Понимание работы сетей на базовом уровне имеет очень важное значение для каждого администратора сервера или веб-мастера. Это необходимо для правильной настройки ваших сервисов в сети, а также легкого обнаружения возможных проблем и решения неполадок.

В этой статье мы рассмотрим общие концепции сетей интернета, обсудим основную терминологию, самые распространенные протоколы, а также характеристики и предназначение каждого из уровней сетей. Здесь собрана только теория, но она будет полезна начинающим администраторам и всем интересующимся.

Перед тем как обсуждать основы сети интернет, нам нужно разобраться с некоторыми общими терминами, которые часто используются специалистами и встречаются в документации:

  • Соединение - в сетях, соединение означает возможность передавать данные между устройствами. Перед тем как начнется передача данных, должно состоятся соединение, параметры которого описаны протоколом;
  • Пакет - это основной структурный блок данных в сети. Все данные передаются в виде пакетов, большие данные разделяются на небольшие пакеты, фиксированного размера. В каждом пакете есть заголовок, в котором находится информация о данных, пункте назначения, отправителе, строке жизни пакета, времени отправки и т д;
  • Сетевой интерфейс - это физическое или виртуальное устройство, которое позволяет компьютеру подключиться к сети. Если у вас есть две сетевые карты на компьютере, то вы можете настроить сетевой интерфейс для каждой из них. Также сетевой интерфейс может быть виртуальным, например, локальный интерфейс lo;
  • LAN - это ваша локальная сеть, к ней подключены только ваши компьютеры и больше никто не имеет к ней доступа. Это может быть ваша домашняя или офисная сеть;
  • WAN - это глобальная сеть интернет, обычно этот термин применяется для обозначения всей сети интернет, также этот термин может относиться к сетевому интерфейсу;
  • Протокол - набор правил и стандартов, которые определяют команды и способ коммуникации между устройствами. Существует множество протоколов и мы их рассмотрим ниже. Самые популярные из них - это TCP, UDP, IP и ICMP, также есть протоколы сети интернет более высокого уровня, например, HTTP и FTP;
  • Порт - это адрес на компьютере, который связан с определенной программой. Это не сетевой интерфейс и не местоположение. С помощью портов программы могут общаться между собой;
  • Брандмауэр - это программное обеспечение, которое контролирует все сетевые пакеты, проходящие через компьютер. Проходящие пакеты обрабатываются на основе правил, созданных пользователем. Также брандмауэр может закрывать определенные порты, чтобы сделать работу компьютера более безопасной;
  • NAT -это служба преобразования сетевых адресов между локальной и глобальной сетью. Количество свободных сетевых адресов в сети уменьшается, поэтому необходимо найти решение, и решением стало создания локальных сетей, где несколько компьютеров могут иметь один IP адрес. Все пакеты приходят на роутер, а он уже потом с помощью NAT распределяет их между компьютерами.
  • VPN - это виртуальная частная сеть, с помощью нее можно объединить несколько локальных сетей через сеть интернет. Используется в большинстве случаев для обеспечения безопасности.

Вы можете найти намного больше терминов, но здесь мы перечислили все самые основные, которые будут встречаться чаще всего.

Уровни сетей и модель OSI

Обычно, сети обсуждаются в горизонтальной плоскости, рассматриваются протоколы сети интернет верхнего уровня и приложения. Но для установки соединений между двумя компьютерами используется множество вертикальных слоев и уровней абстракции. Это означает, что существует несколько протоколов, которые работают друг поверх друга для реализации сетевого соединения. Каждый следующий, более высокий слой абстрагирует передаваемые данные и делает их проще для восприятия следующим слоем, и в конечном итоге приложением.

Существует семь уровней или слоев работы сетей. Нижние уровни будут отличаться в зависимости от используемого вами оборудования, но данные будут передаваться одни и те же и будут иметь один и тот же вид. На другую машину данные всегда передаются на самом низком уровне. На другом компьютере, данные проходят все слои в обратном порядке. На каждом из слоев к данным добавляется своя информация, которая поможет понять что делать с этим пакетом на удаленном компьютере.

Модель OSI

Так сложилось исторически, что когда дело доходит до уровней работы сетей, используется модель OSI или Open Systems Interconnect. Она выделяет семь уровней:

  • Уровень приложений - самый верхний уровень, представляет работу пользователя и приложений с сетью Пользователи просто передают данные и не задумываются о том, как они будут передаваться;
  • Уровень представления - данные преобразуются в более низкоуровневый формат, чтобы быть такими, какими их ожидают получить программы;
  • Уровень сессии - на этом уровне обрабатываются соединения между удаленным компьютерами, которые будут передавать данные;
  • Транспортный уровень - на этом уровне организовывается надежная передача данных между компьютерами, а также проверка получения обоими устройствами;
  • Сетевой уровень - используется для управления маршрутизацией данных в сети пока они не достигнут целевого узла. На этом уровне пакеты могут быть разбиты на более мелкие части, которые будут собраны получателем;
  • Уровень соединения - отвечает за способ установки соединения между компьютерами и поддержания его надежности с помощью существующих физических устройств и оборудования;
  • Физический уровень - отвечает за обработку данных физическими устройствами, включает в себя программное обеспечение, которое управляет соединением на физическом уровне, например, Ehternet или Wifi.

Как видите, перед тем, как данные попадут к аппаратному обеспечению им нужно пройти множество слоев.

Модель протоколов TCP/IP

Модель TCP/IP, еще известная как набор основных протоколов интернета, позволяет представить себе уровни работы сети более просто. Здесь есть только четыре уровня и они повторяют уровни OSI:

  • Приложения - в этой модели уровень приложений отвечает за соединение и передачу данными между пользователям. Приложения могут быть в удаленных системах, но они работают как будто бы находятся в локальной системе;
  • Транспорт - транспортный уровень отвечает за связь между процессами, здесь используются порты для определения какому приложению нужно передать данные и какой протокол использовать;
  • Интернет - на этом уровне данные передаются от узла к узлу по сети интернет. Здесь известны конечные точки соединения, но не реализуется непосредственная связь. Также на этом уровне определяются IP адреса;
  • Соединение - этот уровень реализует соединение на физическом уровне, что позволяет устройствам передавать между собой данные не зависимо от того, какие технологии используются.

Эта модель менее абстрактная, но мне она больше нравиться и ее проще понять, поскольку она привязана к техническим операциям, выполняемым программами. С помощью каждой из этих моделей можно предположить как на самом деле работает сеть. Фактически, есть данные, которые перед тем, как будут переданы, упаковываются с помощью нескольких протоколов, передаются через сеть через несколько узлов, а затем распаковываются в обратном порядке получателем. Конечные приложения могут и не знать что данные прошли через сеть, для них все может выглядеть как будто обмен осуществлялся на локальной машине.

Основные протоколы интернета

Как я уже сказал. в основе работы сети лежит использование нескольких протоколов, которые работают один поверх другого. Давайте рассмотрим основные сетевые протоколы интернет, которые вам будут часто встречаться, и попытаемся понять разницу между ними.

  • MAC или (Media Access Control) - это протокол низкого уровня, который используется для идентификации устройств в локальной сети. У каждого устройства, подключенного к сети есть уникальный MAC адрес, заданный производителем. В локальных сетях, а все данные выходят из локальной сети и попадают в локальную сеть перед тем, как попасть к получателю, используются физические MAC адреса для обозначения устройств. Это один из немногих протоколов уровня соединения, с которым довольно часто приходится сталкиваться.
  • IP (Internet Protocol) - расположен уровнем выше, за MAC. Он отвечает за определение IP адресов, которые будут уникальными для каждого устройства и позволяют компьютерам находить друг друга в сети. Он относится к сетевому уровню модели TCP/IP. Сети могут быть связанны друг с другом в сложные структуры, с помощью этого протокола компьютеры могут определить несколько возможных путей к целевому устройству, причем во время работы эти пути могут меняться. Есть несколько реализаций протокола, но наиболее популярной на сегодняшний день является IPv4 и IPv6.
  • ICMP (Internet control message protocol) - используется для обмена сообщениями между устройствами. Это могут быть сообщения об ошибках или информационные сообщения, но он не предназначен для передачи данных. Такие пакеты используются в таких диагностических инструментах, как ping и traceroute. Этот протокол находится выше протокола IP;
  • TCP (Transmission control protocol) - это еще один основной сетевой протокол, который находится на том же уровне, что и ICMP. Его задача - управление передачей данных. Сети ненадежны. Из-за большого количества путей пакеты могут приходить не в том порядке или даже теряться. TCP гарантирует, что пакеты будут приняты в правильном порядке, а также позволяет исправить ошибки передачи пакетов. Информация приводится к правильному порядку, а уже затем передается приложению. Перед передачей данных создается соединение с помощью так называемого алгоритма тройного рукопожатия. Он предусматривает отправку запроса и подтверждение открытия соединения двумя компьютерами. Множество приложений используют TCP, это SSH, WWW, FTP и многие другие.
  • UDP (user datagram protocol) - это популярный протокол, похожий на TCP, который тоже работает на транспортном уровне. Отличие между ними в том, что здесь используется ненадежная передача данных. Данные не проверяются при получении, это может выглядеть плохой идеей, но во многих случаях этого вполне достаточно. Поскольку нужно отправлять меньше пакетов, UDP работает быстрее, чем TCP. Поскольку соединение устанавливать не нужно, то этот протокол может использоваться для отправки пакетов сразу на несколько машин или IP телефонии.
  • HTTP (hypertext transfer protocol) - это протокол уровня приложения, который лежит в основе работы всех сайтов интернета. HTTP позволяет запрашивать определенные ресурсы у удаленной системы, например, веб страницы, и файлы;
  • FTP (file transfer protocol) - это протокол передачи файлов. Он работает на уровне приложений и обеспечивает передачу файла от одного компьютера к другому. FTP - не безопасный, поэтому не рекомендуется его применять для личных данных;
  • DNS (domain name system) - протокол того же уровня, используемый для преобразования понятных и легко читаемых адресов в сложные ip адреса, которые трудно запомнить и наоборот. Благодаря ему мы можем получить доступ к сайту по его доменному имени;
  • SSH (secure shell) - протокол уровня приложений, реализованный для обеспечения удаленного управления системой по защищенному каналу. Многие дополнительные технологии используют этот протокол для своей работы.

Есть еще очень много других протоколов, но мы рассмотрели только сетевые протоколы, которые больше всего важны. Это даст вам общие понятия того, как работает сеть и интернет в целом.

Выводы

В этой статье мы рассмотрели основы сетей и протоколов, которые используются для организации их работы. Конечно, этого совсем недостаточно, чтобы понять все, но теперь у вас есть определенная база и вы знаете как различные компоненты взаимодействуют друг с другом. Это поможет вам понимать другие статьи и документацию. Если вас серьезно заинтересовали основы сети интернет, то тут не хватит нескольких статей. Вам нужна книга. Обратите внимание на Камер Д. Сети TCP/IP. Принципы, протоколы и структура. В свое время я ее прочитал и мне очень понравилось.

На завершение видео про модель OSI:

Привет, посетитель сайта сайт! Продолжаем изучать , напомню, что эти записи основаны на программе и помогут вам подготовиться к экзаменам CCENT/CCNA. Продолжаем разговор об эталонных моделях и на этот раз мы рассмотрим модель, которая была разработана путем практических наработок, эта модель называется модель стека протоколов TCP/IP , она похожа на модель OSI 7, но имеются и свои отличия, которые довольно значительны и их стоит обсудить, а также обозначить.

Помимо разбора самой модели TCP/IP в общем и целом, а также каждого уровня этой модели в отдельности, которых кстати четыре, мы сделаем сравнение эталонной модели OSI 7 и модели стека протоколов TCP/IP , чтобы понять какими недостатками и преимуществами обладают эти концепции передачи данных, в завершении мы выведем компромиссную модель передачи данных, которая будет включать в себя преимущества обеих упомянутых концепций.

Перед началом я хотел бы вам напомнить, что ознакомиться с опубликованными материалами первой части нашего курса можно по ссылке: « ».

1.15.1 Введение

Ранее мы рассмотрели модель OSI 7 и уделили особое внимание той ее части, за которую отвечает сетевой инженер. Также в блоге есть отдельная публикация, где рассмотрена более подробно. Мы отмечали, что модель OSI 7 была разработана теоретиками и имеет огромное количество сложных протоколов, которые так и не были реализованы на практике.

Давайте теперь взглянем на модель, которая была разработана практиками и протоколы которой применяются в реальных компьютерных сетях, эта модель называется модель стека протоколов TCP/IP , я уверен, что эти протоколы вы уже слышали и каждый день ими пользуетесь, даже не зная того. До этих протоколов мы еще доберемся, сейчас рассмотрим саму модель.

1.15.2 Общий принцип работы модели стека протоколов TCP/IP

Общий принцип работы модели стека протоколов TCP/IP очень похож на принцип работы модели OSI 7, разница только в количестве уровней и их функционале. Думаю, что не будет лишним отметить следующее (тут многие могут со мной согласиться): модель OSI 7 более полно описывает взаимодействие компьютерной сети с точки зрения логики ее работы, но ее протоколы абсолютно не прижились в современных реалиях, а модель стека протоколов TCP/IP описывает компьютерную сеть не так полно, зато ее протоколы используются повсеместно .

Вообще модель TCP/IP более удобна для сетевого инженера, здесь более четко описаны его границы ответственности. Давайте посмотрим на структуру модели TCP/IP, которая показана на Рисунке 1.15.1.

Как видим, отличие модели TCP/IP от OSI 7 заключается в количестве уровней , у эталонной модели их семь, в модели стека протоколов их четыре. В модели TCP/IP объединены первых два уровня модели OSI 7 ( и ), здесь первый уровень называется уровень доступа к сети или канальный уровень. На уровне доступа к сети в модели сетка протоколов TCP/IP работают такие технологии и протоколы как: Ethernet, который есть практически в каждой локальной сети, IEEE 802.11 (Wi-Fi), PPP, в общем и целом на первом уровне модели стека протоколов TCP/IP реализуется функционал физического и канального уровней модели OSI 7.

Второй уровень модели TCP/IP соответствует третьему уровню модели OSI 7, в разных источниках вы можете встретить разные названия третьего уровня: уровень сети Интернет, сетевой уровень, межсетевой уровень. Можно сказать, что это основной и самый интересный для сетевого инженера уровень. Так как на этом уровне определяется логическая адресация узлов сети Интернет и, по сути, этот уровень является конечным для сетевого оборудования, за на более высоких уровнях уже отвечают конечные устройства: и .

Третий уровень модели TCP/IP имеет такое же название, как и в модели OSI – Транспортный уровень, правда в модели OSI этот уровень в порядке нумерации идет четвертым. Транспортный уровень отвечает за надёжность передачи для конечных устройств поверх ненадежной компьютерной сети , в которой в любой момент могут возникать самые разные проблемы. К тому же транспортный уровень помогает различать компьютерам следующее: какой трафик какое приложение генерирует и какому приложению предназначены те или иные пакеты, это возможно благодаря сокетам. На транспортном уровне для нас будут интересны два протокола: TCP, который обеспечивает надежную передачу с установкой соединения, этот протокол используется для передачи данных типа текст, файлов и так далее, а также протокол UDP, этот протокол без установки соединения и используется он для передачи данных в системах реального времени: аудио и видео связь. Про вы можете узнать из записи, опубликованной ранее.

Ну а на самом верху модели TCP/IP находится уровень приложений или прикладной уровень, который отвечает за взаимодействие с конечным пользователем. Этот уровень модели TCP/IP включает в себя сразу три уровня модели OSI 7 (сеансовый, представительский и прикладной уровни), что на самом деле очень удобно как для программистов и разработчиков, так и для сетевых инженеров. Программист может писать приложения, не задумываясь об уровнях, сосредоточившись на своих абстракциях, а сетевому инженеру многие вещи верхних уровней просто неинтересны, но об этом чуть позже.

1.15.3 Первый уровень модели TCP/IP или уровень доступа к сети

Первый уровень – это фундамент компьютерной сети, поверх которого строится вся логика взаимодействия. Пожалуй, основной недостаток модели стека протоколов TCP/IP заключается в том, что физический и канальный уровень модели OSI здесь объединены в один под названием уровень доступа к сети или канальный уровень . На мой взгляд, нужно отделять физические процессы, происходящие на первом уровне от логики, которая реализована в канале связи на втором уровне. Хотя тут могут быть возражения в следующем ключе: такие популярные технологии как Ethernet и IEEE 802.11 в контексте модели OSI 7 работают на двух уровнях (канальном и физическом), тогда как в контексте модели TCP/IP эти технологии реализуют свой функционал на одном уровне – уровне доступа.

Итак, на уровне доступа модели TCP/IP решаются физические вопросы, связанные с передачей сигнала в различных средах:

  • максимальный и минимальный допустимые уровни сигнала в среде передачи данных: если с минимальным все более-менее очевидно, то с максимальным немного поясню: с усилением полезного сигнала усиливаются и помехи;
  • какой уровень сигнала нужно принимать за логический ноль (логический ноль – это не отсутствие сигнала), а какой уровень сигнала будет считаться логической единицей;
  • на физическом уровне определяются технические и конструктивные требования к среде передачи данных, например, если передача по медной линии, то тут можно выделить сетевые интерфейсы типа RJ-45 и RJ-11 или, например, витая пара или коаксиальный кабель;
  • данные в чистом виде никогда не передаются по сети, по сети передаются два объединенных сигнала: полезный сигнал с данными (его еще называют модулирующий) и несущий сигнал, процесс объединения этих двух сигналов называется модуляцией, более подробно об этом читайте в книгах, .

На самом деле этот список можно было продолжать, но для темы нашего курса физический уровень не так важен, так как разработчики сетевого оборудования уже решили за нас все самые сложные аспекты, касающиеся физики передачи данных, нам лишь придется оперировать простыми параметрами, о которых мы поговорим, когда коснемся технологий Ethernet и Wi-Fi.

Уровень доступа к сети в модели TCP/IP включает в себя еще и функционал канального уровня эталонной модели . Собственно, разработчики модели TCP/IP считают канальные функции более важными, и они правы с точки зрения логики процесса передачи данных. Вообще на уровне доступа решается задача кодирования данных для их передачи по физической среде, также на этом уровне реализуется адресация, при помощи которой коммутаторы понимают: какому устройству какой кадр отправить, эти адреса называются мак-адресами, если говорить про Ethernet сети.

Вообще, если говорить про названия единиц передачи данных на уровне доступа в модели TCP/IP, то здесь используются кадры (общую информацию вы можете получить из этой публикации), которые получаются путем логического объединения битов в последовательности. Например, если говорить про Ethernet, то его заголовок, как минимум, будет содержать мак-адрес назначения, мак-адрес источника, тип вышестоящего протокола, а также специальное поле для проверки целостности данных.

Можно выделить следующие протоколы и технологии, которые работают на канальном уровне модели TCP/IP: Ethernet, IEEE 802.11 WLAN, SLIP, Token Ring, ATM. Первым двум мы выделим по целой части, так как в локальных сетях вы будете чаще всего сталкиваться именно с ними.

Еще на канальном уровне реализуется механизм обнаружения и исправления ошибок при помощи специальных кодов, очень подробно про канальные коды рассказано в книге Бернарда Скляра «Цифровая связь», здесь мы на них не останавливаемся. Из физических устройств, работающих на уровне доступа к сети можно выделить (дополнительно можете почитать про ): усилители сигнала, преобразователи сигнала (SFP-модули, медиаконвертеры и т.д.), ретрансляторы, хабы, концентраторы, радио антенны, а также коммутаторы уровня L2, которые будет представлять для нас наибольший интерес, так как их можно и нужно настраивать и у них есть различные по своей полезности механизмы для защиты сети и обеспечения надежности передачи данных.

1.15.4 Второй уровень или уровень сети Интернет

Второй уровень модели TCP/IP называется уровнем сети Интернет, сетевым или межсетевым уровнем. Это один из самых важных уровней для сетевого инженера, так как именно здесь работает протокол IP, отвечающий за логическую адресацию в компьютерных сетях и в сети Интернет, если говорить о частностях . Непосредственно протоколу IP мы уделим целых две части, сначала мы поговорим про версию IPv4, а затем разберемся с версией протокола IPv6. Также на этом уровне работают протоколы динамической маршрутизации, в этом курсе мы разберемся с протоколом RIP, который очень прост, но уже практически нигде не используется. А если будет продолжение, то мы еще будем разбираться с такими замечательными протоколами динамической маршрутизации, как OSPF и EIGRP.

Также на сетевом уровне модели TCP/IP работает такой протокол как NAT, отвечающий за магию превращения (трансляцию) частных IP-адресов в публичные, которые маршрутизируются в сети Интернет. Вообще, этот уровень разрабатывался для того, чтобы появилась возможность взаимодействия между двумя независимыми сетями. Основным физическим устройством уровня сети Интернет является маршрутизатор, который определяет куда направить пакет по IP-адресу, находящемуся в заголовке IP-пакета, для этого маршрутизатор использует маски, а также в этом ему помогают протоколы динамической маршрутизации, при помощи которых один роутер рассказывает о известных ему IP-адресах другому роутеру.

Вообще, как я уже говорил, мы будем разбираться с протоколом IP и IP-адресами в дальнейшем, сейчас же стоит отметить, что есть так называемый мультикаст трафик и специальные IP-адреса, если нужен пример использования, то это IPTV (вот здесь вы можете немного узнать ). Так вот для работы с мультикаст IP-адресами используются такие протоколы как IGMP и PIM, которые мы не будем затрагивать в рамках этого трека, но упомянуть о них стоит. Вообще, протоколов сетевого уровня достаточно много, самые важные для нас на данном этапе мы уже перечислили, однако не упомянули протокол ARP, который помогает определить мак-адрес по известному IP-адресу, этот протокол работает между канальным и сетевым уровнем .

На межсетевом уровне единица измерения данных или PDU называется пакетом, хотя об этом вы уже догадались, когда я использовал слово IP-пакет. При этом структура заголовка IP-пакета в IPv4 достаточно сильно отличается от структуры пакета в IPv6, как и сами IP-адреса этих протоколов.

Стоит еще добавить, что настройки, производимые на сетевом уровне модели TCP/IP влияют на логику работу компьютерной сети, то есть на ее логическую топологию, в то время как действия выполняемые на первом уровне влияют на .

1.15.5 Третий или транспортный уровень стека протоколов TCP/IP

Транспортный уровень в современных компьютерных сетях в сущности представлен двумя протоколами: TCP и UDP . Первый большой и толстый, в основном используется для передачи текстовых данных и файлов по сети, второй маленький, тонкий и очень простой и используется для передачи аудио и видео данных по сети. У протокола TCP есть механизм повторной передачи битых или потерянных данных, у UDP такого механизма нет. Принципиальных отличий у этих двух протоколов много, но самое важное отличие заключается в том, что у TCP есть механизм установки соединения, а вот у UDP такого механизма нет.

Вообще, протоколы транспортного уровня должны обеспечить надежное соединение поверх ненадёжной компьютерной сети, на которой в любой момент может произойти авария, или же где-то, на каком-то участке сети, могут быть потери. Механизмы транспортного уровня реализуются на конечных компьютерах, будь то сервер или клиент, в зависимости от типа конечного устройства немного изменяется его логика работы на транспортном уровне.

Итак, получаем, что у клиентского ПК IP-адрес: 192.168.2.3, а также клиентский ПК выдал клиентскому приложению порт с номером 23678 для установки соединения с первым сервером (пусть приложением будет браузер), а для установки со вторым сервером браузер получил порт 23698. Клиентский ПК делает запросы к , находящимся в одной сети с клиентом: у первого сервера IP-адрес: 192.168.2.8, а у второго: 192.168.2.12, при этом порт как в первом, так и во втором случае одинаковый – 80, также хочу обратить внимание на то, что клиентский ПК сообщает серверам разные порты, на которые нужно слать ответы. Таким образом, если клиентский компьютер хочет сделать запрос к первому серверу, то он использует примерно следующую конструкцию для запроса: 192.168.2.8:80, это означает, что запрос был послан машине с IP-адресом 192.168.2.8 на 80 порт, сервер же пошлет ответ, используя вот такую конструкцию 192.168.2.3:23678. Если же запрос идет на 192.168.2.12:80, то ответ будет передан на 192.168.2.3:23698.

Таким образом происходит разделение трафика и компьютер не путается. Вообще, это описание предельно упрощено, более подробно мы будем говорить о протоколах транспортного уровня в отдельной части, так как эта тема довольно большая и требует отдельного разговора, кстати сказать, в курсах Cisco ICND1 и ICND2 достаточно мало времени уделено транспортному уровню . Здесь же стоит добавить что комбинация IP-адрес + порт транспортного уровня обычно называется сокетом, при этом не имеет значения протокол транспортного уровня (TCP или UDP).

За работу транспортного уровня отвечает компьютер и его операционная система или же специальная сетевая библиотека на этом компьютере, к которой может обращаться любое приложение, желающее передавать или получать данные.

1.15.6 Четвертый уровень или уровень приложений

Четвертый уровень модели TCP/IP представляет наименьший интерес для сетевого инженера, этот уровень создают и обслуживают: программисты, системные администраторы, devops-инженеры , хотя на уровне приложений есть несколько протоколов, которые важны и нужны сетевому инженеру. Вообще, основная задача прикладного уровня заключается в том, чтобы предоставить пользователю удобный интерфейс для взаимодействия с компьютерами и компьютерными сетями, но это если говорить коротко.

Пожалуй, самым известным протоколом уровня приложений является , который используют ваши браузеры для того, чтобы получить данные с того или иного сайта в сети Интернет. Протокол HTTP работает по схеме клиент-сервер, как и многие другие подобные протоколы, взаимодействием в протоколе HTTP управляет клиент, который отправляет специальные , так называемые , а сервер, получив это сообщение, анализирует его и дает клиенту свои сообщения, которые называются , вообще, если тема вам интересна, то у меня блоге вы найдете рубрику, по протоколу .
Из важных для сетевого инженера протоколов на четвертом уровне находятся:

  • DHCP – протокол, позволяющий динамически выдавать клиентским машинам IP-адреса и другие данные для подключения к сети;
  • DNS – этот протокол придумали люди с дырявой памятью, которые не хотели запоминать IP-адреса, DNS позволяет преобразовывать IP-адреса в сайтов и наоборот, для практики можете разобраться с командой nslookup;
  • SNMP – протокол, который используется во всех системах управления и мониторинга компьютерных сетей;
  • SSH – протокол для безопасного удаленного управления, при использовании SSH данные шифруются;
  • Telnet – еще один протокол удаленного управления, этот протокол реализует простой текстовый сетевой интерфейс.

Вообще этот список можно продолжить, но пока этого нам достаточно. В рамках курса мы разберемся как подключаться к коммутаторам и маршрутизаторам при помощи протоколов Telnet и SSH, научимся управлять соединениями и его параметрами, также мы немного разберемся с протоколами DHCP и DNS, возможно, в дальнейшем знакомство будет продолжено, а вот протокол SNMP мы трогать не будем.

Также стоит отметить следующие протоколы, относящиеся к прикладному уровню модели стека протоколов TCP/IP: RDP для удаленного управления компьютером, SMPT, IMAP, POP3 это всё почтовые протоколы для реализации разного функционала, первый использует протокол TCP, а второй более простой использует UDP.

Список протоколов на прикладном уровне очень велик и перечислять их все не имеет смысла. На четвертом уровне уже нельзя выделить отдельных аппаратных средств, так как задачи уровня приложений решаются программным способом, а в качестве PDU, то есть единиц измерения, выступают просто данные, которые могут выглядеть тем или иным образом в зависимости от приложения, которое работает, обрабатывает или передает данные.

1.15.7 Сравнение моделей OSI 7 и TCP/IP, а также поиск компромисса

Прежде чем перейти к сравнению моделей OSI 7 и TCP/IP, нам следует сказать, что модель стека протоколов TCP/IP использовалась для создания сети ARPANET, которая спустя годы превратилась в тот Интернет , которым мы пользуемся, сеть ARPANET – была исследовательской сетью, финансируемой министерством обороны США, эта сеть объединила сотни университетов и правительственных зданий в единую систему передачи данных при помощи телефонных линий, но с развитием технологий появилась спутниковая связь, радиосвязь, связь при помощи оптических линий и появились проблемы с передачей данных во всем этом зоопарке, разработка моделей передачи данных должна была решить возникшие проблемы и в принципе задача была решена.

Давайте же теперь попробуем сравнить эталонную модель сетевого взаимодействия OSI 7 с моделью стека протоколов TCP/IP и посмотрим, чем практическая модель отличается от теоретической . Для начала обратите внимание на Рисунок 1.15.3.

Рисунок 1.15.3 Сравнение эталонных моделей передачи данных TCP/IP и OSI 7

Слева показана эталонная модель сетевого взаимодействия, а справа вы видите модель стека протоколов TCP/IP. Сначала очевидные вещи: физический и канальный уровень модели OSI 7 соответствует уровню доступа к сети в модели TCP/IP, сетевой и транспортный уровень у обеих моделей совпадают, а вот три верхних уровня модели OSI соответствуют прикладному уровню модели TCP/IP.

Сразу отметим, что функциональность уровней этих моделей во многом схожа, а вот протоколы двух этих моделей очень разнятся, стоит заметить, что протоколы модели OSI 7 так и не были реализованы или же не получили широкого практического применения, поэтому их мы не упоминаем. Вообще, данной теме люди посвящают целые книги, мы же попробуем уложиться побыстрее.

В основе модели OSI 7 лежат три важных объекта: протокол, интерфейс и служба, модель OSI 7 четко выделяет эти три концепции и подчеркивает, что это совершенно разные вещи. Сервис или служба определяют то, что именно делает тот или иной уровень, но он никак не описывает каким образом это все происходит, другими словами сервис описывает услугу, которую нижележащий уровень предоставляет вышестоящему уровню, но он не говорит как это делается и как вообще третий уровень получает доступа ко второму, а второй к первому.

Интерфейс в эталонной модели рассказывает и описывает то, как верхний уровень может получить доступ к услугам нижележащего уровня. Интерфейс описывает требуемые входные параметры, а также то, что должно получиться на выходе, но, как и сервис, интерфейс ничего не рассказывает о интимных вещах, которые происходят внутри него.

И наконец протоколы, которые еще называют равноранговыми протоколами, поскольку они описывают то, как взаимодействуют устройства на конкретном уровне, являются инструментами конкретного уровня, каждый протокол использует для решения каких-либо конкретных задач. При этом сам уровень для решения той или иной задачи волен выбирать протокол по своему усмотрению и даже изменять этот протокол, при этом не происходит никаких изменений на более высоких уровнях, об этом мы говорили, когда разбирались с .

А вот в первоначальном виде модели стека протоколов TCP/IP не было таких четких границ между тремя вышеописанными сущностями, поэтому реализация протоколов здесь скрыта хуже, чем в модели OSI 7, да и замена одного протокола на другой может происходить более болезненно, чем в модели OSI 7, в общем, на практике не все так гладко.

Еще одним важны отличием моделей TCP/IP и OSI 7 является то, что эталонная модель OSI 7 была разработана раньше, чем ее протоколы появились на бумаге. С одной стороны, это говорит про универсальность модели передачи данных, но с другой стороны: универсальные вещи хуже решают конкретные задачи. Например, простым кухонным ножом можно открыть банку сгущенки, но это гораздо удобнее сделать специальным консервным ножом. Отсюда и основные проблемы эталонной модели: у разработчиков модели OSI не было четкого понимания того, какие функции на каком уровне должны быть реализованы.

Также модель OSI изначально не была рассчитана на то, что когда-нибудь появятся широковещательные сети. Передача данных в сетях, построенных на принципах модели OSI 7, велась от узла к узлу, с вероятностью 99% ваша домашняя сеть и сеть вашего поставщика услуг доступа в Интернет широковещательная. Поэтому разработчикам пришлось вносить коррективы, добавив новый подуровень в модель OSI. Городульки в модели OSI не закончились на канальном уровне, когда на основе модели OSI 7 начали реализовывать первые компьютерные сети, оказалось, что существующие протоколы не соответствуют спецификациям служб, поэтому в модель были добавлены дополнительные подуровни для устранения несоответствия. И в заключении: при разработке модели OSI 7 не был учтен момент интеграции и объединения нескольких небольших сетей в одну большую, предполагалось, что в каждой стране будет одна большая единая сеть, находящаяся под управлением государства.

В TCP/IP все вышло ровным счетом наоборот: сначала были придуманы и реализованы протоколы этой модели, а затем появилась необходимость в том, чтобы создать модель, которая описывает сетевое взаимодействие с использованием этих протоколов . Таким образом протоколы модели стека TCP/IP четко соответствуют уровням и функциям этих уровней. Единственный минус, этот минус не такой значительный для современного мира, заключается в том, что модель стека протоколов TCP/IP не соответствует никаким другим моделям. Минус незначительный, так как большинство компьютерных сетей построены на основе модели TCP/IP и ее протоколов .

Еще одно важное отличие моделей TCP/IP и OSI 7 кроется на сетевом и транспортном уровнях. Модель TCP/IP на сетевом уровне реализуется связь без установления соединения при помощи протокола IP, а на транспортном уровне предлагает два протокола: UPD и TCP. А вот модель OSI 7 предлагает инженерам выбор на сетевом уровне: можно выбрать связь с установлением соединения или без него, а на транспортном уровне есть один протокол, который поддерживает связь только с установлением соединения.

Можно выделить четыре основных пункта, из-за которых критикуют эталонную модель сетевого взаимодействия:

  1. Несвоевременность.
  2. Неудачная технология.
  3. Неудачная реализация.
  4. Неудачная политика распространения.

Этим мы и ограничимся и перейдем к основным недостаткам модели TCP/IP. Во-первых, модель стека протоколов TCP/IP не проводит четких границ между службами, интерфейсами и протоколами, поэтому в модель TCP/IP не всегда легко вписать новые протоколы и технологии. Второй недостаток заключается в том, что при помощи модели TCP/IP можно описать не все сети и не все технологии, например, вы не сможете достаточно полно описать технологию Bluetooth при помощи модели TCP/IP .

Канальный уровень модели TCP/IP на самом деле никакой не уровень и всё, что было описано выше про канальный уровень модели TCP/IP в большей степени подходит для физического и уровня передачи данных модели OSI 7, а не для первого уровня модели TCP/IP. На самом деле канальный уровень модели TCP/IP – это даже не уровень, а интерфейс, позволяющий взаимодействовать сетевому уровню с физической средой передачи данных из этого следует и то, что здесь нет различия между физическим уровнем и канальной логикой, хотя это абсолютно разные вещи.

Итак, из всех вышеописанных недостатков модели TCP/IP для инженеров, обеспечивающих передачу данных по сети, самым важным недостатком является то, что фундаментальный, то есть первый уровень этой модели вовсе никакой не уровень, а интерфейс, а также то, что нет деления на физику и канальную логику. Исходя из этого, а также из того, что модель TCP/IP используется для построения большинства компьютерных сетей, мы можем сделать свою компромиссную модель, которая устранит вышеописанный недостаток и будет удобной для сетевого инженера, эта модель показана на Рисунке 1.15.4.

Итак, эта модель разделяет уровень доступа к сети на два уровня: физический уровень, описывающий физические параметры среды передачи данных и ее свойства, и канальный уровень, который призван решать задачу объединения бит в кадры, логическое деление ресурсов физической среды, объединение нескольких компьютеров в сеть и надежность передачи данных. Естественно, что эта модель в качестве протоколов должна использовать протоколы модели TCP/IP.

Ее сетевой уровень должен решать задачи объединения нескольких небольших сетей в одну большую. А транспортный уровень должен увеличивать , организуя туннельное соединение между конечными участниками обмена данных. Ну а на самом верхнем уровне решаются задачи взаимодействия пользователей с ПК и компьютерной сетью.

1.15.8 Выводы

Подводя итог разговору у модели передачи данных, которая называется модель стека протоколов TCP/IP следует отметить, что в отличие от модели OSI 7, данная модель сформировалась уже после того, как были разработаны и введены в реальный мир ее протоколы и на данные момент большинство компьютерных сетей работают именно по модели стека протоколов TCP/IP . У этой модели есть два минуса: первый заключается в том, что здесь нет четкой границы между протоколом и службой, вторым недостатком является то, что в модели TCP/IP нет явного деления на канальный и физический уровень, здесь канальный уровень представляет собой интерфейс между сетевым уровнем и средой передачи данных.

Второй минус легко исправить самостоятельно, выработав для себя компромиссную модель передачи данных, где есть деление на физический и канальный уровень. Также стоит сказать, что для сетевого инженера наличие на верху модели TCP/IP только прикладного уровня – это скорее плюс, чем минус, формально говоря, в задачи сетевого инженера не входит настройка пользовательских приложений, работающих с сетью, это должны делать системные администраторы, задача сетевого инженера заключает в том, чтобы обеспечить канал связи между точкой А и Б, то есть выполнить необходимые настройки на оборудование, которое работает на уровня от физического до транспортного, модель TCP/IP это демонстрирует четко.

Еще в этой теме мы разобрались с тем, что происходит на каждом из важных для нас уровней модели TCP/IP и посмотрели, что происходит с данными, когда они переходят с одного уровня на другой, нужно запомнить этот принцип, так как его мы уже увидим в действие, когда будем разговаривать о принципах работы роутеров, тогда мы увидим, что роутер, оперирующий IP-пакетами, для того чтобы до них добраться, распаковывает Ethernet кадр, а после обработки IP пакета роутер его упаковывает в кадр и отправляет дальше.

Серверы, которые реализуют эти протоколы в корпоративной сети, предоставляют клиенту IP-адрес, шлюз, маску сети, серверы имен и даже принтер. Пользователям не обязательно конфигурировать свои хосты вручную для того, чтобы использовать сеть.

Операционная система QNX Neutrino реализует еще один протокол автоматического конфигурирования под названием AutoIP, который является проектом комитета IETF по автоматической настройке. Этот протокол используется в небольших сетях для назначения хостам IP-адресов, локальных для канала (link-local ). Протокол AutoIP самостоятельно определяет IP-адрес, локальный для канала, используя схему согласования с другими хостами и не обращаясь к центральному серверу.

Использование протокола PPPoE

Сокращение PPPoE расшифровывается как "Point -to -Point Protocol over Ethernet" (протокол соединения "точка-точка" через среду Ethernet). Этот протокол инкапсулирует данные для передачи через сеть Ethernet с мостовой топологией.

PPPoE представляет собой спецификацию подключения пользователей сети Ethernet к Интернету через широкополосное соединение, например, выделенную цифровую абонентскую линию, беспроводное устройство или кабельный модем. Использование протокола PPPoE и широкополосного модема обеспечивает пользователям локальной компьютерной сети индивидуальный аутентифицированный доступ к высокоскоростным сетям передачи данных.

Протокол PPPoE объединяет технологию Ethernet с протоколом PPP, что позволяет эффективно создавать отдельное соединение с удаленным сервером для каждого пользователя. Управление доступом, учет соединений и выбор поставщика услуг определяется для пользователей, а не для узлов сети. Преимущество этого подхода заключается в том, что ни телефонная компания, ни поставщик услуг Интернета не должен обеспечивать для этого какую-либо специальную поддержку.

В отличие от коммутируемых соединений, соединения через цифровую абонентскую линию и кабельный модем всегда активны. Поскольку физическое соединение с удаленным поставщиком услуг совместно используется несколькими пользователями, необходим метод учета, который регистрирует отправителей и адресатов трафика, а также производит начисления пользователям. Протокол PPPoE позволяет пользователю и удаленному узлу, которые участвуют в сеансе связи, узнавать сетевые адреса друг друга во время начального обмена, который называется обнаружением (discovery ). После того как сеанс между отдельным пользователем и удаленным узлом (например, поставщиком услуг Интернета) установлен, за этим сеансом можно вести наблюдение для того, чтобы производить начисления. Во многих домах, гостиницах и корпорациях общий доступ к Интернету предоставляется через цифровые абонентские линии с использованием технологии Ethernet и протокола PPPoE.

Соединение через протокол PPPoE состоит из клиента и сервера. Клиент и сервер работают с использованием любого интерфейса, который близок к спецификациям Ethernet. Этот интерфейс применяется для выдачи клиентам IP-адресов с привязкой этих IP-адресов к пользователям и, по желанию, к рабочим станциям, вместо аутентификации на основе только рабочей станции. Сервер PPPoE создает соединение "точка-точка" для каждого клиента.

Установка сеанса PPPoE

Для того чтобы создать сеанс PPPoE, следует воспользоваться сервисом pppoed . Модуль io-pkt-* п редоставляет службы протокола PPPoE. Сначала необходимо запустить io-pkt-* с подходящим драйвером . Пример :

Стек TCP / IP .

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

Стек протоколов TCP/IP обладает двумя важными свойствами:

    платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

    открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

История создания TCP / IP .

В 1967 году Агентство по перспективным исследовательским проектам министерства обороны США (ARPA – Advanced Research Projects Agency) инициировало разработку компьютерной сети, которая должна была связать ряд университетов и научно-исследовательских центров, выполнявших заказы Агентства. Проект получил название ARPANET. К 1972 году сеть соединяла 30 узлов.

В рамках проекта ARPANET были разработаны и в 1980–1981 годах опубликованы основные протоколы стека TCP/IP – IP, TCP и UDP. Важным фактором распространения TCP/IP стала реализация этого стека в операционной системе UNIX 4.2 BSD (1983).

К концу 80-х годов значительно расширившаяся сеть ARPANET стала называться Интернет (Interconnected networks – связанные сети) и объединяла университеты и научные центры США, Канады и Европы.

В 1992 году появился новый сервис Интернет – WWW (World Wide Web – всемирная паутина), основанный на протоколе HTTP. Во многом благодаря WWW Интернет, а с ним и протоколы TCP/IP, получил в 90-е годы бурное развитие.

В начале XXI века стек TCP/IP приобретает ведущую роль в средствах коммуникации не только глобальных, но и локальных сетей.

Модель OSI .

Модель взаимодействия открытых систем (OSI – Open Systems Interconnection) была разработана Международной организацией по стандартизации (ISO – International Organization for Standardization) для единообразного подхода к построению и объединению сетей. Разработка модели OSI началась в 1977 году и закончилась в 1984 году утверждением стандарта. С тех пор модель является эталонной для разработки, описания и сравнения различных стеков протоколов.

Рассмотрим кратко функции каждого уровня.


Модель OSI включает семь уровней: физический, канальный, сетевой, транспортный, сеансовый, представления и прикладной.

    Физический уровень (physical layer) описывает принципы передачи сигналов, скорость передачи, спецификации каналов связи. Уровень реализуется аппаратными средствами (сетевой адаптер, порт концентратора, сетевой кабель).

    Канальный уровень (data link layer) решает две основные задачи – проверяет доступность среды передачи (среда передачи чаще всего оказывается разделена между несколькими сетевыми узлами), а также обнаруживает и исправляет ошибки, возникающие в процессе передачи. Реализация уровня является программно-аппаратной (например, сетевой адаптер и его драйвер).

    Сетевой уровень (network layer) обеспечивает объединение сетей, работающих по разным протоколам канального и физического уровней, в составную сеть. При этом каждая из сетей, входящих в единую сеть, называется подсетью (subnet). На сетевом уровне приходится решать две основные задачи – маршрутизации (routing, выбор оптимального пути передачи сообщения) и адресации (addressing, каждый узел в составной сети должен иметь уникальное имя). Обычно функции сетевого уровня реализует специальное устройство – маршрутизатор (router) и его программное обеспечение.

    Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

    Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

    Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

    Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

Структура TCP / IP . В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

Следует заметить, что нижний уровень модели DARPA – уровень сетевых интерфейсов – строго говоря, не выполняет функции канального и физического уровней, а лишь обеспечивает связь (интерфейс) верхних уровней DARPA с технологиями сетей, входящих в составную сеть (например, Ethernet, FDDI, ATM).

Все протоколы, входящие в стек TCP/IP, стандартизованы в документах RFC.

Документы RFC .

Утвержденные официальные стандарты Интернета и TCP/IP публикуются в виде документов RFC (Request for Comments – рабочее предложение). Стандарты разрабатываются всем сообществом ISOC (Internet Society – Сообщество Интернет, международная общественная организация). Любой член ISOC может представить на рассмотрение документ для его публикации в RFC. Далее документ рассматривается техническими экспертами, группами разработчиков и редактором RFC и проходит в соответствии с RFC 2026 следующие этапы, называемые уровнями готовности (maturity levels):

    черновик (Internet Draft) – на этом этапе с документом знакомятся эксперты, вносятся дополнения и изменения;

    предложенный стандарт (Proposed Standard) – документу присваивается номер RFC, эксперты подтвердили жизнеспособность предлагаемых решений, документ считается перспективным, желательно, чтобы он был опробован на практике;

    черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

    стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

    экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

    информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

    лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track , так как уровень готовности может меняться.

Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www.rfc-editor.org . В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

Обзор основных протоколов.

Протокол IP (Internet Protocol ) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

Протоколы RIP (Routing Information Protocol протокол маршрутной информации) и OSPF (Open Shortest Path First – « первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

Протокол ICMP (Internet Control Message Protocol протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

POP 3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

Telnet – протокол эмуляции терминала 1 , позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.