... : ЗАВИСИМОСТЬ... КОМАНДА 1
КОМАНДА 2 ПЕРЕМЕННАЯ = ЗНАЧЕНИЕ... ЦЕЛЬ... : ЗАВИСИМОСТЬ... КОМАНДА 1 КОМАНДА 2
и т.д.

ЦЕЛЬ обычно представляет собой имя файла, генерируемого программой make . Примерами целей являются исполняемые или объектные файлы. Цель может также быть именем выполняемого действия, как, например, clean .
ЗАВИСИМОСТЬ - это файл, изменение которого служит признаком необходимости цели. Часто цель зависит от нескольких файлов. КОМАНДА - это действие, которое выполняет make . Правило может иметь более чем одну команду - каждую на своей собственной строке. Важное замечание: необходимо начинать каждую строку, содержащую команды, с символа табуляции. Длинные строки разбиваются на несколько с использованием обратного слэша, за которым следует перевод строки. Знак диез # является началом комментария. Строка с # до конца игнорируется. Комментарии могут переноситься на несколько строк с помощью обратного слэша в конце строки.

Синтаксис:

make [Опции] [Переменная="abc"] [Цель]

Квадратные скобки означают необязательность присутствия данной части.
Цель - имя цели, которую надо выполнить.
Переменная ="abc" -переопределение переменных. Значения переменных, введенных в командной строке, имеют больший приоритет, чем определения в make-файле.
Опции:
-f file - явное задание имени make-файла , если задание опущено, то ищутся файлы GNUmakefile , makefile или Makefile .
-n - имитация действий без реального выполнения, служит для отладки.
-t - изменение времени модификации цели без реального выполнения.
-q - проверка на необходимость обновления цели без реального выполнения.

Более сложные способы применения MAKE

Порядок правил несущественен. По умолчанию главной целью make является цель первого правила в первом make -файле . Если в первом правиле есть несколько целей, то только первая цель берется в качестве цели по умолчанию. Цель, начинающаяся с точки, не используется как цель по умолчанию, если она не содержит один или более символа "/" т.е. определяет путь к файлу; кроме того, по умолчанию не используются цели, определяющие шаблонные правила.
В качестве ЦЕЛИ или ЗАВИСИМОСТИ может использоваться список файлов через пробел или шаблон в стиле shell .
Шаблоны интерпретируются в момент выполнения правила, при присваивании переменным интерпретация шаблона не происходит, для присваивания списка файлов переменной используется специальная функция wildcard .

objects:= $(wildcard *.o
edit: *.o
cc -o edit *.o

Для автоматической генерации зависимостей от файлов заголовков в языке СИ можно использовать команду gcc -M file.c или gcc -MM file.c . Второй вариант не генерирует зависимости от системных заголовочных файлов. В КОМАНДАХ можно использовать автоматические переменные. Эти переменные имеют значения, заново вычисленные для каждого выполняемого правила на основе цели и зависимостей правила.

Автоматическая переменная Назначение
$@ Имя файла цели правила. В шаблонном правиле с несколькими целями,имя той цели, которая вызвала выполнение команд правила.
$< Имя первой зависимости. Если цель получила свои команды из неявного правила, то это будет первая зависимость, добавленная неявным правилом.
$? Имена всех зависимостей, которые являются более новыми, чем цель, с пробелами между ними.
$^ Имена всех зависимостей, с пробелами между ними. Если Вы для цели неоднократно укажете одну и ту же зависимость, значение переменной "$^ " будет содержать только одну копию ее имени.
$+ Эта переменная аналогична переменной "$^ ", только зависимости, указанные неоднократно дублируются в том порядке, в котором они указаны в make-файле . Это в первую очередь полезно для использования в командах компоновки, где является существенным повторение имен библиотек в определенном порядке
$* База с которой сопоставляется неявное правило (см. ниже). В шаблонном правиле база представляет собой часть имени файла, которая сопоставляется символу "% " в шаблоне цели. Если целью является файл "dir/a.foo.b ", а шаблон цели - "a.%.b ", то базой будет "dir/foo ". База полезна для создания имен файлов, связанных с правилом. В явных правилах база не определена как имя файла без расширения,если такое расширение можно выделить. Не рекомендуется использовать эту переменную в явных правилах

Неявные правила определены для многих языков программирования и применяются в соответствии с расширением исходного файла. По умолчанию список расширений такой: .out, .a, .ln, .o, .c, .cc, .C, cpp, .p, .f, .F, .r, .y, .l, .s, .S, .mod, .sym, .def, .h, .info, .dvi, .tex, .texinfo, .texi, .txinfo, .w, .ch, .web, .sh, .elc, .el . При использовании неявных правил используются переменные, переопределяя которые можно управлять процессом преобразования файлов, например, указывать нестандартный компилятор или передавать ему опции.

Пример MakeFile

Пример makefile

Использование действий по умолчанию.

#default target - file edit
edit: main.o kbd.o command.o display.o \

cc -o edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

main.o: main.c defs.h
cc -c main.c
kbd.o: kbd.c defs.h command.h
cc -c kbd.c
command.o: command.c defs.h command.h
cc -c command.c
display.o: display.c defs.h buffer.h
cc -c display.c
insert.o: insert.c defs.h buffer.h
cc -c insert.c
search.o: search.c defs.h buffer.h
cc -c search.c
files.o: files.c defs.h buffer.h command.h
cc -c files.c
utils.o: utils.c defs.h
cc -c utils.c
clean:
rm edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

По умолчанию, make начинает с первого правила (не считая правил, имена целей у которых начинаются с ". "). Это называется главной целью по умолчанию. В нашем случае это правило edit . Если файл edit новее чем объектные файлы, от которых он зависит, то ничего не произойдет. В противном случае, прежде чем make сможет полностью обработать это правило, он должен рекурсивно обработать правила для файлов, от которых зависит edit . Каждый из этих файлов обрабатывается в соответствии со своим собственным правилом. Перекомпиляция должна быть проведена, если исходный файл или любой из заголовочных файлов, упомянутых среди зависимостей, обновлен позднее, чем объектный файл, или если объектный файл не существует.
Правилу clean не соответствует никакого создаваемого файла и, соответственно, clean ни от чего не зависит и само не входит в список зависимостей. При запуске по умолчанию clean вызываться не будет. Для его выполнения необходимо явно указать цель при запуске make: make clean
Для сокращения записи можно использовать переменные и действия по умолчанию (неявные правила)


insert.o search.o files.o utils.o

edit: $(objects)
cc -o edit $(objects)
main.o: defs.h
kbd.o: defs.h command.h
command.o: defs.h command.h
display.o: defs.h buffer.h
insert.o: defs.h buffer.h
search.o: defs.h buffer.h
files.o: defs.h buffer.h command.h
utils.o: defs.h
.PHONY: clean
clean:
-rm edit $(objects)

Переменная objects позволила использовать единожды написанный список объектных файлов, а для объектных файлов в make встроено неявное правило по умолчанию

file.c: file.o cc -c file.c

Специальная цель .PHONY является встроенной в make и определяет свои зависимости как цели-имена, которым нет соответствия в виде файлов. Если данное правило пропустить, то создание в текущем каталоге файла с именем clean заблокирует выполнение make clean .
Использование правил по умолчанию позволяет изменить стиль записей зависимостей:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit: $(objects)
cc -o edit $(objects)

$(objects) : defs.h
kbd.o command.o files.o: command.h
display.o insert.o search.o files.o: buffer.h

Данная запись указывает, что все объектные файлы зависят от заголовочного файла defs.h , но для некоторых из них проверяются дополнительные зависимости.

Меня всегда привлекал минимализм. Идея о том, что одна вещь должна выполнять одну функцию, но при этом выполнять ее как можно лучше, вылилась в создание UNIX. И хотя UNIX давно уже нельзя назвать простой системой, да и минимализм в ней узреть не так то просто, ее можно считать наглядным примером количество- качественной трансформации множества простых и понятных вещей в одну весьма непростую и не прозрачную. В своем развитии make прошел примерно такой же путь: простота и ясность, с ростом масштабов, превратилась в жуткого монстра (вспомните свои ощущения, когда впервые открыли мэйкфайл).

Мое упорное игнорирование make в течении долгого времени, было обусловлено удобством используемых IDE, и нежеланием разбираться в этом "пережитке прошлого" (по сути - ленью). Однако, все эти надоедливые кнопочки, менюшки ит.п. атрибуты всевозможных студий, заставили меня искать альтернативу тому методу работы, который я практиковал до сих пор. Нет, я не стал гуру make, но полученных мною знаний вполне достаточно для моих небольших проектов. Данная статья предназначена для тех, кто так же как и я еще совсем недавно, желают вырваться из уютного оконного рабства в аскетичный, но свободный мир шелла.

Make- основные сведения

make - утилита предназначенная для автоматизации преобразования файлов из одной формы в другую. Правила преобразования задаются в скрипте с именем Makefile, который должен находиться в корне рабочей директории проекта. Сам скрипт состоит из набора правил, которые в свою очередь описываются:

1) целями (то, что данное правило делает);
2) реквизитами (то, что необходимо для выполнения правила и получения целей);
3) командами (выполняющими данные преобразования).

В общем виде синтаксис makefile можно представить так:

# Индентация осуществляется исключительно при помощи символов табуляции, # каждой команде должен предшествовать отступ <цели>: <реквизиты> <команда #1> ... <команда #n>

То есть, правило make это ответы на три вопроса:

{Из чего делаем? (реквизиты)} ---> [Как делаем? (команды)] ---> {Что делаем? (цели)}
Несложно заметить что процессы трансляции и компиляции очень красиво ложатся на эту схему:

{исходные файлы} ---> [трансляция] ---> {объектные файлы}
{объектные файлы} ---> [линковка] ---> {исполнимые файлы}

Простейший Makefile

Предположим, у нас имеется программа, состоящая всего из одного файла:

/* * main.c */ #include int main() { printf("Hello World!\n"); return 0; }
Для его компиляции достаточно очень простого мэйкфайла:

Hello: main.c gcc -o hello main.c
Данный Makefile состоит из одного правила, которое в свою очередь состоит из цели - «hello», реквизита - «main.c», и команды - «gcc -o hello main.c». Теперь, для компиляции достаточно дать команду make в рабочем каталоге. По умолчанию make станет выполнять самое первое правило, если цель выполнения не была явно указана при вызове:

$ make <цель>

Компиляция из множества исходников

Предположим, что у нас имеется программа, состоящая из 2 файлов:
main.c
/* * main.c */ int main() { hello(); return 0; }
и hello.c
/* * hello.c */ #include void hello() { printf("Hello World!\n"); }
Makefile, выполняющий компиляцию этой программы может выглядеть так:

Hello: main.c hello.c gcc -o hello main.c hello.c
Он вполне работоспособен, однако имеет один значительный недостаток: какой - раскроем далее.

Инкрементная компиляция

Представим, что наша программа состоит из десятка- другого исходных файлов. Мы вносим изменения в один из них, и хотим ее пересобрать. Использование подхода описанного в предыдущем примере приведет к тому, что все без исключения исходные файлы будут снова скомпилированы, что негативно скажется на времени перекомпиляции. Решение - разделить компиляцию на два этапа: этап трансляции и этап линковки.

Теперь, после изменения одного из исходных файлов, достаточно произвести его трансляцию и линковку всех объектных файлов. При этом мы пропускаем этап трансляции не затронутых изменениями реквизитов, что сокращает время компиляции в целом. Такой подход называется инкрементной компиляцией. Для ее поддержки make сопоставляет время изменения целей и их реквизитов (используя данные файловой системы), благодаря чему самостоятельно решает какие правила следует выполнить, а какие можно просто проигнорировать:

Main.o: main.c gcc -c -o main.o main.c hello.o: hello.c gcc -c -o hello.o hello.c hello: main.o hello.o gcc -o hello main.o hello.o
Попробуйте собрать этот проект. Для его сборки необходимо явно указать цель, т.е. дать команду make hello.
После- измените любой из исходных файлов и соберите его снова. Обратите внимание на то, что во время второй компиляции, транслироваться будет только измененный файл.

После запуска make попытается сразу получить цель hello, но для ее создания необходимы файлы main.o и hello.o, которых пока еще нет. Поэтому выполнение правила будет отложено и make станет искать правила, описывающие получение недостающих реквизитов. Как только все реквизиты будут получены, make вернется к выполнению отложенной цели. Отсюда следует, что make выполняет правила рекурсивно.

Фиктивные цели

На самом деле, в качестве make целей могут выступать не только реальные файлы. Все, кому приходилось собирать программы из исходных кодов должны быть знакомы с двумя стандартными в мире UNIX командами:

$ make $ make install
Командой make производят компиляцию программы, командой make install - установку. Такой подход весьма удобен, поскольку все необходимое для сборки и развертывания приложения в целевой системе включено в один файл (забудем на время о скрипте configure). Обратите внимание на то, что в первом случае мы не указываем цель, а во втором целью является вовсе не создание файла install, а процесс установки приложения в систему. Проделывать такие фокусы нам позволяют так называемые фиктивные (phony) цели. Вот краткий список стандартных целей:

  • all - является стандартной целью по умолчанию. При вызове make ее можно явно не указывать.
  • clean - очистить каталог от всех файлов полученных в результате компиляции.
  • install - произвести инсталляцию
  • uninstall - и деинсталляцию соответственно.
Для того чтобы make не искал файлы с такими именами, их следует определить в Makefile, при помощи директивы.PHONY. Далее показан пример Makefile с целями all, clean, install и uninstall:

PHONY: all clean install uninstall all: hello clean: rm -rf hello *.o main.o: main.c gcc -c -o main.o main.c hello.o: hello.c gcc -c -o hello.o hello.c hello: main.o hello.o gcc -o hello main.o hello.o install: install ./hello /usr/local/bin uninstall: rm -rf /usr/local/bin/hello
Теперь мы можем собрать нашу программу, произвести ее инсталлцию/деинсталляцию, а так же очистить рабочий каталог, используя для этого стандартные make цели.

Обратите внимание на то, что в цели all не указаны команды; все что ей нужно - получить реквизит hello. Зная о рекурсивной природе make, не сложно предположить как будет работать этот скрипт. Так же следует обратить особое внимание на то, что если файл hello уже имеется (остался после предыдущей компиляции) и его реквизиты не были изменены, то команда make ничего не станет пересобирать . Это классические грабли make. Так например, изменив заголовочный файл, случайно не включенный в список реквизитов, можно получить долгие часы головной боли. Поэтому, чтобы гарантированно полностью пересобрать проект, нужно предварительно очистить рабочий каталог:

$ make clean $ make
Для выполнения целей install/uninstall вам потребуются использовать sudo.

Переменные

Все те, кто знакомы с правилом DRY (Don"t repeat yourself), наверняка уже заметили неладное, а именно - наш Makefile содержит большое число повторяющихся фрагментов, что может привести к путанице при последующих попытках его расширить или изменить. В императивных языках для этих целей у нас имеются переменные и константы; make тоже располагает подобными средствами. Переменные в make представляют собой именованные строки и определяются очень просто:

=
Существует негласное правило, согласно которому следует именовать переменные в верхнем регистре, например:

SRC = main.c hello.c
Так мы определили список исходных файлов. Для использования значения переменной ее следует разименовать при помощи конструкции $(); например так:

Gcc -o hello $(SRC)
Ниже представлен мэйкфайл, использующий две переменные: TARGET - для определения имени целевой программы и PREFIX - для определения пути установки программы в систему.

TARGET = hello PREFIX = /usr/local/bin .PHONY: all clean install uninstall all: $(TARGET) clean: rm -rf $(TARGET) *.o main.o: main.c gcc -c -o main.o main.c hello.o: hello.c gcc -c -o hello.o hello.c $(TARGET): main.o hello.o gcc -o $(TARGET) main.o hello.o install: install $(TARGET) $(PREFIX) uninstall: rm -rf $(PREFIX)/$(TARGET)
Это уже посимпатичней. Думаю, теперь вышеприведенный пример для вас в особых комментариях не нуждается.

Автоматические переменные

Автоматические переменные предназначены для упрощения мейкфайлов, но на мой взгляд негативно сказываются на их читабельности. Как бы то ни было, я приведу здесь несколько наиболее часто используемых переменных, а что с ними делать (и делать ли вообще) решать вам:
  • $@ Имя цели обрабатываемого правила
  • $< Имя первой зависимости обрабатываемого правила
  • $^ Список всех зависимостей обрабатываемого правила
Если кто либо хочет произвести полную обфускацию своих скриптов - черпать вдохновение можете здесь:

make предназначена для отслеживания зависимостей одних файлов от других, выявления "устаревших" файлов при помощи сравнения времен модификации файлов и выполнения команд для "обновления" устаревших файлов. Позволяет автоматизировать процессы трансляции, компоновки, запуска модульных тестов и развертывания системы за счет описания соответствующих сценариев на специальном языке

Сценарии Make описываются в т.н. файле проекта. Проектом называется совокупность файлов, зависящих друг от друга. Файл описания проекта перечисляет зависимости между файлами и задает команды для обновления зависимых файлов. Имя файла описания проекта задается опцией –f командной строки программы make и по умолчанию предполагается равным Makefile или makefile . Если имя файла проекта явно не задано, при запуске утилита ищет в текущем каталоге файл с указанными выше именами, и, если такой файл существует, выполняет команды из него.

по описанию проекта в файле Makefile или makefile программа make определяет, какие файлы устарели и нуждаются в обновлении и запускает соответствующие команды.

Обычно программы на языках Си или Си++ представляют собой совокупность нескольких.c (.cpp) файлов с реализациями функций и.h файлов с прототипами функций и определениями типов данных. Как правило, каждому.c файлу соответствует.h файл с тем же именем.

Предположим, что разрабатываемая программа называется earth и состоит из файлов arthur.c, arthur.h, trillian.c, trillian.h, prosser.c, prosser.h.

Разработка программы ведется в POSIX-среде с использованием компилятора GCC.

Простейший способ скомпилировать программу - указать все исходные.c файлы в командной строке gcc:

Gcc arthur.c trillian.c prosser.c -o earth

Компилятор gcc выполнит все этапы компиляции исходных файлов программы и компоновку исполняемого файла earth. Обратите внимание, что в командной строке gcc указываются только.c файлы и никогда не указываются.h файлы.

Компиляция и компоновка при помощи перечисления всех исходных файлов в аргументах командной строки GCC допустима лишь для совсем простых программ. С ростом числа исходных файлов ситуация очень быстро становится неуправляемой. Кроме того, каждый раз все исходные файлы будут компилироваться от начала до конца, что в случае больших проектов занимает много времени. Поэтому обычно компиляция программы выолняется в два этапа: компиляция объектных файлов и компоновка исполняемой программы из объектных файлов. Каждому.c файлу теперь соответствует объектный файл, имя которого в POSIX-системах имеет суффикс.o. Таким образом, в рассматриваемом случае программа earth компонуется из объектных файлов arthur.o, trillian.o и prosser.o следующей командой:

Gcc arthur.o trillian.o prosser.o -o earth

Каждый объектный файл должен быть получен из соответствующего исходного файла следующей командой:

Gcc -c arthur.c

Обратите внимание, что явно задавать имя выходного файла необязательно. Оно будет получено из имени компилируемого файла заменой суффикса.c на суффикс.o. Итак, для компиляции программы earth теперь необходимо выполнить четыре команды:

Gcc -c arthur.c gcc -c trillian.c gcc -c prosser.c gcc arthur.o trillian.o prosser.o -o earth

Хотя теперь для компиляции программы необходимо выполнить четыре команды вместо одной, взамен получаются следующие преимущества:

  • если изменение внесено в один файл, например, в файл prosser.c, нет необходимости перекомпилировать файлы trillian.o или arthur.o; достаточно перекомпилировать файл prosser.o, а затем выполнить компоновку программы earth;
  • компиляция объектных файлов arthur.o, trillian.o и prosser.o не зависит друг от друга, поэтому может выполняться параллельно на многопроцессорном (многоядерном) компьютере.

В случае нескольких исходных.c и.h файлов и соответствующих промежуточных.o файлов отслеживать, какой файл нуждается в перекомпиляции, становится сложно, и здесь на помощь приходит программа make. По описанию файлов и команд для компиляции программа makе определяет, какие файлы нуждаются в перекомпиляции, и может выполнять перекомпиляцию независимых файлов параллельно.

Файл A зависит от файла B, если для получения файла A необходимо выполнить некоторую команду над файлом B. Можно сказать, что в программе существует зависимость файла A от файла B. В нашем случае файл arthur.o зависит от файла arthur.c, а файл earth зависит от файлов arthur.o, trillian.o и prosser.o. Можно сказать, что файл earth транзитивно зависит от файла arthur.c. Зависимость файла A от файла B называется удовлетворенной , если:

  • все зависимости файла B от других файлов удовлетворены;
  • файл A существует в файловой системе;
  • файл A имеет дату последней модификации не раньше даты последней модификации файла B.

Если все зависимости файла A удовлетворены, то файл A не нуждается в перекомпиляции. В противном случае сначала удовлетворяются все зависимости файла B, а затем выполняется команда перекомпиляции файла A.

Например, если программа earth компилируется в первый раз, то в файловой системе не существует ни файла earth, ни объектных файлов arthur.o, trillian.o, prosser.o. Это значит, что зависимости файла earth от объектных файлов, а также зависимости объектных файлов от.c файлов не удовлетворены, то есть все они должны быть перекомпилированы. В результате в файловой системе появятся файлы arthur.o, trillian.o, prosser.o, даты последней модификации которых будут больше дат последней модификации соответствующих.c файлов (в предположении, что часы на компьютере идут правильно, и что в файловой системе нет файлов "из будущего"). Затем будет создан файл earth, дата последней модификации которого будет больше даты последней модификации объектных файлов.

В получившейся конфигурации все зависимости всех файлов друг от друга удовлетворены, и поэтому для компиляции программы earth не нужно выполнять никаких команд

Предположим теперь, что в процессе разработки был изменен файл prosser.c. Его время последнего изменения теперь больше времени последнего изменения файла prosser.o. Зависимость prosser.o от prosser.c становится неудовлетворенной, и, как следствие, зависимость earth от prosser.o также становится неудовлетворенной. Чтобы удовлетворить зависимости необходимо перекомпилировать файл prosser.o, а затем файл earth. Файлы arthur.o и trillian.o можно не трогать, так как зависимости этих файлов от соответствующих.c файлов удовлетворены. Такова общая идея работы программы make и, на самом деле, всех программ управления сборкой проекта: ant http://ant.apache.org/ , scons http://www.scons.org/ и др

Хотя утилита make присутствует во всех системах программирования, вид управляющего файла или набор опций командной строки могут сильно различаться. Далее будет рассматриваться командный язык и опции командной строки программы GNU make. В дистрибутивах операционной системы Linux программа называется make. В BSD, как правило, программа GNU make доступна под именем gmake.

Файл описания проекта может содержать описания переменных, описания зависимостей и описания команд, которые используются для компиляции. Каждый элемент файла описания проекта должен, как правило, располагаться на отдельной строке. Для размещения элемента описания проекта на нескольких строках используется символ продолжения \ точно так же, как в директивах препроцессора языка Си.

Определения переменных записываются следующим образом:

<имя> = <определение>

Использование переменной записывается в одной из двух форм:

$(<имя>) или ${<имя>} - Эти формы равнозначны.

Переменные рассматриваются как макросы, то есть использование переменной означает подстановку текста из определения переменной в точку использования. Если при определении переменной были использованы другие переменные, подстановка их значений происходит при использовании переменной (опять так же, как и в препроцессоре языка Си)

Зависимости между компонентами определяются следующим образом:

<цель> : <цель1> <цель2> ... <цельN>

Где <цель> - имя цели, которое может быть либо именем файла, либо некоторым именем, обозначающим действие, которому не соответствует никакой файл, например clean. Список целей в правой части задает цели, от которых зависит <цель> .

Если описание проекта содержит циклическую зависимость, то есть, например, файл A зависит от файла B, а файл B зависит от файла A, такое описание проекта является ошибочным.

Команды для перекомпиляции цели записываются после описания зависимости. Каждая команда должна начинаться с символа табуляции (\t). Если ни одной команды для перекомпиляции цели не задано, будут использоваться стандартные правила, если таковые имеются. Для определения, каким стандартным правилом необходимо воспользоваться, обычно используются суффиксы имен файлов. Если ни одна команда для перекомпиляции цели не задана и стандартное правило не найдено, программа make завершается с ошибкой.

Для программы earth простейший пример файла Makefile для компиляции проекта может иметь вид:

Earth: arthur.o trillian.o prosser.o gcc arthur.o trillian.o prosser.o -o earth arthur.o: arthur.c gcc -c arthur.c trillian.o: trillian.c gcc -c trillian.c prosser.o: prosser.c gcc -c prosser.c

Однако, в этом описании зависимостей не учтены.h файлы. Например, если файл arthur.h подключается в файлах arthur.c и trillian.c, то изменение файла arthur.h должно приводить к перекомпиляции как arthur.c, так и trillian.c. Получается, что.o файлы зависят не только от.c файлов, но и от.h файлов, которые включаются данными.c файлами непосредственно или косвенно. С учетом этого файл Makefile может приобрести следующий вид:

Earth: arthur.o trillian.o prosser.o gcc arthur.o trillian.o prosser.o -o earth arthur.o: arthur.c arthur.h gcc -c arthur.c trillian.o: trillian.c trillian.h arthur.h gcc -c trillian.c prosser.o: prosser.c prosser.h arthur.h gcc -c prosser.c

Первой в списке зависимостей обычно записывается «главная» зависимость, а затем записываются все остальные файлы-зависимости.

В командной строке программы make можно задать имя цели, которую требуется (при необходимости) перекомпилировать. Так, при запуске

Make prosser.o

будет при необходимости перекомпилирован только файл prosser.o и те файлы, от которых он зависит, все прочие файлы затронуты не будут. Если в командной строке имя цели не указано, берется первая цель в файле. В нашем случае это будет цель earth.

Если придерживаться хорошего стиля написания Makefile, то каждый Makefile должен содержать как минимум два правила: all – основное правило, которое соответствует основному предназначению файла, и правило clean, которое предназначено для удаления всех рабочих файлов, создаваемых в процессе компиляции. В случае программы earth рабочими файлами можно считать сам исполняемый файл программы earth, а также все объектные файлы.

С учетом этих дополнений файл Makefile примет вид:

All: earth earth: arthur.o trillian.o prosser.o gcc arthur.o trillian.o prosser.o -o earth arthur.o: arthur.c arthur.h gcc -c arthur.c trillian.o: trillian.c trillian.h arthur.h gcc -c trillian.c prosser.o: prosser.c prosser.h arthur.h gcc -c prosser.c clean: rm -f earth *.o

Обратите внимание, что у правила clean отсутствует список файлов, от которых этот файл зависит. Поскольку существование файла с именем clean в рабочем каталоге не предполагается, команда rm -f ... будет выполняться каждый раз, когда make запускается на выполнение командой

Make clean

Данный файл, безусловно, решает задачу автоматизации сборки программы earth. Теперь можно придать этому файлу более общий вид, чтобы в этот файл легче было вносить изменения.

Во-первых, можно параметризовать название используемого компилятора, а также предоставить возможность управлять параметрами командной строки компилятора. Для задания компилятора можно определить переменную CC , для задания опций командной командной строки компиляции объектных файлов - переменную CFLAGS , а для задания опций командной строки компоновки выходной программы - переменную LDFLAGS .

Получим следующий файл:

CC = gcc CFLAGS = -Wall -O2 LDFLAGS = -s all: earth earth: arthur.o trillian.o prosser.o $(CC) $(LDFLAGS) arthur.o trillian.o prosser.o -o earth arthur.o: arthur.c arthur.h $(CC) $(CFLAGS) -c arthur.c trillian.o: trillian.c trillian.h arthur.h $(CC) $(CFLAGS) -c trillian.c prosser.o: prosser.c prosser.h arthur.h $(CC) $(CFLAGS) -c prosser.c clean: rm -f earth *.o

Теперь можно изменить используемый компилятор, не только отредактировав Makefile, но и из командной строки. Например, запуск программы make в виде

Make CC=icc

Позволит для компиляции программы использовать не gcc, а Intel компилятор Си. Аналогично запуск

Make CFLAGS="-g" LDFLAGS="-g"

Позволит включить отладочную информацию в генерируемые объектные файлы и исполняемую программу

Во-вторых, можно избавиться от дублирования имен файлов сначала в зависимостях, а потом в выполняемых командах. Для этого могут быть использованы специальные переменные $^ , $< и $@ . Переменная $@ раскрывается в имя цели, стоящей в левой части правила. Переменная $< раскрывается в имя первой зависимости в правой части правила. Переменная $^ раскрывается в список всех зависимостей в правой части. Правило для компиляции файла arthur.o приобретет следующий вид:

Arthur.o: arthur.c arthur.h $(CC) $(CFLAGS) -c $<

Именно такое правило для компиляции.o файлов из.c файлов уже встроено в make, поэтому строку компиляции можно просто удалить. Останется следующий Makefile:

CC = gcc CFLAGS = -Wall -O2 LDFLAGS = -s all: earth earth: arthur.o trillian.o prosser.o $(CC) $(LDFLAGS) $^ -o $@ arthur.o: arthur.c arthur.h trillian.o: trillian.c trillian.h arthur.h prosser.o: prosser.c prosser.h arthur.h clean: rm -f earth *.o

При желании можно создавать новые шаблонные зависимости, то есть зависимости не конкретных файлов друг от друга, а файлов, имена которых удовлетворяют заданному шаблону. Тогда команды в зависимостях конкретных файлов также могут быть опущены. Например, стандартное шаблонное правило для зависимостей.o файлов от.c файлов может быть определено следующим образом:

%.o: %.c: $(CC) -c $(CFLAGS) $<

Тем не менее, в этом файле проекта осталось слабое место. Оно связано с тем, что зависимости объектных файлов включают в себя помимо.c файлов и.h файлы, подключаемые.c файлами непосредственно или транзитивно. Представим себе, что в файл prosser.c была добавлена директива

#include "trillian.h"

Но Makefile не был соответствующим образом изменен. Теперь может получиться так, что в файле trillian.h будет изменена некоторая структура данных, но файл prosser.o не будет перекомпилирован и код модуля prosser.o будет продолжать работать со старой версией структуры данных, в то время как остальная программа - с новой версией структуры данных. Такое расхождение в описании данных в рамках одной программы может привести к "загадочным" ошибкам при ее работе.

Хотелось бы каким-либо образом строить списки зависимостей объектных файлов от.c и.h файлов автоматически. Для этого мы воспользуемся специальными опциями компилятора gcc и расширенными возможностями GNU make.

Предположим, что автогенерируемые зависимости не находятся в самом файле Makefile, а подключаются из внешнего файла deps.make. Для подключения содержимого внешнего файла в Makefile необходимо добавить директиву

include deps.make

Для генерации файла deps.make с зависимостями воспользуемся опцией -MM компилятора gcc:

Deps.make: arthur.c trillian.c prosser.c arthur.h trillian.h prosser.h gcc -MM arthur.c trillian.c prosser.c > deps.make

Файл deps.make зависит от всех.c и.h файлов, из которых собирается программа. Может показаться, что это правило не будет работать, так как в Makefile необходимо включить файл deps.make, для генерации которого необходимо выполнить Makefile, то есть возникает циклическая зависимость, однако GNU make умеет корректно обрабатывать такие ситуации.

Для того, чтобы не выписывать списки.c и.h файлов несколько раз, в начале Makefile можно определить переменные:

CFILES = arthur.c trillian.c prosser.c HFILES = arthur.h trillian.h prosser.h

Более того, список объектных файлов можно получать из списка.c файлов заменой суффикса.c на.o:

OBJECTS = $(CFILES:.c=.o)

В итоге получили следующий Makefile:

CC = gcc CFLAGS = -Wall -O2 LDFLAGS = -s CFILES = arthur.c trillian.c prosser.c HFILES = arthur.h trillian.h prosser.h OBJECTS = $(CFILES:.c=.o) TARGET = earth all: $(TARGET) earth: $(OBJECTS) $(CC) $(LDFLAGS) $^ -o $@ include deps.make deps.make: $(CFILES) $(HFILES) gcc -MM $(CFILES) > deps.make clean: rm -f $(TARGET) *.o

Этот файл можно легко модифицировать для сборки других проектов с помощью изменения значений переменных CFILES, HFILES и TARGET.

Пример файла C++ проекта:

CXX = g++ LDFLAGS = CXXFLAGS = -Wall -O2 -g CXXFILES = main.cpp fn.cpp HFILES = fn.h OBJECTS = $(CXXFILES:.cpp=.o) TARGET = proga all: $(TARGET) proga: $(OBJECTS) $(CXX) $(LDFLAGS) $^ -o $@ include deps.make deps.make: $(CXXFILES) $(HFILES) $(CXX) -MM $(CXXFILES) > deps.make clean: rm -f proga *.o

Для просмотра результирующих значений переменных полезно просматривать вывод команды: make -p

Чаще всего сборка проекта в ОС Linux, с учётом зависимостей и обновлений, выполняется утилитой make , которая использует для этого заранее оформленный сценарий сборки. Мы уже неоднократно прибегали к помощи этой утилиты в предыдущих статьях, и эта статья будет посвящена исключительно вопросам использования утилиты make .

Утилита make

Утилита make автоматически определяет, какие части крупного проекта были изменены и должны быть перекомпилированы, а также выполняет действия, необходимые для этого. Но, на самом деле, область применения make не ограничивается только сборкой программ, так её можно использовать и для решения других задач, где одни файлы должны автоматически обновляться при изменении других файлов.

Утилита make доступна для разных ОС, и из-за особенностей выполнения наряду с «родной» реализацией во многих ОС присутствует GNU реализация gmake , и поведение этих реализаций в некоторых ОС, например, Solaris может существенно отличаться. Поэтому в сценариях сборки рекомендуется указывать имя конкретной утилиты. В ОС Linux эти два имени являются синонимами, реализованными через символическую ссылку, как показано ниже:

$ ls -l /usr/bin/*make lrwxrwxrwx 1 root root 4 Окт 28 2008 /usr/bin/gmake -> make -rwxr-xr-x 1 root root 162652 Май 25 2008 /usr/bin/make ... $ make --version GNU Make 3.81 ...

По умолчанию имя файла сценария сборки - Makefile . Утилита make обеспечивает полную сборку указанной цели , присутствующей в сценарии, например:

$ make $ make clean

Если цель не указана явно, то выполняется первая последовательная цель в файле сценария. Также можно указать и любой другой сценарный файл, который будет использоваться для сборки:

$ make -f Makefile.my

Простейший файл Makefile состоит из синтаксических конструкций двух типов: целей и макроопределений. Описание цели состоит из трех частей: имени цели, списка зависимостей и списка команд интерпретатора оболочки, требуемых для построения цели. Имя цели - непустой список файлов, которые предполагается создать. Список зависимостей - список файлов, в зависимости от которых строится цель. Имя цели и список зависимостей составляют заголовок цели, записываются в одну строку и разделяются двоеточием (":"). Список команд записывается со следующей строки, причем все команды начинаются с обязательного символа табуляции . Многие текстовые редакторы могут быть настроены таким образом, чтобы заменять символы табуляции пробелами. Этот факт стоит учесть и проверить, что редактор, в котором редактируется Makefile , не замещает табуляции пробелами, так как подобная проблема встречается довольно часто. Любая строка в последовательности списка команд, не начинающаяся с табуляции (ещё одна команда) или символа "# " (комментарий) - считается завершением текущей цели и началом новой.

Утилита make имеет много внутренних параметров со значениями по умолчанию, важнейшими из которых являются правила обработки суффиксов, а также определения внутренних переменных окружения. Эти данные называются базой данных make и могут быть просмотрены следующим образом:

$ make -p >make.suffix make: *** Не заданы цели и не найден make-файл. Останов. $ cat make.suffix # GNU Make 3.81 # Copyright (C) 2006 Free Software Foundation, Inc. ... # База данных Make, напечатана Thu Apr 14 14:48:51 2011 ... CC = cc LD = ld AR = ar CXX = g++ COMPILE.cc = $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c COMPILE.C = $(COMPILE.cc) ... SUFFIXES:= .out .a .ln .o .c .cc .C .cpp .p .f .F .r .y .l .s .S .mod .sym \ .def .h .info .dvi .tex .texinfo .texi .txinfo .w .ch... # Implicit Rules ... %.o: %.c # команды, которые следует выполнить (встроенные): $(COMPILE.c) $(OUTPUT_OPTION) $< ...

Значения всех этих переменных: CC , LD , AR , EXTRA_CFLAGS , ... могут использоваться файлом сценария как неявные определения со значениями по умолчанию. Кроме этого, можно определить и собственные правила обработки по умолчанию для выбранных суффиксов (расширений файловых имён), как это показано на примере выше для исходных файлов кода на языке С: %.c.

Большинство интегрированных сред разработки (IDE) или пакетов для создания переносимых инсталляций (например, automake или autoconf) ставят своей задачей создание файла Makefile для утилиты make .

Как ускорить сборку make

Сборка простых проектов происходит достаточно быстро, но с учётом роста проекта по ходу его развития, время сборки, основная часть которого затрачивается на компиляцию, может значительно вырасти. Хорошо известным примером такого рода является сборка ядра Linux, которая, в зависимости от типа оборудования, может занимать от нескольких десятков минут до часов процессорного времени. Усугубляет ситуацию и то, что при работе над проектом (доработка кода, отладка, поиск ошибок, тестирование, и т.д.) может понадобиться выполнять пересборку проекта по несколько десятков раз в день. Поэтому возможности, позволяющие ускорить этот процесс, приобретают действительную актуальность.

Так как сегодня однопроцессорные (одноядерные) системы уже практически вытеснены многоядерными конфигурациями, сборку многих проектов можно значительно (в разы) ускорить, используя возможность make запускать несколько заданий сборки в параллель с помощью ключа –j , как показано ниже:

$ man make ... -j , --jobs[=jobs] Specifies the number of jobs (commands) to run simultaneously. ...

Проверим преимущества, предоставляемые этой возможностью на практическом примере. В качестве эталона для сборки возьмём проект NTP-сервера, который собирается не очень долго, но и не слишком быстро:

$ pwd /usr/src/ntp-4.2.6p3

Сначала запустим сборку на 4-х ядерном процессоре Atom (не очень быстрая модель с частотой 1.66Ghz) но с очень быстрым твердотельным диском SSD:

$ cat /proc/cpuinfo | head -n10 processor: 0 vendor_id: GenuineIntel cpu family: 6 model: 28 model name: Intel(R) Atom(TM) CPU 330 @ 1.60GHz stepping: 2 cpu MHz: 1596.331 cache size: 512 KB $ make clean # запускаем сборку в четыре потока $ time make -j4 ... real 1m5.023s user 2m40.270s sys 0m16.809s $ make clean # запускаем сборку в стандартном режиме без параллелизма $ time make ... real 2m6.534s user 1m56.119s sys 0m12.193s $ make clean # запускаем сборку с автоматическим выбранным уровнем параллелизма $ time make -j ... real 1m5.708s user 2m43.230s sys 0m16.301s

Как можно заметить, использование параллелизма (явное или не явное) позволяет ускорить сборку почти в два раза – 1 минута против 2-ух. Выполним сборку этого же проекта на более быстром 2-х ядерном процессоре, но с достаточно медленным обычным диском HDD:

$ cat /proc/cpuinfo | head -n10 processor: 0 vendor_id: GenuineIntel cpu family: 6 model: 23 model name: Pentium(R) Dual-Core CPU E6600 @ 3.06GHz stepping: 10 cpu MHz: 3066.000 cache size: 2048 KB ... $ time make ... real 0m31.591s user 0m21.794s sys 0m4.303s $ time make -j2 ... real 0m23.629s user 0m21.013s sys 0m3.278s

Хотя итоговая скорость сборки и выросла в 3-4 раза, но улучшение от числа процессоров составляет только порядка 20%, так как «слабым звеном» здесь является медленный накопитель, допускающий задержку при записи большого числа мелких.obj файлов проекта.

Примечание : Хотелось бы напомнить, что не всякая сборка make , которая успешно выполняется на одном процессоре (как это имеет место по умолчанию или при указании -j1 ), будет также успешно выполняться при большем числе задействованных процессоров. Это связано с нарушениями синхронизации операций в случаях сложных сборок. Самым наглядным примером такой сборки, завершающейся с ошибкой в случае параллельного исполнения, является сборка ядра Linux для некоторых версий ядра. Возможность параллельного выполнения make нужно экспериментально проверять для собираемого проекта. Но в большинстве случаев это возможность может использоваться и позволяет в разы ускорить процесс сборки!

Если данный способ ускорения процесса сборки основан на том, что сейчас подавляющее большинство систем являются многопроцессорными (многоядерными), то следующий способ использует тот факт, что объём памяти RAM современных компьютеров (2-4-8 ГБ) значительно превышает объём памяти, необходимый для компиляции программного кода. В таком случае, компиляцию, основным сдерживающим фактором для которой является создание множества объектных файлов, можно перенести в область специального созданного диска (RAM диск, tmpfs ), расположенного в памяти:

$ free total used free shared buffers cached Mem: 4124164 1516980 2607184 0 248060 715964 -/+ buffers/cache: 552956 3571208 Swap: 4606972 0 4606972 $ df -m | grep tmp tmpfs 2014 1 2014 1% /dev/shm

Теперь можно временно перенести файлы собираемого проекта в tmpfs (мы по-прежнему используем NTP-сервер из предыдущего примера), в каталог /dev/shm :

$ pwd /dev/shm/ntp-4.2.6p3 $ make -j ... real 0m4.081s user 0m1.710s sys 0m1.149s

В данном случае одновременно используются оба способа повышения производительности, и улучшение относительно исходной компиляции достигает почти порядка. Правда, этот пример запускался на системе с медленным HDD, где параллельная сборка практически не давала выигрыша и требовала порядка 30 секунд.

Этот способ ускорения можно применить к сборке ядра Linux, для которого, как уже было сказано, параллельная сборка не работает. Чтобы воспользоваться преимуществами RAM-памяти, скопируем дерево исходных кодов ядра в каталог /dev/shm :

$ pwd /dev/shm/linux-2.6.35.i686 $ time make bzImage ... HOSTCC arch/x86/boot/tools/build BUILD arch/x86/boot/bzImage Root device is (8, 1) Setup is 13052 bytes (padded to 13312 bytes). System is 3604 kB CRC 418921f4 Kernel: arch/x86/boot/bzImage is ready (#1) real 9m23.986s user 7m4.826s sys 1m18.529s

Как видно, сборка ядра Linux заняла менее 10 минут, что является необычайно хорошим результатом.

В качестве вывода, можно посоветовать тщательно оптимизировать условия сборки проекта под используемое для этого оборудование, и, учитывая, что в процессе отладки сборка выполняется сотни раз, то можно сэкономить множество времени!

Сборка модулей ядра

Частным случаем сборки приложений является сборка модулей ядра Linux (драйверов). Начиная с версий ядра 2.6, для сборки модуля составляется Makefile , построенный на использовании макросов, и нам остаётся только записать (для файла собственного кода с именем mod_params.c ), следующий шаблон для сборки модулей:

Листинг 1. Makefile для сборки модулей ядра
CURRENT = $(shell uname -r) KDIR = /lib/modules/$(CURRENT)/build PWD = $(shell pwd) TARGET = mod_params obj-m:= $(TARGET).o default: $(MAKE) -C $(KDIR) M=$(PWD) modules ... $ make make -C /lib/modules/2.6.18-92.el5/build \ M=examples/modules-done_1/hello_printk modules make: Entering directory `/usr/src/kernels/2.6.18-92.el5-i686" CC [M] /examples/modules-done_1/hello_printk/hello_printk.o Building modules, stage 2. MODPOST CC /examples/modules-done_1/hello_printk/hello_printk.mod.o LD [M] examples/modules-done_1/hello_printk/hello_printk.ko make: Leaving directory `/usr/src/kernels/2.6.18-92.el5-i686" $ ls -l *.o *.ko -rw-rw-r-- 1 olej olej 74391 Мар 19 15:58 hello_printk.ko -rw-rw-r-- 1 olej olej 42180 Мар 19 15:58 hello_printk.mod.o -rw-rw-r-- 1 olej olej 33388 Мар 19 15:58 hello_printk.o $ file hello_printk.ko hello_printk.ko: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not stripped $ /sbin/modinfo hello_printk.ko filename: hello_printk.ko author: Oleg Tsiliuric license: GPL srcversion: 83915F228EC39FFCBAF99FD depends: vermagic: 2.6.18-92.el5 SMP mod_unload 686 REGPARM 4KSTACKS gcc-4.1

Заключение

В статье были рассмотрены аспекты работы с утилитой make, которые не часто описываются в литературе, но могут оказаться крайне полезными в практической работе. Также мы завершили обсуждение вопросов, связанных с поставкой и сборкой программного обеспечения в ОС Linux.

В следующей статье мы начнём знакомство с библиотеками API, присутствующими в POSIX системах.

Написание makefile иногда становится головной болью. Однако, если разобраться, все становится на свои места, и написать мощнейший makefile длиной в 40 строк для сколь угодно большого проекта получается быстро и элегантно.

Внимание! Предполагаются базовые знания утилиты GNU make.

Имеем некий типичный абстрактный проект со следующей структурой каталогов:

Пусть для включения заголовочных файлов в исходниках используется что-то типа #include , то есть каталог project/include делается стандартным при компиляции.

После сборки надо, чтобы получилось так:

То есть, в каталоге bin лежат рабочая (application) и отладочная (application_debug) версии, в подкаталогах Release и Debug каталога project/obj повторяется структура каталога project/src с соответствующими исходниками объектных файлов, из которых и компонуется содержимое каталога bin.

Чтобы достичь данного эффекта, создаем в каталоге project файл Makefile следующего содержания:

  1. root_include_dir:= include
  2. root_source_dir:= src
  3. source_subdirs:= . dir1 dir2
  4. compile_flags:= -Wall -MD -pipe
  5. link_flags:= -s -pipe
  6. libraries:= -ldl
  7. relative_include_dirs:= $(addprefix ../ ../ , $(root_include_dir) )
  8. relative_source_dirs:= $(addprefix ../ ../ $(root_source_dir) / , $(source_subdirs) )
  9. objects_dirs:= $(addprefix $(root_source_dir) / , $(source_subdirs) )
  10. objects:= $(patsubst ../ ../% , % , $(wildcard $(addsuffix /* .c* , $(relative_source_dirs) ) ) )
  11. objects:= $(objects:.cpp=.o)
  12. objects:= $(objects:.c=.o)
  13. all: $(program_name)
  14. $(program_name) : obj_dirs $(objects)
  15. g++ -o $@ $(objects) $(link_flags) $(libraries)
  16. obj_dirs:
  17. mkdir -p $(objects_dirs)
  18. VPATH:= ../ ../
  19. % .o: % .cpp
  20. g++ -o $@ -c $< $(compile_flags) $(build_flags) $(addprefix -I, $(relative_include_dirs) )
  21. % .o: % .c
  22. g++ -o $@ -c $< $(compile_flags) $(build_flags) $(addprefix -I, $(relative_include_dirs) )
  23. .PHONY: clean
  24. clean:
  25. rm -rf bin obj
  26. include $(wildcard $(addsuffix /* .d, $(objects_dirs) ) )

В чистом виде такой makefile полезен только для достижения цели clean, что приведет к удалению каталогов bin и obj.
Добавим еще один сценарий с именем Release для сборки рабочей версии:

Mkdir -p bin mkdir -p obj mkdir -p obj/Release make --directory=./obj/Release --makefile=../../Makefile build_flags="-O2 -fomit-frame-pointer" program_name=../../bin/application

И еще один сценарий Debug для сборки отладочной версии:

Mkdir -p bin mkdir -p obj mkdir -p obj/Debug make --directory=./obj/Debug --makefile=../../Makefile build_flags="-O0 -g3 -D_DEBUG" program_name=../../bin/application_debug

Именно вызов одного из них соберет наш проект в рабочем, либо отладочном варианте. А теперь, обо всем по-порядку.

Допустим, надо собрать отладочную версию. Переходим в каталог project и вызываем./Debug. В первых трех строках создаются каталоги. В четвертой строке утилите make сообщается, что текущим каталогом при запуске надо сделать project/obj/Debug, относительно этого далее передается путь к makefile и задаются две константы: build_flags (тут перечисляются важные для отладочной версии флаги компиляции) и program_name (для отладочной версии – это application_debug).

1: Объявляется переменная с именем корневого каталога заголовочных файлов.

2: Объявляется переменная с именем корневого каталога исходников.

3: Объявляются переменная с именами подкаталогов корневого каталога исходников.

4: Объявляется переменная с общими флагами компиляции. -MD заставляет компилятор сгенерировать к каждому исходнику одноименный файл зависимостей с расширением.d. Каждый такой файл выглядит как правило, где целью является имя исходника, а зависимостями – все исходники и заголовочные файлы, которые он включает директивой #include. Флаг -pipe заставляет компилятор пользоваться IPC вместо файловой системы, что несколько ускоряет компиляцию.

5: Объявляется переменная с общими флагами компоновки. -s заставляет компоновщик удалить из результирующего ELF файла секции.symtab, .strtab и еще кучу секций с именами типа.debug*, что значительно уменшает его размер. В целях более качественно отладки этот ключ можно убрать.

6: Объявляется переменная с именами используемых библиотек в виде ключей компоновки.

8: Объявляется переменная, содержащая относительные имена каталогов со стандартными заголовочными файлами. Потом такие имена напрямую передаются компилятору, предваряемые ключем -I. Для нашего случая получится../../include, потому что такой каталог у нас один. Функция addprefix добавляет свой первый аргумент ко всем целям, которые задает второй аргумент.

9: Объявляется переменная, содержащая относительные имена всех подкаталогов корневого каталога исходников. В итоге получим: ../../src/. ../../src/dir1 ../../src/dir1.

10: Объявляется переменная, содержащая имена подкаталогов каталога project/obj/Debug/src относительно текущего project/obj/Debug. То есть, этим мы перечисляем копию структуры каталога project/src. В итоге получим: /src/dir1 src/dir2.

11: Объявляется переменная, содержащая имена исходников, найденных на основе одноименных файлов *.c* (.cpp\.c), безотносительно текущего каталога. Смотрим поэтапно: результатом addsuffix будет../../src/./*.с* ../../src/dir1/*.с* ../../src/dir2/*.с*. Функция wildcard развернет шаблоны со звездочками до реальных имен файлов: ../../src/./main.сpp ../../src/dir1/file1.с../../src/dir1/file2.сpp ../../src/dir2/file3.с../../src/dir2/file4.с. Функция patsubsb уберет префикс../../ у имен файлов (она заменяет шаблон, заданный первым аргументом на шаблон во втором аргументе, а % обозначает любое количество символов). В итоге получим: src/./main.сpp src/dir1/file1.с src/dir1/file2.сpp src/dir2/file3.с src/dir2/file4.с.

12: В переменной с именами исходников расширения.cpp заменяется на.o.

13: В переменной с именами исходников расширения.c заменяется на.o.

15: Первое объявленное правило – его цель становится целью всего проекта. Зависимостью является константа, содержащая имя программы (../../bin/application_debug мы ее передали при запуске make из сценария).

17: Описание ключевой цели. Зависимоcти тоже очевидны: наличие созданных подкаталого в project/obj/Debug, повторяющих структуру каталога project/src и множество объектных файлов в них.

18: Описано действие по компоновке объектных файлов в целевой.

20: Правило, в котором цель – каталог project/obj/Debug/src и его подкаталоги.

21: Действие по достижению цели – создать соответствующие каталоги src/., src/dir1 и src/dir2. Ключ -p утилиты mkdir игнорирует ошибку, если при создании какого-либо каталога, таковой уже существуют.

23: Переменная VPATH принимает значение../../. Это необходимо для шаблонов нижеследующих правил.

25: Описывается множество правил, для которых целями являются любые цели, соответствующие шаблону %.o (то есть имена которых оканчиваются на.o), а зависимостями для этих целей являются одноименные цели, соответствующие шаблону %.cpp (то есть имена которых оканчиваются на.cpp). При этом под одноименностью понимается не только точное совпадение, но также если имя зависимости предварено содержимым переменной VPATH. Например, имена src/dir1/file2 и../../src/dir1/file2 совпадут, так как VPATH содержит../../.

26: Вызов компилятора для превращения исходника на языке С++ в объектный файл.

28: Описывается множество правил, для которых целями являются любые цели, соответствующие шаблону %.o (то есть имена которых оканчиваются на.o), а зависимостями для этих целей являются одноименные цели, соответствующие шаблону %.c (то есть имена которых оканчиваются на.c). Одноименность как в строке 23.

29: Вызов компилятора для превращения исходника на языке С в объектный файл.

31: Некоторая цель clean объявлена абстрактной. Достижение абстрактной цели происходит всегда и не зависит от существования одноименного файла.

32: Объявление абстрактной цели clean.

33: Действие по ее достижению заключается в уничтожении каталогов project/bin и project/obj со всем их содержимым.

36: Включение содержимого всех файлов зависимостей (с расширением.d), находящихся в подкаталогах текущего каталога. Данное действие утилита make делает в начале разбора makefile. Однако, файлы зависимостей создаются только послекомпиляции. Значит, при первой сборке ни один такой файл включен не будет. Но это не страшно. Цель включения этих файлов – вызвать перекомпиляцию исходников, зависящих от модифицированного заголовочного файла. При второй и последующих сборках утилита make будет включать правила, описанные во всех файлах зависимостей, и, при необходимости, достигать все цели, зависимые от модифицированного заголовочного файла.