Условно биполярный транзистор можно нарисовать в виде пластины полупроводника с меняющимися областями разной проводимости, состоящие из двух p-n переходов. Причем крайние области пластины обладают проводимостью одного типа, а средняя область противоположного типа, каждая из областей имеет свой персональный вывод.

В зависимости от чередования этих областей транзисторы бывают p-n-p и n-p-n проводимости, соответственно.


А если взять и прикрыть одну любую часть транзисто, то у нас получится полупроводник с одним p-n переходом или диод. Отсюда напрашивается вывод, что биполярный транзистор условно можно представить в виде двух полупроводников с одной общей зоной, соединенных встречно друг к другу.

Часть транзистора, назначением которой является инжекция носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным, а та часть элемента, назначение которой заключается в выводе или экстракции носителей заряда из базы, получила название коллектор, и p-n переход коллекторный. Общую зону назвали базой.

Различие в обозначениях разных структур состоит лишь в направлении стрелки эмиттера: в p-n-p она направлена в сторону базы, а в n-p-n наоборот, от базы.

В чем разница между PNP и NPN транзисторами? Я постарался в этом видео показать разницу в работе двух видов биполярных транзисторов. Я использовал доступные радиодетали, такие как светодиод (и резистор для защиты), для демонстрации работы. В кпримера я использовал транзисторы типа 2n2907 и bc337. Регулировал напряжение с помощью переменного резистора (потенциометра).

В начальный период развития полупроводниковой электроники их изготавливали только из германия по технологии вплавления примесей, поэтому их назвали сплавными. Например, в основе кристалл германия и в него вплавляю маленькие кусочки индия.

Атомы индия проникаю в тело германиевого кристалла, создают в нем две области – коллектор и эмиттер. Между ними остается очень тонкая в несколько микрон прослойка полупроводника противоположного типа - база. А чтобы спрятать кристалл от света его прячут в корпус.

На рисунке показано, что к металлическому диску приварен кристаллодержатель, являющийся выводом базы, а снизу диска имеется ее наружный проволочный вывод.


Внутренние выводы коллектора и эмиттера приварены к проводникам внешних электродов.

С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы.

Они способны работать с более высокими температурах, в них ниже значение обратного тока и более высокое напряжение пробоя.

Основным методом изготовления является планарная технологи. У таких транзисторов p-n переходы располагаются в одной плоскости. Принцип метода основывается на диффузии или вплавлении в пластину кремния примеси, которая может быть в газообразной, жидкой или твердой составляющей. При нагрева до строго фиксированной температуры осуществляется диффузия примесных элементов в кремний.

В данном случае один из шариков создает тонкую базовую область, а другой эмиттерную. В результате в кремнии образуются два p-n перехода. По этой технологии производят в заводских условиях наиболее распространенные типы кремниевых транзисторов.

Кроме того для изготовления транзисторных структур широко применяются комбинированные методы: сплавление и диффузия или различные варианты диффузии, например, двусторонняя или двойная односторонняя.

Проведем практический эксперимент, для этого нам потребуется любой транзистор и лампочка накаливания из старого фонарика и чуть-чуть монтажного провода для того, чтоб мы могли собрать эту схему.



Работа транзистора практический опыт для начинающих

Лампочка светится потому, что на коллекторный переход поступает прямое напряжение смещения, которое отпирает коллекторный переход и через него течет коллекторный ток Iк. Номинал его зависит от сопротивления нити лампы и внутреннего сопротивления батарейки или блока питания.

А теперь представим эту схему в структурном виде:

Так как в области N основными носителями заряда являются электроны, они проходя потенциальный барьер p-n переход, попадают в дырочную область p-типа и становятся неосновными носителями заряда, где начинают поглощаться основными носителями дырками. Таким же и дырки из коллектора, стремятся попасть в область базы и поглощаются основными носителями заряда электронами.

Так как база к минусу источника питания, то на нее будет поступать множество электронов, компенсируя потери из области базы. А коллектора, соединенный с плюсом через нить лампы, способен принять такое же число, поэтому будет восстанавливаться концентрация дырок.

Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора . И чем он будет выше, тем сильнее будет гореть лампочка накаливания.

Аналогичные процесс протекают и в цепь эмиттерного перехода. На рисунке показан вариант подключения схемы для второго опыта.


Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Лампочка не загорается, так как p-n переход транзистора мы подсоединили в обратном направлении и сопротивление перехода резко возросло и через него следует лишь очень маленький обратный ток коллектора Iкбо не способный зажечь нить лампочки.

Осуществим, еще один интересный эксперимент подключим лампочку в соответствии с рисунком. Лампочка не светится, давайте разберемся почему.


Если приложено напряжение к эмиттеру и коллектору, то при любой полярности источника питания один из переходов будет в прямом, а другой в обратном включении и поэтому ток течь не будет и лампочка не горит.

Из структурной схемы очень хорошо видно, что эмиттерный переход смещен в прямом направлении и открыт и ожидает прием свободных электронов. Коллекторный переход, наоборот, подсоединен в обратном направлении и мешает попадать электронам в базу. Между коллектором и базой образуется потенциальный барьер, который будет оказывать току большое сопротивление и лампа гореть не будет.

Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит.


Тут, в принципе, все понятно при замыкании базы и эмиттера перемычкой коллекторный переход превращается в диод, на который поступает обратное напряжение смещение.

Установим вместо перемычки сопротивление Rб номиналом 200 – 300 Ом, и еще один источник питания на 1,5 вольта. Минус его соединим через Rб с базой, а плюс с эмиттером. И свершилось чудо, лампочка засветилась.


Лампа засветилась потому, что мы подсоединили дополнительный источник питания между базой и эмиттером, и тем самым подали на эмиттерный переход прямое напряжение, что привело к его открытию и через него потек прямой ток, который отпирает коллекторный переход транзистора. Транзистор открывается и через него течет коллекторный ток Iк, во много раз превышающий ток эмиттер-база. И поэтому этому току лампочка засветилась.

Если же мы изменим полярность дополнительного источника питания и на базу подадим плюс, то эмиттерный переход закроется, а за ним и коллекторный. Через транзистор потечет обратный Iкбо и лампочка перестанет гореть.

Основная функция резистора Rб ограничивать ток в базовой цепи. Если на базу поступит все 1,5 вольта, то через переход пойдет слишком большой ток, в результате которого произойдет тепловой пробой перехода и транзистор может сгореть. Для германиевых транзисторов отпирающее напряжение должно быть около 0,2 вольта, а для кремниевых 0,7 вольта.

Обратимся к структурной схеме: При подаче дополнительного напряжения на базу открывается эмиттерный переход и свободные дырки из эмиттера взаимопоглощаются с электронами базы, создавая прямой базовый ток Iб.

Но не все дырки, попадая в базу, рекомбинируются с электронами. Так как, область базы достаточно узкая, поэтому лишь незначительная часть дырок поглощается электронами базы.

Основной объем дырок эмиттера проскакивает базу и попадает под более высокий уровень отрицательного напряжения в коллекторе, и вместе с дырками коллектора текут к его отрицательному выводу, где и взаимопоглощается электронами от основного источника питания GB. Сопротивление коллекторной цепи эмиттер-база-коллектор резко падает и в ней начинает течь прямой ток коллектора Iк во много раз превышающий ток базы Iб цепи эмиттер-база.

Чем выше уровень отпирающего напряжения на базе, тем выше количество дырок попадает из эмиттера в базу, тем выше значение тока в коллекторе. И, наоборот, чем ниже отпирающее напряжение на базе, тем ниже ток в коллекторной цепи.

В этих экспериментах начинающего радиолюбителя по принципам работы транзистора, он находится в одном из двух состояний: открыт или закрыт. Переключение его из одного состояния в другое осуществляется под действием отпирающего напряжения на базе Uб. Этот режим работы транзистора в электроники получил название ключевым. Он используют в приборах и устройствах автоматики.

В режиме усиления транзистор усилитель работает в схемах приемников и усилителях звуковой частоты (УЗЧ и УНЧ). При работе применяются малые токи в базовой цепи, управляющие большими токами в коллекторе.В этом заключается и отличие режима усиления от режима переключения, который лишь открывает или закрывает транзистор в зависимости от напряжения на базе

Транзистор это очень распространенный активный радиокомпонент, который попадается почти во всех схемах, и очень часто, особенно во время эксперементальных курсов по изучению азов электроники, он выходит из строя. Поэтому без навыка проверки транзисторов, вам в электронику лучше не соваться. Вот и давайте разбираться, как проверить транзистор.

Транзистором называется активный полупроводниковый прибор, при помощи которого осуществляется усиление, преобразование и генерирование электрических колебаний. Такое применение транзистора можно наблюдать в аналоговой технике. Кроме этого применяются и в цифровой технике, где они используются в ключевом режиме. Но в цифровой аппаратуре почти все транзисторы «спрятаны» внутри интегральных микросхем, причем в огромных количествах и в микроскопических размерах.

Здесь мы уже не будем слишком подробно останавливаться на электронах, дырках и атомах, о которых уже было рассказано в предыдущих частях статьи, но кое-что из этого, при необходимости, все же придется вспомнить.

Полупроводниковый диод состоит из одного p-n перехода, о свойствах которого было рассказано . Транзистор, как известно, состоит из двух переходов, поэтому можно рассматривать как предшественник транзистора, или его половину.

Если p-n переход находится в состоянии покоя, то дырки и электроны распределяются, как показано на рисунке 1, образуя потенциальный барьер. Постараемся не забыть условные обозначения электронов, дырок и ионов, показанные на этом рисунке.

Рисунок 1.

Как устроен биполярный транзистор

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.


Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.


Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q» , после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.


Рис. 5. Полевые транзисторы
Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

φ= V T * ln (N n * N p )/n 2 i , где

V T величина термодинамического напряжения, N n и N p концентрация соответственно электронов и дырок, а n i обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.


Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: I к = ß* I Б , где ß коэффициент усиления по току, I Б ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).


Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению (< 1).

Как работает полевой транзистор? Пояснение для чайников

Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.

Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.


Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.


Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком



В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.

Представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода . Поэтому транзистор можно представить в виде двух встречно включенных диода . В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.


База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси .

Базу делают как можно более тонкой . Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.

Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.

Принцип работы транзистора

Рассмотрим на примере p-n-p транзистора.


В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.

Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном . Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк.


Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его. Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.

Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы.

Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции .

Коэффициент инжекции стараются приблизить к 1.

Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.

Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.

Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы.

Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1.

Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора.

Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током .

От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.

Коллекторный ток связан с эмиттерным коэффициентом передачи тока .

Токи в транзисторе можно представить следующим образом

Мы узнали как устроен транзистор, в общих чертах рассмотрели технологии изготовления германиевых и кремниевых транзисторов и разобрались как они маркируются .

Сегодня мы проведем несколько опытов и убедимся, что биполярный транзистор действительно состоит из двух диодов , включенных встречно, и что транзистор является усилителем сигнала .

Нам понадобится маломощный германиевый транзистор структуры p-n-p из серии МП39 – МП42, лампа накаливания, рассчитанная на напряжение 2,5 Вольта и источник питания на 4 – 5 Вольт. Вообще, для начинающих радиолюбителей я рекомендую собрать небольшой регулируемый , с помощью которого Вы будете питать свои конструкции.

1. Транзистор состоит из двух диодов.

Чтобы убедиться в этом, соберем небольшую схему: базу транзистора VT1 соединим с минусом источника питания, а вывод коллектора с одним из выводов лампы накаливания EL . Теперь если второй вывод лампы соединить с плюсом источника питания, то лампочка загорится.

Лампочка загорелась потому, что на коллекторный переход транзистора мы подали прямое пропускное напряжение, которое открыло коллекторный переход и через него потек прямой ток коллектора . Величина этого тока зависит от сопротивления нити накала лампы и внутреннего сопротивления источника питания.

А теперь рассмотрим эту же схему, но транзистор изобразим в виде пластины полупроводника.

Основные носители заряда в базе электроны , преодолевая p-n переход, попадают в дырочную область коллектора и становятся неосновными. Ставшие неосновными, электроны базы поглощаются основными носителями в дырочной области коллектора дырками . Таким же образом дырки из области коллектора, попадая в электронную область базы, становятся неосновными и поглощаются основными носителями заряда в базе электронами .

На контакт базы, соединенный с отрицательным полюсом источника питания, будет поступать практически неограниченное количество электронов , пополняя убывание электронов из области базы. А контакт коллектора, соединенный с положительным полюсом источника питания через нить накала лампы, способен принять такое же количество электронов, благодаря чему будет восстанавливаться концентрация дырок в области базы .

Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через коллекторный переход будет течь ток коллектора . И чем больший будет этот ток, тем ярче будет гореть лампа.

Лампочка будет гореть и в случае, если ее включить в цепь эмиттерного перехода. На рисунке ниже показан именно этот вариант схемы.

А теперь немного изменим схему и базу транзистора VT1 подключим к плюсу источника питания. В этом случае лампа гореть не будет, так как p-n переход транзистора мы включили в обратном направлении. А это значит, что сопротивление p-n перехода стало велико и через него течет лишь очень малый обратный ток коллектора Iкбо не способный раскалить нить накала лампы EL . В большинстве случаев этот ток не превышает нескольких микроампер.

А чтобы окончательно убедиться в этом, опять рассмотрим схему с транзистором, изображенным в виде пластины полупроводника.

Электроны, находящиеся в области базы , переместятся к плюсу источника питания, отдаляясь от p-n перехода. Дырки, находящиеся в области коллектора , также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится , отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей базы и коллектора присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через коллекторный переход будет протекать ток во много раз меньший, чем прямой, и этого тока не будет хватать, чтобы зажечь нить накала лампы.

2. Работа транзистора в режиме переключения.

Сделаем еще один опыт, показывающий один из режимов работы транзистора.
Между коллектором и эмиттером транзистора включим последовательно соединенные источник питания и ту же лампу накаливания. Плюс источника питания соединим с эмиттером, а минус через нить накала лампы с коллектором. Лампа не горит. Почему?

Все очень просто: если приложить напряжение питания между эмиттером и коллектором, то при любой полярности один из переходов окажется в прямом, а другой в обратном направлении и будет мешать прохождению тока. В этом не трудно убедиться, если взглянуть на следующий рисунок.

На рисунке видно, что эмиттерный переход база-эмиттер включен в прямом направлении и находится в открытом состоянии и готов принять неограниченное количество электронов. Коллекторный переход база-коллектор, наоборот, включен в обратном направлении и препятствует прохождению электронов к базе.

Отсюда следует, что основные носители заряда в области эмиттера дырки , отталкиваемые плюсом источника питания, устремляются в область базы и там взаимопоглощаются (рекомбинируют) с основными носителями заряда в базе электронами . В момент насыщения, когда с той и с другой стороны свободных носителей заряда не останется, их движение прекратится, а значит, перестает течь ток. Почему? Потому что со стороны коллектора не будет подпитки электронами.

Получается, что основные носители заряда в коллекторе дырки притянулись отрицательным полюсом источника питания, а некоторые из них взаимно поглотились электронами , поступающими со стороны минуса источника питания. А в момент насыщения, когда с обеих сторон не останется свободных носителей заряда, дырки, за счет своего преобладания в области коллектора, заблокируют дальнейший проход электронам к базе.

Таким-образом между коллектором и базой образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Конечно, благодаря магнитному полю и тепловому воздействию мизерный ток все же протекать будет, но сила этого тока так мала, что не способна раскалить нить накала лампы.

Теперь в схему добавим проволочную перемычку и ей замкнем базу с эмиттером. Лампочка, включенная в коллекторную цепь транзистора, опять не будет гореть. Почему?

Потому что при замыкании базы и эмиттера перемычкой коллекторный переход становится просто диодом, на который подается обратное напряжение. Транзистор находится в закрытом состоянии и через него идет лишь незначительный обратный ток коллектора Iкбо .

А теперь схему еще немного изменим и добавим резистор сопротивлением 200 – 300 Ом, и еще один источник напряжения в виде пальчиковой батарейки.
Минус батарейки соедините через резистор с базой транзистора, а плюс батарейки с эмиттером. Лампа загорелась.

Лампа загорелась потому, что мы подключили батарейку между базой и эмиттером, и тем самым подали на эмиттерный переход прямое отпирающее напряжение. Эмиттерный переход открылся и через него пошел прямой ток, который открыл коллекторный переход транзистора. Транзистор открылся и по цепи эмиттер-база-коллектор потек коллекторный ток , во много раз больший тока цепи эмиттер-база . И благодаря этому току лампочка загорелась.

Если же мы поменяем полярность батарейки и на базу подадим плюс, то эмиттерный переход закроется, а вместе с ним закроется и коллекторный переход. Через транзистор потечет обратный коллекторный ток Iкбо и лампочка потухнет.

Резистор ограничивает ток в базовой цепи. Если ток не ограничивать и на базу подать все 1,5 вольта, то через эмиттерный переход потечет слишком большой ток, в результате которого может произойти тепловой пробой перехода и транзистор выйдет из строя. Как правило, для германиевых транзисторов отпирающее напряжение составляет не более 0,2 вольта, а для кремниевых не более 0,7 вольта.

И опять разберем эту же схему, но транзистор представим в виде пластины полупроводника.

При подаче отпирающего напряжения на базу транзистора открывается эмиттерный переход и свободные дырки из эмиттера начинают взаимопоглощаться с электронами базы , создавая небольшой прямой базовый ток .

Но не все дырки, вводимые из эмиттера в базу, рекомбинируют с ее электронами. Как правило, область базы делается тонкой , а при изготовлении транзисторов структуры p-n-p концентрацию дырок в эмиттере и коллекторе делают во много раз большей, чем концентрацию электронов в базе , поэтому лишь малая часть дырок поглощается электронами базы.

Основная же масса дырок эмиттера проходит базу и попадает под действие более высокого отрицательного напряжения действующего в коллекторе, и уже вместе с дырками коллектора перемещается к его отрицательному контакту, где и взаимопоглощается вводимыми электронами отрицательным полюсом источника питания GB .

В результате этого сопротивление коллекторной цепи эмиттер-база-коллектор уменьшится и в ней течет прямой коллекторный ток во много раз превышающий базовый ток цепи эмиттер-база .

Чем больше больше дырок вводится из эмиттера в базу, тем значительнее ток в коллекторной цепи. И, наоборот, чем меньше отпирающее напряжение на базе, тем меньший ток в коллекторной цепи.

Если в момент работы транзистора в базовую и коллекторную цепи включить миллиамперметр, то при закрытом транзисторе токов в этих цепях практически не было бы.

При открытом же транзисторе ток базы составлял бы 2-3 mA, а ток коллектора был бы около 60 – 80 mA. Все это говорит о том, что транзистор может быть усилителем тока .

В этих опытах транзистор находился в одном из двух состояний: открытом или закрытом. Переключение транзистора из одного состояния в другое происходило под действием отпирающего напряжения на базе . Такой режим транзистора называют режимом переключения или ключевым . Такой режим работы транзистора используют в приборах и устройствах автоматики.

На этом закончим, а в следующей части разберем работу транзистора в на примере простого усилителя звуковой частоты, собранного на одном транзисторе.
Удачи!

Литература:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Е. Айсберг — Транзистор?.. Это очень просто! 1964г.