П осмотрите на ваш радиоприемник. Вы увидите, что в диапазоне длинных волн «умещаются» передачи двух-трех радиостанций, на более коротких волнах (их называют средними) уже можно услышать их пять -десять. И наконец, в области коротких волн звучит буквально каждый миллиметр шкалы радиоприемника: вращая ручку настройки, вы слышите писк морзянки, сигналы радиомаяков, разноязычную речь и музыку. Станций так много, что приходится шкалу коротких волн растягивать, она делается в несколько раз длиннее, чем все остальные диапазоны приемника. Это не случайность, а закономерность: чем короче электромагнитные волны, тем больше их может уместиться, не мешая друг другу, на одном отрезке шкалы.

Но свет - такие же электромагнитные колебания, как и радиоволны, только гораздо короче. Поэтому оптический диапазон в пятьдесят тысяч раз шире радиодиапазона. Значит, если использовать свет для связи так, как мы это делаем с радио, можно добиться невиданной плотности передаваемых сообщений! Для этого нужно, чтобы передатчики друг другу не мешали. Этого можно добиться, если каждую передачу вести на строго определенной длине волн.

С радиоволнами все просто: передатчик может излучать электромагнитные волны любой длины. На них очень легко «нагрузить» сообщение. Волна, несущая какой-то сигнал -речь, музыку,- называется модулированной. Модуляция бывает двух видов: частотная (когда меняется длина волны излучения) и амплитудная (когда меняется его интенсивность). Так же модулировать можно было бы и свет, не будь он смесью разных электромагнитных волн, а будь одной волной достаточной интенсивности. Короче, нужен был лазер. И как только он появился, за него тут же ухватились связисты. Уже в 1962 году заработала лазерная линия связи между Калининским районом столицы и подмосковным городом Красногорском. Связь шла по открытому лучу: лазер стоял на одной из башен высотного здания Московского государственного университета на Ленинских горах.

В то время это была самая высокая точка Москвы, Останкинская башня только проектировалась. Линия исправно работала в холод и в жару, днем и ночью. Хотелось бы добавить: в дождь и снег, но нельзя -в туман и непогоду световая линия работать переставала, и связь переключалась на обычную, электрическую. А плотных туманов в Москве бывает до восьмидесяти часов в год; на севере во много раз больше. Не передатчик может излучать электромагнитные волны любой длины. На них очень легко «нагрузить» сообщение. Волна, несущая какой-то сигнал -речь, музыку,- называется модулированной. Модуляция бывает двух видов: частотная (когда меняется длина волны излучения) и амплитудная (когда меняется его интенсивность). Так же модулировать можно было бы и свет, не будь он смесью разных электромагнитных волн, а будь одной волной достаточной интенсивности. Короче, нужен был лазер. И как только он появился, за него тут же ухватились связисты. Уже в 1962 году заработала лазерная линия связи между Калининским районом столицы и подмосковным городом Красногорском. Связь шла по открытому лучу: лазер стоял на одной из башен высотного здания Московского государственного университета на Ленинских горах. В то время это была самая высокая точка Москвы, Останкинская башня только проектировалась. Линия исправно работала в холод и в жару, днем и ночью. Хотелось бы добавить: в дождь и снег, но нельзя -в туман и непогоду световая линия работать переставала, и связь переключалась на обычную, электрическую. А плотных туманов в Москве бывает до восьмидесяти часов в год; на севере во много раз больше. Не сидеть же, ожидая погоды, без связи?

Конечно, нет, нужно исключить все вредные погодные воздействия, пустив свет по волоконному световоду.

Лазерный луч попадает в модулятор - устройство, которое «накладывает» на него передаваемый сигнал (речь, музыку, телевизионное изображение) - и уходит в волоконный кабель. Бесчисленное число раз отразившись от его стенок и пройдя в нем сотни и сотни метров, модулированный луч попадает в устройство, которое снова превращает его в привычный нам электрический сигнал.

По этому же световоду можно направить излучение второго лазера, с другой длиной волны, третьего, четвертого. Каждый из них может нести свой сигнал. По одному волокну, по стеклянной нити чуть тоньше волоса, можно одновременно передавать 32 ООО телефонных разговоров или 60 цветных телевизионных программ! Сейчас уже созданы световоды, способные работать в тех же условиях, что и обычные провода. Они выдерживают большие колебания температуры, обледенение, порывы ветра. Их можно прокладывать в земле и натягивать на столбах. Огромная пропускная способность световодов позволит создать сеть кабельного телевидения, работающего без помех и искажений, как сегодня работает радиотрансляция. Часто в одном жгуте комбинируют волоконные световоды и обычные электрические провода.

Есть и еще одно очень важное соображение, которое имеют в виду, создавая волоконно-оптическую связь. Два электрических провода, лежащие рядом, могут мешать друг другу. Переменный ток, текущий в одном проводе, вызывает такой же ток, только послабее, в другом. Возникает ложный сигнал -шум, треск, а то и музыка или речь, мешающие передаче по другому проводу. Такие сигналы-помехи называются наводками. Электрические искры и молнии дают наводки, принимаемые радиоприемником.

Особенно опасны наводки для работы электронно-вычислительных машин. В США был случай, когда огромную космическую ракету пришлось взорвать через несколько секунд после старта: из-за одной-единственной ошибки в вычислениях она сошла с траектории и грозила упасть на город. Расследование показало, что виновато маленькое реле: его неисправный контакт искрил, искра вызывала наводку, а та, в свою очередь,-сбой в работе машины. Крошечная искра стоила американцам нескольких миллионов долларов...

Для того чтобы избежать по-мех, провод одевают в «экран», или «броню» - плетеный чулок из медных нитей. Все высокочастотные кабели обязательно делаются в броне, именно так устроен кабель, идущий от антенны к телевизору. Но и это, как мы уже видели, не всегда помогает.

С волоконным световодом таких неприятностей не произойдет, слой непрозрачной краски на его поверхности - вот и вся изоляция. Поэтому считают, что миниатюрные полупроводниковые лазеры и оптическое волокно скоро вытеснят электронные приборы и кабели из вычислительной техники.

Лазеры уже можно гасить, зажигать и менять их яркость при помощи другого лазера, так, как включают, выключают и усиливают электрический ток электронные лампы и транзисторы. Свет заменяет электричество!

И вот что интересно: природа умудрилась создать даже такое сложное устройство, как волоконный световод, да еще настроенный на определенную длину волны. «Автор» конструкции и хозяин этого устройства -белый медведь. Американским ученым удалось установить, что каждая шерстинка его шкуры работает как оптическое волокно. Солнечный свет нагревает шерсть, а тепловые лучи идут по шерстинкам к коже и согревают зверя.

Волоконно-оптические кабели оказались настолько удобными добавлениями к лазерному лучу, что их сразу же решили приспособить к передаче мощных пучков света, вроде тех, что используются в промышленности. Это было нелегко, но, в конце концов, не так давно был создан световод, по которому можно «перекачивать» энергию от мощного импульсного или непрерывного лазера, например, такого, какой стоит в цехе завода имени Лихачева.

Е. Н. Чепусов, С. Г. Шаронин

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется лазерная связь?

Лазерная связь в отличие от GSM связи позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство

Ethernet (10 Мбит/с)

Token Ring (416 Мбит/с)

E1 (2 Мбит/с)

Видеоизображение

Комбинация данных и речи

Высокоскоростная передача данных (34-155 Мбит/с)

Возможность модернизации

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1. Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2. Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3. Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4. Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5. Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость

Медный кабель

Оптоволокно

Радиоканал

Лазерный канал

от 3 до 7 тыс. дол. за 1 км

до 10 тыс. дол. за 1 км

от 7 до 100 тыс. дол. за комплект

12-22 тыс. дол. за комплект

Время на подготовку и выполнение монтажа

Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов

4 октября 2012 в 15:54

С борта МКС впервые по лазерному каналу была передана широкополосная информация на наземный пункт

  • Беспроводные технологии ,
  • Стандарты связи

2 октября 2012 года с Российского сегмента Международной космической станции впервые по лазерному каналу была передана широкополосная информация на наземный пункт

В рамках космического эксперимента (СЛС) по отработке аппаратуры и демонстрации российской технологии создания космических лазерных систем передачи информации, проводимого ОАО «НПК «СПП» совместно с ОАО «РКК «Энергия», осуществлен сеанс передачи информации с терминала связи, установленного на борту РС МКС, на лазерный терминал наземного пункта станции оптических наблюдений «Архыз» на Северном Кавказе (филиал ОАО «НПК «СПП»).
Была передана информация общим объемом 2,8 Гигабайт со скоростью 125 Мбит/с.
Этот шаг открывает дорогу к широкому внедрению в космическую технику России лазерных линий связи, которые при меньших массогабаритных параметрах бортовой аппаратуры потенциально могут обеспечивать исключительно высокую скорость информационного потока (до десятков гигабит в секунду).

Новости Федерального космического агентства

Интернет на МКС

Хм, подумал я, там же (на МКС) совершенно точно уже есть интернет. Вебкамеры работают, можно дома не телеке смотреть во время ужина. Зачем же нужна лазерная система? Ведь она требует точной наводки, да и погодка у нас тут, на Земле, не всегда радует. Да и когда радует нас, человеков, лазерам-то радости все равно не много. Полез искать.

Интернет таки да, действительно есть на МКС. Им могут пользоваться космонавты, он там на борту даже по вай-фай раздается. Но он там, оказывается, не так давно. Всего с 2010 года . И на диал-апных скоростях . Проблема, говорят, не с плохим линком, а с огромной относительной скоростью движения станции. Данные не успевают. Картинки с котиками прилетают в космос, а космонавтов и след уже простыл.

«Позвонить с борта МКС можно по спутниковому телефону в любую точку Земли. Главное - наличие свободного времени и спутниковой связи. К сожалению не все время есть такая возможность. Также по этому каналу связи (KU-band) мы можем работать с интернетом. Скорость небольшая, но новости просмотреть можно. Для удобства на борту есть еще почтовая программа. Перед стартом мы подаем списки электронных адресов, почту от которых мы будем получать во время полета на специальный адрес NASA. Списки могут быть откорректированы во время миссии. Эту почту нам забрасывают во время так называемой синхронизации, где-то 3-4 раза в день», - отметил Шкаплеров.
www.ria.ru 20/02/2012

Радиосвязь

Неужели все так плохо с радиосвязью?
Информация с «Вояджера» на Землю передает жестко скрепленная с корпусом параболическая антенна диаметром 3,65 метра, которая должна быть сориентирована точно на родную планету. Через нее на частотах 2295 МГц и 8418 МГц шлют сигналы два радиопередатчика мощностью по 23 ватта. Для надежности каждый из них дублирован. Большая часть данных транслируется на Землю со скоростью 160 бит/с - это всего раза в три-четыре быстрее, чем скорость набора текста профессиональной машинисткой и в 300 раз медленнее телефонного модема. Для приема сигнала на Земле используется 34-метровые антенны сети дальней космической связи NASA, но в некоторых случаях задействуются самые большие 70-метровые антенны, и тогда скорость удается поднять до 600 и даже 1400 бит/с. По мере удаления станции ее сигнал слабеет, но еще важнее то, что постепенно снижается мощность радиоизотопных генераторов, которые питают передатчики. Ожидается, что станция сможет передавать научные данные еще по крайней мере 10 лет, после чего связь с ней прекратится.
"Космические радиолинии

Самой высокой скоростью межпланетной передачи данных может сегодня похвастаться аппарат Mars Reconnaissance Orbiter, вышедший на орбиту Марса 10 марта 2006 года. Он оснащен 100-ваттным передатчиком с трехметровой параболической антенной и может передавать информацию на скорости до 6 мегабит в секунду. Доставить к Марсу более крупный и мощный передатчик пока затруднительно.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)

Лазеры

Единственное отличие лазерного излучения от радиоизлучения - частота. Частота света - ~6*10^14Гц, 1,5мкм лазера - 2*10^14Гц. Радиопередатчики на космических аппаратах работают на частоте в единицы ГГц. Радио Ультра в Москве вещало на 100.5Мгц.
Высокая частота и, соответственно, маленькая длина волны - это и дар и проклятье лазерного излучения. Используя электромагнитное излучение такой частоты для связи, мы получаем в нагрузку и все его болезни - низкую проникающую способность, узконаправленность (это, конечно, может быть и не болезнь, если решается задача сокрытия канала связи) и т.д. Лазерный пучок имеет гауссову форму:

Т.е. чем дальше от земли, тем больше будет площадь лазерного пятна и, соответственно меньшая часть фотонов будет принимать участия в, собственно, передаче информации. Т.е. межзвездным средством связи лазер, даже с учетом отсутствия препятствия к распространению излучения в космосе, все равно не станет. А межпланетным?

Впервые лазерная связь в космосе была осуществлена 21 ноября 2002 года. Европейский спутник дистанционного зондирования Земли SPOT 4, находящийся на орбите высотой 832 километра, установил контакт с экспериментальным космическим аппаратом Artemis, обращающимся на высоте 31 000 километров и передал снимки земной поверхности. А недавно Лаборатория Линкольна в Массачусетсском технологическом институте (MIT) совместно с NASA приступила к разработке лазерной системы дальней космической связи. Первый тестовый коммуникационный лазер планируется отправить к Марсу в 2009 году. Ожидается, что этот 5-ваттный передатчик в период сближения планет обеспечит скорость передачи данных до 30 мегабит в секунду.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)
Более свежие новости, правда, говорят о тестировании лазерного канала Марс-Земля в 2012 году .

Ту систему, что второго числа совершала обмен данными с Землей с борта МКС, строит ОАО «НПК „СПП“». Совсем чуть-чуть информации о системе (то ли той, что на борту МКС, то ли похожей), можно найти на их сайте . Позволю себе продублировать эту информацию здесь:

Межспутниковые лазерные системы передачи информации со скоростью до 600 Мбит/с и дальностью действия от 1 до 6 тыс. км (линии НКА-НКА) от 30 до 46 тыс. км (линии НКА-ГКА):

Терминал для проведения космических экспериментов по лазерной связи на трассе Борт-Земля для МКС:

Длина трассы - до 2000 км
Масса терминала с транспортной рамой - 80 кг
Энергопотребление - 150 Вт
Скорость передачи данных - до 600 Мбит/с
Длина волны передатчика - 1550 нм
Длина волны маяка - 810 нм
Диаграмма передатчика - 50 угл. сек
Точность наведения - 10 угл. сек

На этом выступление заканчиваю. Простите за большое количество копипаста и ссылок, надеюсь, что информация интересная. И еще, я возмущен: ГЛОНАСС у нас отдельным хабом значится, а вот космонавтика (я так понимаю, это такой хаб-сборная солянка для всего, что к космосу отношение имеет) - хаб-оффтопик. Непорядок, ребят. Я бы местами поменял.

24Ќар

На этой неделе аэрокосмическое агентство NASA опубликовало результаты работы демонстратора технологии космической лазерной связи (LLCD), установленного на «Исследователе лунной атмосферы и пылевого окружения» (или LADEE), запущенного в сентябре этого года и в настоящий момент кружащего вокруг нашего естественного спутника. Со слов космического агентства, система LLCD показала очень высокую эффективность передачи данных на расстоянии около 400 тысяч километров и уже сейчас способна работать не хуже, а возможно даже и лучше обычных радиопередатчиков.

Для тех, кто не знает, миссия LLCD направлена на демонстрацию возможности практического использования лазеров для передачи сообщений между объектами на очень удаленном расстоянии друг от друга и намного более высокой скоростью по сравнению с той, что могут предложить стандартные радиопередатчики. Продемонстрировав способность передавать данные на Землю со скоростью 622 Мб/с и получать со скоростью 20 Мб/с, LLCD установила 20 октября рекорд скорости передачи данных с лунной орбиты. Данные, переданные лазерным лучом, были получены основной наземной LLCD-станцией, расположенной в Нью-Мексико. В мире находятся три подобные станции. Оставшиеся две расположены в Испании и США.

Важнейшие преимущества лазеров над радиопередатчиками заключаются в том, что они предлагают намного более высокую пропускную способность и, кроме того, возможность передавать информацию кратковременными лазерными пучками, что в перспективе позволит снизить общие затраты потребления питания при передаче информации на сверхудаленные дистанции.

В NASA отмечают, что система LLCD работает в течение 30-дневного тестового режима даже лучше, чем того от нее ожидали. Лазер без проблем передавал сообщения на наземные станции при дневном свете и даже тогда, когда угол отклонения Луны по отношению к Солнцу составлял четыре градуса. Система также работала без каких-либо ошибок, когда Луна находилась очень низко к горизонту, тем самым заставляя лазер проходить через более плотные слои атмосферы и при некотором воздействии эффектов турбулентности. Астрономы также были удивлены узнав, что легкие перистые облака не оказались для лазера проблемой.

Помимо проверки на ошибки, LLCD показала возможность переключения от одной наземной станции к другой, продемонстрировав способность фиксироваться на определенной станции без необходимости использования радиосигнала.

«Мы запрограммировали LADEE таким образом, чтобы она в автоматическом режиме активировала и направляла систему LLCD в нужную точку для передачи лазерного сигнала на Землю, без какой-либо необходимости в предварительно отправленных на зонд радиосигналов с командой», - говорит Дон Корнуэлл, менеджер проекта LLCD из Центра космических полетов имени Годдарда.
«Успех этой миссии позволяет с оптимизмом смотреть на возможность использования подобных систем в качестве основных систем коммуникаций при будущих миссиях NASA».
В NASA отмечают не только успешность передачи сигнала, но и высокую скорость передачи информации с зонда на Землю. Все собранные за это время данные (а это, на минуточку, гигабайты информации), были переданы на Землю менее чем за пять минут. Обычно для передачи данных такого объема требуется несколько дней.

Агентство сообщает, что LLCD миссия завершена и следующей фазой тестирования станет проверка системы спутника Laser Communications Relay Demonstration (LRCD), запуск которого намечен на 2017 год. По своей сути система станет усовершенствованной версией LLCD, способной на передачу данных со скоростью до 2880 Гб/с с геостационарной орбиты и станет частью пятилетней программы тестирования систем коммуникаций нового поколения.

Категории: / / от

Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применяемую в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи, передающих не только телефонные, но и телевизионные и компьютерные сигналы.
Оптические системы связи делятся на открытые, где сигнал передается в атмосфере или космосе, и закрытые, то есть использующие световоды . Далее рассматриваются только открытые атмосферные линии связи.
Оптическая атмосферная система связи между двумя пунктами состоит из двух спаренных приемопередающих устройств, расположенных в пределах прямой видимости на обоих концах линии и направленных друг на друга. В передатчике находится генератор-лазер и модулятор его оптического излучения передаваемым сигналом. Модулированный лазерный луч коллимируется оптической системой и направляется в сторону приемника. В приемнике излучение фокусируется на фотоприемник, где производится его детектирование и выделение передаваемой информации. Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Кроме того, в атмосфере наблюдаются турбулентные явления, которые приводят к флуктуации показателя преломления среды, колебаниям луча и искажениям принимаемого сигнала. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней миРаспространение лазерного излучения в атмосфере сопровождается целым рядом явлений линейного и нелинейного взаимодействия света со средой. При этом ни одно из этих явлений не проявляется в отдельности. По чисто качественным признакам указанные явления можно разделить на три основные группы: поглощение и рассеяние молекулами газов воздуха, ослабление на аэрозолях (пыль, дождь, снег, туман) и флуктуации излучения на турбулентностях атмосферы. Главными ограничителями дальности АЛС являются густой снег и густой туман, для которых аэрозольное ослабление максимально. На распространение лазерного луча сильное влияние оказывает также турбулентность атмосферы, то есть случайные пространственно-временные изменения показателя преломления, вызванные перемещением воздуха, флуктуациями его температуры и плотности. Поэтому световые волны, распространяющиеся в атмосфере, испытывают не только поглощение, но и флуктуации передаваемой мощности.
Турбулентность атмосферы приводит к искажениям волнового фронта и, следовательно, к колебаниям и уширению лазерного пучка и перераспределению энергии в его поперечном сечении. В плоскости приемной антенны это проявляется в хаотическом чередовании темных и ярких пятен с частотой от долей герца до нескольких килогерц. При этом иногда возникают замирания сигнала (термин заимствован из радиосвязи) и связь становится неустойчивой. Замирание наиболее сильно проявляется в ясную солнечную погоду, особенно в летние жаркие месяцы, в часы восхода и захода солнца, при сильном ветреСистемы АЛС могут использоваться не только на "последней миле" каналов связи, но также и в качестве вставок в волоконно-оптические линии на отдельных труднопроходимых участках; для связи в горных условиях, в аэропортах, между отдельными зданиями одной организации (органы управления, торговые центры, промышленные предприятия, университетские городки, больничные комплексы, стройплощадки и т. д.); при создании разнесенных в пространстве локальных компьютерных сетей; при организации связи между центрами коммутации и базовыми станциями сотовых сетей; для оперативной прокладки линии при ограниченном времени на монтаж. Поэтому в последнее время возрастает интерес отечественных производителей к этому новому и перспективному сектору



Функциональная схема системы лазерной связи очень проста:

· блок обработки принимает сигналы от различных стандартных устройств (телефона, факса, цифровой АТС, локальной компьютерной сети) и преобразует их в приемлемую для передачи лазерным модемом форму;

· преобразованный сигнал передается электронно-оптическим блоком в виде инфракрасного излучения;

· на приемной стороне собранный оптической системой свет падает на фотоприемник, где преобразуется обратно в электрические сигналы;

· усиленный и обработанный электрический сигнал поступает на блок обработки сигналов, где восстанавливается в первоначальном виде.

Передача и прием осуществляются каждым из парных модемов одновременно и независимо друг от друга. Лазерные модемы устанавливаются таким образом, чтобы оптические оси приемопередатчиков совпадали. Основную сложность представляет собой юстировка направления оптических осей приемопередатчиков. Угол расходимости луча передатчика составляет у разных моделей от нескольких угловых минут до 0,5°, и точность юстировки должна соответствовать этим значениям.

После установки приемопередающих блоков необходимо подключить их к кабельным сетям в обоих зданиях. Существует множество моделей устройств с самыми разнообразными интерфейсами, однако, в отличие от поставщиков оборудования для радиосвязи, производители систем беспроводной оптики придерживаются следующей общей идеологии подключения: линия лазерной связи представляет собой эмуляцию отрезка кабеля (две витые пары или две жилы оптического кабеля). Связанные при помощи беспроводной оптики локальные сети функционируют так, как если бы их соединили выделенным кабелем. Некоторые модели лазерных модемов имеют совмещенные интерфейсы к сети Ethernet и потокам Е1. В результате одна атмосферная линия связи может соединить LAN и телефонные сети зданий без использования мультиплексора.

Вот так выглядит установленная система атмосферной лазерной связи. Пропускная способность системы - 100Mbit/sec на расстояние до 3! километров. фото:

Некоторые беспроводные удаленные мосты применяют для передачи данных инфракрасное излучение лазера. Обычно такое устройство содержит традиционный проводной Ethernet-мост и лазерный модем, обеспечивающий физическую связь. Другими словами, лазерное устройство только посылает биты данных, а всю остальную работу выполняет обычный мост. Лазерные модемы генерируют излучение с длиной волны 820 нм, которое не может быть обнаружено без специальных приборов. Очевидно, что для лазерных мостов излучатель и приемник должны располагаться на линии прямой видимости. Типичное расстояние между мостами составляет немногим больше 1 км и ограничивается мощностью лазера.
Одним из основных преимуществ таких систем является их большая пропускная способность. Второе
преимущество - достаточная помехозащищенность, поскольку инфракрасное излучение не взаимодействует с радиоволнами. Подобно оптоволоконным системам лазерные мосты обеспечивают высокий уровень безопасности. Для перехвата информации необходимо поместить соответствующий прибор на линии луча, что, во-первых, легко может быть обнаружено, а во-вторых, это весьма сложно осуществить, так как такие системы устанавливаются на крышах высотных зданий. Недостатками лазер-базированных систем является влияние на устойчивость связи погодных условий. Сильный дождь, снег или туман приводят к значительному рассеянию луча и ослаблению сигнала. На связь может повлиять также солнечный восход или заход, если канал ориентирован с востока на запад.
Беспроводные мосты используются для постоянного соединения сетей, в качестве запасного канала или как временное средство. Их производством занимаются множество компаний. Цены в зависимости от пропускной способности и расстояния связи составляют от 5 до 75 тыс. долл. за канал. Дорого, однако со временем такое решение может окупиться.

2,5 Гбит/с по лазерному лучу

Компания fSONA Communications представила новую систему беспроводной оптической связи SONAbeam 2500-M, позволяющую достичь скорости передачи данных порядка 2,5 Гбит/с. Основа системы – четыре избыточных передатчика, работающих на длине волны 1550 нм с выходной мощностью лазерного сигнала 560 мВт. На пятикилометровом испытательном полигоне в ясную погоду, система отработала на максимальной скорости и практически без ошибок.

Контрольные вопросы

1. Какие технологии применяются для создания беспроводных сетей?

2. Перечислить основные технологии радиосетей.

3. Что такое точка доступа (access point)?

4. Охарактеризовать технологию 802.11.Что такое направленная и всенаправленная антенна?

5. Что такое роумингом (roaming).?

6. Перечислить технологии, альтернативные стандарту IEEE 802.11;

7. Охарактеризовать технологию Bluetooth .

8. Охарактеризовать технологию HiperLAN .

9. Что такое оптические сети?

10. Что такое микроволновые системы?

11. Охарактеризовать стандарт IEEE 802.16 (WiMAX)?

12. Что такое беспроводные сети на базе низкоорбитальных спутников Земли?

13. Какие устройства входят в состав инфракрасной системы?

14. Что такое ИК-излучение?

15. Что такое атмосферная лазерная связь?

16. Как происходит прием и передача при атмосферной лазерной связи?