Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Сетевая модель OSI — это эталонная модель взаимодействия открытых систем, на английском звучит как Open Systems Interconnection Basic Reference Model. Ее назначение в обобщенном представлении средств сетевого взаимодействия.

То есть модель OSI — то обобщенные стандарты для разработчиков программ, благодаря которым любой компьютер одинаково может расшифровать данные, переданные с другого компьютера. Чтобы было понятно, приведу жизненный пример. Известно, что пчелы видят все окружающее их в утрафиалетовом свете. То есть одну и ту же картинку наш глаз и пчелиный воспринимает абсолютно по-разному и то, что видят насекомые, может быть незаметно для зрения человека.

То же самое и с компьютерами — если один разработчик пишет приложение на каком-либо программном языке, который понимает его собственный компьютер, но не доступен ни для одного другого, то на любом другом устройстве вы прочитать созданный этим приложением документ не сможете. Поэтому пришли к такой идее, чтобы при написании приложений следовать единому своду правил, понятному для всех.

Для наглядности процесс работы сети принято разделять на 7 уровней , на каждом из которых работает своя группа протоколов.


Сетевой протокол — это правила и технические процедуры, позволяющие компьютерам, объединенным в сеть, осуществлять соединение и обмен данными.
Группа протоколов, объединенных единой конечной целью, называется стек протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.


Разберем их подробнее.

7. Прикладной уровень (Application Layer)

Его задача забрать у сетевого приложения данные и отправить на 6 уровень.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть >>IP адреса (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Стеки протоколов

TCP/IP — это стек протоколов, который управляет передачей данных как в локальной сети, так и в глобальной сети Интернет. Данный стек содержит 4 уровня, то есть по эталонной модели OSI каждый из них объединяет в себе несколько уровней.

  1. Прикладной (по OSI — прикладной, представления и сеансовый)
    За данный уровень отвечают протоколы:
    • TELNET — удаленный сеанс связи в виде командной строки
    • FTP — протокол передачи файлов
    • SMTP — протокол пересылки почты
    • POP3 и IMAP — приема почтовых отправлений
    • HTTP — работы с гипертекстовыми документами
  2. Транспортный (по OSI то же самое) — это уже описанные выше TCP и UDP.
  3. Межсетевой (по OSI — сетевой) — это протокол IP
  4. Уровень сетевых интерфейсов (по OSI — канальный и физический)За работу этого уровня отвечают драйверы сетевых адаптеров.

Терминология при обозначении блока данных

  • Поток — те данные, которыми оперируются на прикладном уровне
  • Дейтаграмма — блок данных на выходе с UPD, то есть у которого нет гарантированной доставки.
  • Сегмент — гарантированный для доставки блок на выходе с протокола TCP
  • Пакет — блок данных на выходе с протокола IP. поскольку на данном уровне он еще не гарантирован к доставке, то тоже может называться дейтаграммой.
  • Кадр — блок с присвоенными MAC адресами.

Предлагаемая эталонная модель BPM (Business Process Management) основывается на цепочке следующих предпосылок:

    Повышение производительности предприятия как сложной системы требует ее рационального построения, а процессное управление является наиболее современной концепцией для такого построения;

    BPM (как дисциплина) предлагает системный подход к реализации процессного управления;

    На каждом процессно-управляемом предприятии есть своя BPM-система - портфолио всех бизнес-процессов, а также методов и инструментов для руководства разработкой, исполнения и развития этого портфолио;

    Гибкость BPM-системы предприятия является основным фактором ее успеха;

    Специализированная программная платформа (BPM suite) для реализации BPM-системы предприятия необходима, но недостаточна, так как BPM занимает особое место в архитектуре предприятия.

Цель: повышение производительности предприятия

Для управления своей производительностью большинство предприятий используют принцип обратной связи (рис. 1), позволяющий адаптироваться к внешней бизнес-экосистеме путем выполнения определенной последовательности действий:

    Измерение хода исполнения производственно-хозяйственной деятельности (обычно такие измерения представлены в форме различных метрик или индикаторов, например, процент возвращающихся клиентов);

    Вычленение из внешней бизнес-экосистемы важных для предприятия событий (например, законов или новых потребностей рынка);

    Определение стратегии развития бизнеса предприятия;

    Реализация принятых решений (путем внесения изменений в бизнес-систему предприятия).

В соответствии с классической рекомендацией Эдварда Деминга, автора многочисленных работ в области управления качеством, в том числе известной книги «Выход из кризиса», все усовершенствования должны проводиться циклично, непрерывно и с проверкой на каждом цикле. Степень и частота этих усовершенствований зависят от конкретной ситуации, но рекомендуется делать такие циклы достаточно компактными. Различные усовершенствования могут затрагивать различные аспекты работы предприятия. Вопрос в том, как предприятие может достигнуть наилучших результатов в каждом конкретном случае? Существуют две объективные предпосылки для оптимизации деятельности предприятия как единого целого:

    Обеспечение руководства надлежащей информацией и инструментами для принятия решения;

    Гарантия того, что бизнес-система предприятия способна к осуществлению необходимых изменений в необходимом темпе.

Наиболее современная концепция организации работы предприятия - процессное управление, при котором процессы и службы становятся явными.

Процессное управление

Мир бизнеса давно понял (см. такие методики, как TQM, BPR, Six Sigma, Lean, ISO 9000, и др.), что службы и процессы - это основа функционирования большинства предприятий. Множество предприятий используют процессное управление для организации своей производственно-хозяйственной деятельности, как портфолио бизнес-процессов и методов управления ими.

Процессное управление, как управленческая концепция, постулирует целесообразность координации деятельности отдельных служб предприятия с целью получения определенного результата при помощи явно и формально определенных бизнес-процессов. При этом службы - это операционно независимые функциональные единицы; у предприятия может быть много элементарных нанослужб, которые организованы в мегаслужбу (собственно предприятие).

Использование явного определения координации позволяет формализовать взаимозависимости между службами. Наличие такой формализации дает возможность использовать различные методы (моделирование, автоматизированная проверка, контроль за версиями, автоматизированное выполнение и т.д.) для улучшения понимания бизнеса (для принятия более правильных решений) и повышения скорости развития бизнес-систем (для более быстрой реализации изменений).

Кроме процессов и служб, бизнес-системы предприятий работают с событиями, правилами, данными, индикаторами работы, ролями, документами и т.д.

Для реализации процессного управления предприятия используют три популярные дисциплины постоянного усовершенствования бизнес-процессов: ISO 9000, Six Sigma и «бережливое», или «экономное», производство (Lean production). Они воздействуют на различные области бизнес-системы предприятия, однако всегда предусматривается сбор данных о фактически проделанной работе и использование некой модели бизнес-процессов для принятия решений (хотя иногда эта модель находится только в чьей-то голове). В то же самое время они предлагают различные и взаимодополняющие методы для того, чтобы определить, какие именно изменения необходимы для улучшения функционирования бизнес-системы предприятия.

Что моделируете, то и выполняете

На рис. 2 приведена обобщенная модель процессно-управляемого предприятия.

В чем основная трудность оптимизации деятельности такого предприятия? Различные части бизнес-системы используют разные описания одного и того же бизнес-процесса. Обычно эти описания существуют отдельно и разработаны разными людьми, обновляются различными темпами, не обмениваются информацией, а некоторых из них просто нет в явном виде. Наличие единого описания бизнес-процессов предприятия позволяет устранить этот недостаток. Это описание должно быть явно и формально определено, чтобы одновременно служить моделью для моделирования, исполняемой программой и документацией, легко понимаемой всеми вовлеченными в бизнес-процесс сотрудниками.

Такое описание - основа дисциплины BPM, позволяющей моделировать, автоматизировать, выполнять, контролировать, измерять и оптимизировать потоки работ, охватывающие программные системы, сотрудников, клиентов и партнеров в пределах и вне границ предприятия. Дисциплина BPM рассматривает все операции с бизнес-процессами (моделирование, исполнение и т.п.) как единое целое (рис. 3).

На данный момент в индустрии BPM еще не сложилась надлежащая система стандартов на форматы формального описания бизнес-процессов. Три наиболее популярных формата: BPMN (Business Process Modelling Notation , графическое представление моделей бизнес-процессов), BPEL (Business Process Execution Language , формализация исполнения взаимодействия между Web-сервисами) и XPDL (XML Process Description Language, www.wfmc.org, спецификация по обмену моделями бизнес-процессов между различными приложениями) были разработаны различными группами и для различных целей и, к сожалению, адекватно не взаимодополняют друг друга.

Ситуация усугубляется тем, что за различными форматами стоят различные производители и каждый старается «протолкнуть» на рынок свое решение. Как это неоднократно повторялось, в подобной борьбе интересы конечного потребителя мало принимаются во внимание - сегодня нет достаточно мощной организации, представляющей интересы конечного потребителя BPM (по аналогии с группой стандартов для HTML , успех которой объясняется принятием всеми разработчиками Web-браузеров единого теста ACID3 для сравнения своих продуктов). Идеальной ситуацией в BPM было бы стандартное определение семантики исполнения для BPMN-подобного описания бизнес-процессов. Именно стандартная семантика исполнения гарантировала бы одинаковую интерпретацию бизнес-процессов любым ПО. Дополнительно такое описание должно позволять адаптацию степени описания бизнес-процессов для нужд конкретного потребителя (например, пользователь видит грубую диаграмму, аналитик - более подробную и т.п.).

Все это не означает, что BPEL или XPDL станут ненужными - их использование будет скрыто, как это происходит в сфере подготовки электронных документов. Один и тот же электронный документ может одновременно существовать в XML, PDF, PostScript и т.п., но только один основной формат (XML) используется для модификации документа.

Дисциплина BPM в культуре предприятия

Кроме процессов и служб, бизнес-системы предприятия работают с такими дополнительными артефактами, как:

    события (events) - явления, происшедшие в пределах и вне границ предприятия, на которые возможна некая реакция бизнес-системы, например, при получении заказа от клиента необходимо начать бизнес-процесс обслуживания;

    объекты (data and documents objects) - формальные информационные описания реальных вещей и людей, образующих бизнес; это информация на входе и выходе бизнес-процесса, например, бизнес-процесс обслуживания заказа получает на входе собственно формуляр заказа и информацию о клиенте, а на выходе формирует отчет о выполнении заказа;

    деятельности (activities) - мелкие работы, преобразующие объекты, например автоматические деятельности типа проверки кредитной карты клиента или деятельности, осуществляемые человеком, такие как визирование документа руководством;

    правила (rules) - ограничения и условия, при которых функционирует предприятие, например, выдача кредита на определенную сумму должна утверждаться генеральным директором банка;

    роли (roles) - понятия, представляющие соответствующие навыки или обязанности, требуемые для выполнения определенных действий, например, только менеджер высшего звена может подписать конкретный документ;

    аудиторские следы (audit trails) - информация о выполнении конкретного бизнес-процесса, например, кто сделал, что и с каким результатом;

    основные индикаторы производительности (Key Performance Indicator, KPI) - ограниченное число показателей, измеряющих степень достижения поставленных целей.

Рис. 4 иллюстрирует распределение артефактов между различными частями бизнес-системы предприятия. Выражение «процессы (как шаблоны)» означает абстрактные описания (модели или планы) процессов;

выражение «процессы (как экземпляры)» означает фактические результаты выполнения этих шаблонов. Обычно шаблон используется для создания многих экземпляров (подобно незаполненному бланку, который многократно копируется для заполнения разными людьми). Выражение «службы (как интерфейсы)» означает формальные описания служб, которые доступны для их потребителей; выражение «службы (как программы)» означает средства выполнения служб - такие средства обеспечиваются поставщиками служб.

Для успешной работы со всей сложной совокупностью взаимозависимых артефактов у любого процессно-управляемого предприятия есть своя собственная BPM-система - это портфолио всех бизнес-процессов предприятия, а также методов и инструментов для руководства разработкой, исполнения и развития этого портфолио. Другими словами, BPM-система предприятия ответственна за синергетическое функционирование различных частей бизнес-системы предприятия.

BPM-система, как правило, не идеальна (например, некоторые процессы могут существовать лишь на бумаге, а некоторые детали «живут» только в умах определенных людей), но она существует. Например, любую реализацию ISO 9000 можно рассматривать как пример BPM-системы.

Улучшение BPM-системы предприятия, помимо чисто технических аспектов, должно учитывать социо-технические вопросы. У BPM-системы предприятия есть много заинтересованных лиц, каждое из которых решает свои задачи, воспринимает BPM-дисциплину своим образом и работает со своими артефактами. Для успешного развития BPM-системы предприятия необходимо обратить особое внимание на проблемы всех заинтересованных лиц и заранее объяснить им, как улучшение BPM-системы предприятия изменит их работу к лучшему. Крайне важно достигнуть единого понимания всех артефактов среди всех заинтересованных лиц.

Специализированное ПО для реализации BPM-систем

Растущая популярность и большой потенциал BPM вызвали появление нового класса корпоративного ПО - BPM suite, или BPMS, содержащего следующие типичные компоненты (рис. 5):

    Инструмент моделирования (Process modelling tool) - графическая программа для манипулирования такими артефактами, как события, правила, процессы, активности, службы и т.д.;

    Инструмент тестирования (Process testing tool) - среда функционального тестирования, которое позволяет «исполнять» процесс по различным сценариям;

    Хранилище шаблонов (Process template repository) - база данных шаблонов бизнес-процессов с поддержкой различных версий одного и того же шаблона;

    Исполнитель процессов (Process execution engine);

    Хранилище экземпляров (Process instance repository) - база данных для выполняемых и уже выполненных экземпляров бизнес-процессов;

    Список работ (Work list) - интерфейс между BPM suite и пользователем, выполняющим некоторые активности в рамках одного или нескольких бизнес-процессов;

    Приборная панель (Dashboard) - интерфейс оперативного контроля за исполнением бизнес-процессов;

    Инструмент анализа (Process analysis tool) - среда для изучения тенденции исполнения бизнес-процессов;

    Инструмент имитационного моделирования (Process simulation tool) - среда для тестирования производительности бизнес-процессов.

Необходимость взаимодействия между BPM suite и корпоративным ПО, которое поддерживает другие артефакты, вызвала появление нового класса корпоративного ПО - Business Process Platform (BPP). Типичные технологии BPP (рис. 6):

    Business Event Management (BEM) - анализ бизнес-событий в режиме реального времени и запуск соответствующих бизнес-процессов (BEM связан с Complex Event Processing (CEP) и Event Driven Architecture (EDA));

    Business Rules Management (BRM) - явное и формальное кодирование бизнес-правил, которые могут модифицироваться пользователями;

    Master Data Management (MDM) - упрощение работы со структурированными данными за счет устранения хаоса при использовании одних и тех же данных;

    Enterprise Content Management (ECM) - управление корпоративной информацией, предназначенной для человека (обобщение понятия документ);

    Configuration Management Data Base (CMDB) - централизованное описание всей информационно-вычислительной среды предприятия, используемое для привязки BPM к информационно-вычислительным ресурсам предприятия;

    Role-Based Access Control (RBAC) - управления доступом к информации с целью эффективного разделения контрольных и исполнительских полномочий (separation of duty);

    Business Activity Monitoring (BAM) - оперативный контроль функционирования предприятия;

    Business Intelligence (BI) - анализ характеристик и тенденций работы предприятия;

    Service-Oriented Architecture (SOA) - архитектурный стиль для построения сложных программных систем в виде набора универсально доступных и взаимозависимых служб, который используется для реализации, выполнения и управления службами;

    Enterprise Service Bus (ESB) - среда коммуникаций между службами в рамках SOA.

Таким образом, дисциплина BPM способна обеспечить единое, формальное и выполнимое описание бизнес-процессов, которое может использоваться в различных инструментах BPM suite, причем реальные данные собираются во время выполнения бизнес-процессов. Вместе с тем высокая гибкость BPM-системы предприятия не гарантируется автоматически после покупки BPM suite или BPP - способность конкретной BPM-системы развиться в необходимом темпе должна проектироваться, реализовываться и постоянно контролироваться. Как и здоровье человека, все это нельзя купить.

BPM в архитектуре предприятия

Необходимость вовлечения практически всего корпоративного ПО в единую логику улучшения BPM-системы предприятия поднимает вопрос о роли и месте BPM в архитектуре предприятия (Enterprise Architecture, EA). EA является на сегодня устоявшейся практикой ИТ-департаментов по упорядочению информационно-вычислительной среды предприятия. В основе EA лежат следующие правила:

    Текущая ситуация с информационно-вычислительной средой предприятия тщательно документируется как исходная точка as-is;

    Желаемая ситуация документируется как конечная точка to-be;

    Строится и исполняется долгосрочный план по переводу информационно-вычислительной среды предприятия из одной точки в другую.

Все это, казалась бы, вполне разумно, но сразу видна разница с подходом, предусматривающим небольшие улучшения, который лежит в основе процессного управления. Как совместить эти два противоположных подхода?

Дисциплина BPM может решить основную проблему EA - дать объективную оценку производственно-хозяйственных возможностей (а не только информационно-вычислительных) того, что будет в точке to-be. Несмотря на то что EA описывает полную номенклатуру артефактов предприятия (его генотип), она не может достоверно сказать, какие изменения в этом генотипе влияют на конкретные производственно-хозяйственные характеристики предприятия, то есть на фенотип предприятия (cовокупность характеристик, присущих индивиду на определенной стадии развития).

Со своей стороны, дисциплина BPM структурирует взаимозависимости между артефактами в виде явных и исполняемых моделей (бизнес-процесс - это пример взаимозависимости между такими артефактами, как события, роли, правила и т.п.). Наличие таких исполняемых моделей позволяет с некоторой степенью достоверности оценить производственно-хозяйственные характеристики предприятия при изменении генотипа предприятия.

Естественно, чем больше взаимозависимостей между артефактами смоделировано и чем достовернее эти модели, тем точнее такие оценки. Потенциально симбиоз номенклатуры артефактов предприятия и формально определенных взаимозависимостей между ними дает исполняемую модель предприятия на конкретный момент времени. Если строить такие исполняемые модели на единых принципах (например, krislawrence.com), то появляется возможность для сравнения эффекта от применения различных стратегий развития предприятия и появления более систематических и предсказуемых технологий по преобразованию одних исполняемых моделей в другие.

В некотором смысле комбинация EA+BPM может стать своего рода навигатором, который обеспечивает руководство и практическую помощь в развитии бизнеса и ИТ при реализации генеральной линии предприятия.

Не секрет, что сегодня производители ПО определяют и развивают BPM по-разному. Однако, более перспективный путь развития BPM - это BPM, ориентированный на нужды конечных потребителей, и эталонная модель BPM - первый шаг по созданию единого понимания BPM среди всех заинтересованных лиц.

Предлагаемая в статье эталонная модель основана на практическом опыте автора по проектированию, разработке и сопровождению различных корпоративных решений. В частности, эта модель использовалась для автоматизации ежегодного производства более 3 тыс. сложных электронных продуктов со средним временем подготовки продукта в несколько лет. В результате обслуживание и развитие этой производственной системы потребовали в несколько раз меньше ресурсов, чем при традиционном подходе. n

Александр Самарин ([email protected]) - корпоративный архитектор ИТ-департамента правительства кантона Женева (Швейцария).

Process Frameworks для BPM

Подход к реализации технологий управления бизнес-процессами, упрощающий внедрение BPM-систем, подразумевает четкое определение бизнес-задачи и соответствующих ей бизнес-процессов; реализацию этих процессов за срок не более трех месяцев с целью демонстрации ценности данного подхода; дальнейшее расширение реализации на основные бизнес-задачи. Однако главная трудность на этом пути - недопонимание и отсутствие согласованности между бизнес- и ИТ-подразделениями. Значительно упростить проект внедрения и сократить затраты позволяют специализированные референсные модели (Process Frameworks).

Референсная модель - пакет аналитических и программных ресурсов, состоящий из описания и рекомендаций по организации высокоуровневой структуры бизнес-процесса, набора атрибутов и метрик оценки эффективности выполнения, а также программных модулей, созданных для быстрого построения прототипа бизнес-процесса для последующей его адаптации под специфику конкретной компании.

Референсные модели помогают в определении и установке требований и позволяют наладить бизнес-процессы, они основаны на отраслевых стандартах и включают в себя отраслевой опыт. Для типовых процессов референсные модели способны помочь при выборе и моделировании основных последовательностей работы, определении ключевых показателей эффективности (КPI) и параметров, позволяющих оценить результативность в ключевых областях, а также при управлении деятельностью и решением задач, анализе исходных причин и обработке исключительных случаев.

В структуру типичной референсной модели входят: рекомендации и описание предметной области; элементы композитных пользовательский интерфейсов (экранные формы и логически связные в цепочки портлеты); оболочки сервисов для быстрой реализации доступа к бизнес данным; примеры типовых бизнес-правил; ключевые показатели эффективности и элементы для их анализа; исполняемые модели процессов; модели данных и атрибуты процесса; адаптации к законодательной базе и специфике бизнеса в конкретной стране; рекомендации по этапам развертывания и реализации процессов. Такой набор ресурсов позволят быстрее адаптироваться к реализации процессного подхода в рамках конкретной системы управления бизнес-процессами, сократить время итераций цикла разработки, тестового исполнения и анализа процессов. При этом достигается максимальное соответствие технической реализации и существующей бизнес-задачи.

Однако, как отмечают аналитики AMR Research, «технологии и методы сами по себе не способны обеспечить каких-либо преимуществ - «больше» не всегда значит «лучше». Некоторые компании применяют множество различных решений, однако эффективность от этого только падает. Важна грамотность применения таких технологий». В референсных моделях в качестве основы используются принятые в отрасли стандарты и опыт компании Software AG по созданию эталонной модели для определения требований клиентов. На практике эта модель становится отправной точкой, с помощью которой клиенты могут создать нужную модель.

Process Framework, например, для бизнес-процесса обработки заказов, включает в себя базовую модель процесса со схемами действий для различных пользователей и ролей, избранные KPI из модели SCOR (The Supply-Chain Operations Reference-model) для процесса в целом и отдельных этапов, правила поддержки разных последовательностей обработки, например с учетом сегмента клиентов, целевые показатели для различных сегментов клиентов, типов продукции и регионов, а также панели индикации, помогающие контролировать особые ситуации.

Process Framework позволяет акцентировать внимание на необходимости и возможности коррекции KPI для конкретных групп клиентов и их конфигурирования с учетом появления новых товаров, выхода на новые регионы или сегменты рынка. Подобная информация позволит руководителям, отвечающим за цепочки поставок, торговые операции, логистику и производство, улучшить контроль над конкретной деятельностью, а руководителям ИТ-отделов быстро оценить реальную работоспособность ИТ-систем, поддерживающих обработку заказов.

Владимир Аленцев ([email protected]) - консультант по BPM и SOA , представительство Software AG в России и СНГ (Москва).

Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).

Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.

Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.

Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.

Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.

Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.

Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.

Перечислим их:

  • 7. Прикладной уровень (application layer)
  • 6. Представительский уровень или уровень представления (presentation layer)
  • 5. Сеансовый уровень (session layer)
  • 4. Транспортный уровень (transport layer)
  • 3. Сетевой уровень (network layer)
  • 2. Канальный уровень (data link layer)
  • 1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень

Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень

Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).

Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.

Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень

Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.

Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень

Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).

А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.

Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.

На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.

Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень

Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.

Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.

На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.

Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.

Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).

Канальный уровень

Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.

IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.

LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.

MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.

Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо ) – нижний подуровень канального уровня.

Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.

Физический уровень

Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.

Заключение

Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Эталонная модель OSI

В 1984 году с целью упорядочения описания принципов взаимодействия устройств в сетях Международная организация по стандартизации(ISO) предложила семиуровневую эталонную модель «Взаимодействие Открытых Систем». Модель OSI является основой для разработки стандартов на взаимодействие систем. Существует 7 основных уровней модели OSI:

Модель OSI послужила основой для стандартизации всей сетевой индустрии, так же является хорошей методологической основой для изучения сетевых технологий.

Передача информации в сети соответствует строго определенному уровню модели OSI. Хотя в реальной жизни некоторые аппаратные и программные средства отвечают сразу за несколько уровней. Как допустим, два первых уровня реализуются, как аппаратно, так и программно, а остальные 5,в основном, программные.

Эталонная модель определяет назначение каждого уровня и правила взаимодействия уровней (таблица ниже)

Модель OSI описывает путь информации через сетевую среду от одной прикладной программы на одном ПК до другой программы на другом ПК. При этом пересылаемая информация проходит вниз через все уровни системы. Уровни на разных системах не могут общаться между собой напрямую. Это имеет только физический уровень. По мере прохождения информации вниз внутри системы она преобразуется в вид, удобный для передачи по физическим каналам связи. Для указания адресата к этой преобразованной информации добавляется заголовок с адресом. После получения адресатом этой информации, она проходит через все уровни вверх. По мере прохождения информация преобразуется в первоначальный вид. Каждый уровень системы должен полагаться на услуги, предоставляемые ему смежными уровнями.

Основная идея модели OSI в том, что одни и те же уровни на разных системах, не имея возможности связываться непосредственно, должны работать абсолютно одинаково. Одинаковым должен быть и сервис между соответствующими уровнями различных систем. Нарушения этого принципа может привести к тому, что информация, посланная от одной системы к другой, после всех преобразований будет не похожа на исходную.

Проходящие через уровни данные имеют определённый формат. Сообщение, как правило, делиться на заголовок и информационную часть. Конкретный формат зависит от функционального назначения, на котором информация находится в данное время. Но некоторые уровни не нуждаются в присоединении заголовков, они просто могут выполнять преобразование получаемых физических данных к формату, подходящему для смежных уровней.

ПРОЦЕСС ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ:

Протоколы и интерфейсы

При передаче сообщений оба участника сетевого обмена должны следовать множеству соглашений. Соглашения должны быть едиными для всех уровней, от самого низкого передачи битов до самого высокого уровня, определяющего интерпретацию информации. Такие формализованные правила, определяющие последовательность и формат сообщений на одном уровне, называются протоколами. Иерархически организованная совокупность протоколов называются стеком коммуникационных протоколов.

Протоколы соседних уровней на одном узле взаимодействуют друг с другом также в соответствии с четко определенными правилами, описывающими формат сообщений. Эти правила принято называть интерфейсом. Он определяет набор услуг, которые нижележащий уровень предоставляет вышележащему.

Приложение может использовать системные средства взаимодействия не только для организации диалога с другим приложением, но и для получения услуг того или иного сетевого сервиса.

В модели OSI различается два основных типа протоколов. В протоколах с установлением соединения (Connectionless- Oriented Network Service, CONS) перед обменом данными отправитель и получатель должны сначала установить соединение и, возможно, выбрать протокол, который они будут использовать. После завершения диалога они должны разорвать соединение.

Протоколы без предварительного установления соединения (Connectionless Network Service, CLNS) или диаграммные протоколы. Отправитель просто передает сообщения, когда оно готово.

Уровни модели OSI

Физический уровень

На этом уровне выполняются электрические, механические, функциональные и иные параметры реализации физической связи. Описывает процесс прохождения сигналов через среду передачи между сетевыми устройствами. Ею может быть медный кабель, коаксиальный и т.д. Поэтому к физическому уровню относятся характеристики сред передачи: полосы пропускания, помехозащищенность, волновое сопротивление и др., а так же фронты импульсов, уровни напряжения, тока передаваемого сигнала, типы кодирования, скорости передачи сигналов. Стандартизуются типы разъемов, и опр. назначение каждого контакта.

Единственным типом оборудования, которое работает только на физическом уровне, являются повторители.

Fast Ethernet- является эволюционным развитием Ethernet. Данная таблица показывает, что основные отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне.

Более сложная структура объясняется тем, что в ней используется три среды передачи: оптоволоконный кабель, неэкранированная витая пара категории 5(задействуются две пары) и неэкранированная витая пара категории 3 (задействуются четыре пары), причем по сравнению с вариантами физической реализации Ethernet здесь отличия каждого варианта от других глубже.

Для технологии Fast Ethernet разработаны различные варианты физического уровня. Физический уровень состоит из трех подуровней: согласования, интерфейса, MII(Media Independent Interface-интерфейса, независящего от среды) и физического уровня. Физ.уровень обеспечивает кодирование данных, поступающих от подуровня МАС, для передачи их по физической среде определенного типа, синхронизацию передаваемых данных, а так же их прием и декодирование. Интерфейс MII поддерживает независимый от используемой физической среды способ обмена данными между подуровнем MAC и подуровнем PHY.Подуровень согласования нужен для того, чтобы согласовать работу подуровня MAC с интерфейсом MII.

Дальнейшее развитием стало Gigabit Ethernet, который обеспечивает взаимодействие между уровнем МАС и физическим уровнем. Этот интерфейс является расширением интерфейса MII и может поддерживать скорости передачи 10,100 и 1000 Мбит/c

Физический уровень разделен на 2 подуровня: независящий от среды(PHY) и зависящий от среды (PMD). Работу всех уровней контролирует протокол управления станцией STM (Station Management). Подуровень PMD обеспечивает передачу данных от одной станции к другой по конкретной физической среде, а подуровень PHY выполняет кодирование и декодирование данных, циркулирующих между подуровнем МАС и подуровнем PMD, а также обеспечивает тактирование информационных сигналов.

Физический уровень делиться на два подуровня: подуровень согласования с системой передачи (Transmission Convergence,TC) и подуровень физической среды (Physical Medium- PM). Подуровень ТС выполняет упаковку ячеек, поступающих с верхнего уровня модели АТМ, в передаваемые транспортные кадры. Подуровень физической среды регламентирует скорость передачи данных и отвечает за синхронизацию между передачей и приемом.

Существуют 3 организации, определяющие физический уровень технологии АТМ: ANSI, ITU/CCITT и форум АТМ.

Канальный уровень

Обеспечивает надежную передачу данных через физический канал. Канальный уровень оперирует блоками данных, называемыми кадрами(frame) Основным назначением является прием кадра из сети и отправка его в сеть. При выполнении этой задачи канальный уровень осуществляет:

1. физическую адресацию передаваемых сообщений

2. соблюдение правил использования физического канала

3. выявление неисправностей

4. управление потоками информации.

Вместо прямой адресации по мере прохождения ячеек с информацией через коммутаторы АТМ в заголовках ячеек происходит преобразование индетификаторов виртуальных путей и каналов. Добавляется также новая функция: мультиплексирование и демультиплексирование ячеек.

Для доступа к среде в локальных сетях используются два метода:

1.метод случайного доступа

2. метод маркерного доступа

1.Любая станция сети пытается получить доступ к каналу передачи в необходимый для нее момент времени. Если канал занят, станция повторяет попытки доступа до его освобождения(Ethernet)

2. Применяется в сетях Token Ring, ArcNet, FDDI и 100VG-AnyLan.Основан на передаче от одной станции к другой маркера доступа. При получении маркера станция имеет право передать свою информацию.

Особенность в том, что все станции участвуют в передаче на равных основаниях.

Канальный уровень обеспечивает правильность передачи каждого кадра, добавляя к кадру его контрольную сумму. Получатель кадра проверяет достоверность полученных данных путем сравнения вычисленной и переданной с кадром контрольных сумм.

Функции канального уровня реализуются установленными в кс адаптерами и соответствующими драйверами, а так же различным коммуникационным оборудованием: мостами, коммутаторами, маршрутизаторами.

Эти устройства должны: формировать кадры, а анализировать и обрабатывать кадры, принимать кадры из сети и отправлять кадры в сеть.

IEE(Institute of Electrical and Electronics Engineers) предложил другой вариант,где канальный уровень подразделяется на 2 подуровня:

1.уровень управления логическим каналом (LLC)

2. уровень доступа к среде (МАС)

1.Отвечает за достоверную передачу кадров между станциями сети и взаимодействие с сетевым уровнем. МАС уровень лежит ниже LLC-уровня и обеспечивает доступ к каналу передачи данных. Уровень LLC дает более высоким уровням возможность управлять качеством услуг. LLC обеспечивает сервис трех типов:

1. Сервис без подтверждения доставки и установления соединения

2. Сервис с установлением соединения

3. Сервис без установления соединения с подтверждением доставки

Главной функцией МАС-уровня является обеспечение доступа к каналу. На этом уровне формируется физический адрес устройства, подсоединенного к каналу. (МАС-адрес) Каждое устройство сети идентифицируется этим уникальным адресом, который присваивается всем сетевым интерфейсам устройства. МАС-адрес позволяет выполнять точечную адресацию кадров, групповую широковещательную. При передачи данных в сети отправитель указывает МАС-адрес получателя в передаваемом кадре.

МАС-уровень должен согласовывать дуплексный режим работы уровня LLC с физическим уровнем. Для этого он буферезует кадры для передачи их по назначению в момент получения доступа к среде.

Функции протоколов канального уровня различаются в зависимости от того, предназначен ли данный протокол для передачи информации в локальных или глобальных сетях. Протоколы канального уровня в локальных сетях ориентируются на использование разделяемой между компьютерами среды передачи данных. Поэтому в протоколах имеется подуровень доступа к разделяемой среде. Хотя канальный уровень локальной сети и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он делает это только в сети с совершенно определенной топологией связей, а именно с той топологией для которой он был разработан.

Особенность канального уровня локальных сетей является широкое использование дейтаграмного метода доставки данных.

Примерами протоколов канального уровня для локальных сетей являются Token Ring, Ethernet, Fast Ethernet, 100-VG-AnyLan,FDDI

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями между двумя соседними ПК. К таким протоколам типа «точка-точка» относятся PPP,SLIP, LAP-B,LAP-D.

Сетевой уровень

Занимает в модели промежуточное положение. Его услугами пользуется более высокие уровни, а для выполнения своих функций он использует канальный уровень. Сетевой уровень служит для работы в произвольных сетевых топологиях с сохранением простоты передачи пакета базовых топологий.

При объединении сетей в кадры канального уровня добавляется заголовок сетевого уровня. Этот заголовок позволяет находить адресата в сети с любой топологией.

Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня сетей, входящих в объединенную сеть. Основное место в заголовке сетевого уровня отводится адресату получателя. При этом используется МАС-адрес. Такая адресация позволяет протоколам сетевого уровня составлять точную схему связи и выбирать оптимальные маршруты при любой топологии. Помимо адреса, заголовок сетевого уровня может содержать дополнительную информацию.

Логическое соединение на сетевом уровне обеспечивает механизм доставки пакетов от отправителя к получателю в масштабе времени, определяемом используемым сетевым протоколом. При этом ращличные сетевые протоколы могут вносить различные технологические задержки в передачу данных.

Ряд преимуществ при коммутации передачи маленьких блоков, а не файлов:

1) она напрямую отображается в базовое сетевое оборудование

2) она разделяет процессы передачи данных от прикладных программ

3) она делает систему гибкой

4)она позволяет администраторам сетей вводить новые сетевые технологии

2 метода назначения сетевого адреса:

1)в первом методе сетевой и канальный адреса не совпадают, что обеспечивает гибкость за счет независимости от формата адреса канального уровня

2)во втором методе используется адрес канального уровня. Это избавляет администратора от присваивания адресов вручную и установления соответствия между сетевыми адресами одного и того же абонента в сети.

Сетевой уровень предоставляет средства:

1)доставки пакетов в сетях с произвольной топологией

2) структуризации сети методом локализации широковещательного трафика

3) согласования канальных уровней

Маршрутизатор- это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения.

Маршрутизация- она и является главной задачей сетевого уровня.

На сетевом уровне действуют 2 вида протоколов:

1) относится к определению правил передачи пакетов от конечных узлов к маршрутизаторами и между маршрутизаторами

2) протоколы обмена информацией о маршрутах

Протоколы сетевого уровня реализуются драйверами операционной системы, а так же программными и аппаратными средствами маршрутизаторов.

Уровень адаптации состоит из 2 подуровней: подуровень схождения (CS) и подуровня сегментации и сборки (SAR).

Рассмотренные 3 уровня модели OSI являются обязательными, именно на этих уровнях формируются информационные потоки, происходит коммутация и маршрутизация по сетям и осуществляется доставка данных получателю.

Транспортный уровень

сеть интерфейс локализация пакет

Предназначен для оптимизации передачи данных от отправителя к получателю, управления потоком данных и реализации запрошенного сеансовым уровнем качества обслуживания. Определяется требуемый размер пакета. Транспортный уровень гарантирует, что данные получены в правильном порядке, он же проверяет дубликаты и пересылает потерянные пакеты. Транспортный уровень обеспечивает передачу данных с той степенью надежности, которая требуется приложениям. Модель OSI определяет 5 классов сервиса транспортного уровня.

Выбор класса сервиса определяется умением приложения проверять данные и надежностью всей системы транспортировки в сети.

пример транспортного протокола: TCP и UDP стека TCP/IP и протокол SPX Novell

Сеансовый уровень

Управляет диалогом между двумя устройствами. Устанавливаются правила начала и завершения взаимодействия и поддерживаются функции восстановления после обнаружения ошибок информирования о них верхних уровней. На этом уровне определяется, какая из сторон является активной в данный момент, а так же предоставляет средства синхронизации.

Уровень представления

Выполняет преобразование данных между устройствами с различными форматами данных (ANCII в EBCDIC).Кроме того он может осуществлять шифрование и дешифровку данных. В режиме передачи уровень представления передает информацию от прикладного уровня сеансовому уровню после того, как он сам выполнит подходящую модификацию или конвертирование данных. В режиме приема этот уровень передает инф-ия. наверх сеансового уровня к прикладному. Уровень представления гарантирует, что инф-ия, передаваемая прикладным уровнем одной системы, будет понятна прикладному уровню другой системы.(пример протокол Secure Socket Layer)

Прикладной уровень

Служит пользовательским интерфейсом с сетью. Этот уровень непосредственно взаимодействует с пользовательским прикладными программами, предоставляя им доступ в сеть. Находятся сетевые приложения: электронная почта, передача файлов в сети, совместная подготовка документов и тп. В качестве протокола прикладного уровня можно отнести: Novell NetWare, NFS,FTP,TFTP

Размещено на Allbest.ru

Подобные документы

    Взаимодействие уровней в процессе связи, его эталонная модель для открытых систем. Функции уровней модели OSI. Сетезависимые протоколы, а также протоколы, ориентированные на приложениях, их сравнительное описание и использование в современных сетях.

    реферат , добавлен 16.04.2015

    Беспроводные стандарты IEEE 802.х; модель взаимодействия открытых систем. Методы локализации абонентских устройств в стандарте IEEE 802.11 (Wlan): технология "снятия радиоотпечатков"; локализация на базе радиочастотной идентификации RFID в сетях Wi-Fi.

    курсовая работа , добавлен 04.06.2014

    Эталонная модель взаимодействия открытых систем как главный принцип взаимодействия в сетях. Анализ особенностей взаимодействия разнотипных приложений в условиях различных стратегий передачи данных. Назначение уровней приложения, представления и сеанса.

    контрольная работа , добавлен 10.04.2013

    Требования, предъявляемые к техническому обеспечению систем автоматизированного проектирования. Вычислительные сети; эталонная модель взаимосвязи открытых систем. Сетевое оборудование рабочих мест в САПР. Методы доступа в локальных вычислительных сетях.

    презентация , добавлен 26.12.2013

    Активные и пассивные устройства физического уровня. Основные схемы взаимодействия устройств. Архитектура физического уровня. Базовая эталонная модель взаимодействия открытых систем. Параметры сред передачи данных. Характеристики сетевых концентраторов.

    курсовая работа , добавлен 02.02.2014

    Основные концепции объединения вычислительных сетей. Базовая эталонная модель взаимодействия открытых систем. Обработка сообщений по уровням модели OSI: иерархическая связь; форматы информации; проблемы совместимости. Методы доступа в ЛВС; протоколы.

    презентация , добавлен 13.08.2013

    Официальные международные организации, выполняющие работы по стандартизации информационных сетей, протоколы IP, ARP, RARP, семиуровневая модель OSI. TCP/IP, распределение протоколов по уровням ISO в локальных и в глобальных сетях, разделение IP-сетей.

    шпаргалка , добавлен 24.06.2010

    Теоретические основы организации локальных сетей. Общие сведения о сетях. Топология сетей. Основные протоколы обмена в компьютерных сетях. Обзор программных средств. Аутентификация и авторизация. Система Kerberos. Установка и настройка протоколов сети.

    курсовая работа , добавлен 15.05.2007

    Определение эффективности методов RSS и TOA, их сравнение в позиционировании абонентских станций внутри помещений и на открытых пространствах. Принципы локализации абонентов в стандарте IEEE 802.11. Использование систем локализации объектов в сетях Wi-Fi.

    курсовая работа , добавлен 07.12.2013

    Распространенные сетевые протоколы и стандарты, применяемые в современных компьютерных сетях. Классификация сетей по определенным признакам. Модели сетевого взаимодействия, технологии и протоколы передачи данных. Вопросы технической реализации сети.