Источник – это устройство, которое преобразует механическую, химическую, термическую и некоторые другие формы энергии в электрическую. Другими словами, источник является активным сетевым элементом, предназначенным для генерации электроэнергии. Различные типы источников, доступных в электросети, представляют собой источники напряжения и источники тока. Эти две концепции в электронике различаются друг от друга.

Источник постоянного напряжения

Источник напряжения – устройство с двумя полюсами, напряжение его в любой момент времени является постоянным, и проходящий через него ток не оказывает влияния. Такой источник будет идеальным, имеющим нулевое внутреннее сопротивление. В практических условиях он не может быть получен.

На отрицательном полюсе источника напряжения скапливается избыток электронов, у положительного полюса – их дефицит. Состояния полюсов поддерживаются процессами внутри источника.

Батареи

Батареи хранят химическую энергию внутри и способны преобразовывать ее в электрическую. Батареи не могут быть перезаряжены, что является их недостатком.

Аккумуляторы

Аккумуляторы являются перезаряжаемыми батареями. При зарядке электрическая энергия сохраняется внутри в виде химической. Во время разгрузки химический процесс протекает в противоположном направлении, а электрическая энергия высвобождается.

Примеры:

  1. Свинцово-кислотный аккумуляторный элемент. Изготавливается из свинцовых электродов и электролитической жидкости в виде разведенной дистиллированной водой серной кислоты. Напряжение на ячейку – около 2 В. В автомобильных аккумуляторах шесть ячеек обычно соединены в последовательную цепь, на клеммах выхода результирующее напряжение – 12 В;
  1. Никель-кадмиевые аккумуляторы, напряжение ячейки – 1,2 В.

Важно! При небольших токах батареи и аккумуляторы можно рассматривать как хорошее приближение к идеальным источникам напряжения.

Источник переменного напряжения

Электроэнергия производится на электрических станциях с помощью генераторов и после регулирования напряжения передается к потребителю. Переменное напряжение домашней сети 220 В в блоках питания различных электронных устройств легко преобразуется в более низкий показатель при применении трансформаторов.

Источник тока

По аналогии, как идеальный источник напряжения создает постоянное напряжение на выходе, задача источника тока – выдать постоянное значение тока, автоматом контролируя требуемое напряжение. Примерами являются трансформаторы тока (вторичная обмотка), фотоэлементы, коллекторные токи транзисторов.

Расчет внутреннего сопротивления источника напряжения

Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.

Батарея аккумуляторов генерирует ЭДС:

ε = E/Q, где:

  • Е – энергия (Дж);
  • Q – заряд (Кл).

Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.

Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.

Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).

Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.

Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.

  1. Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
  1. Из этого выражения r = ε/I — R.

Пример. Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.

Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.

Важно! Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.

Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.

Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.

В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.

Особенности внутреннего сопротивления источника тока

У идеального источника тока бесконечное сопротивление, а для подлинных источников можно представить приближенный вариант. Эквивалентная электросхема – это сопротивление, подключенное к источнику параллельно, и внешнее сопротивление.

Токовый выход от источника тока распределяется так: частично ток течет через наиболее высокое внутреннее сопротивление и через низкое сопротивление нагрузки.

Выходной ток будет находиться из суммы токов на внутреннем сопротивлении и нагрузочного Iо = Iн + Iвн.

Получается:

Iн = Iо — Iвн = Iо — Uн/r.

Эта зависимость показывает, что когда внутреннее сопротивление источника тока растет, тем больше снижается ток на нем, а резистор нагрузки получает большую часть тока. Интересно, что напряжение влиять не будет на токовую величину.

Выходное напряжение реального источника:

Uвых = I x (R x r)/(R +r) = I x R/(1 + R/r). Оцените статью:

В век электричества, наверное, нет такого человека, что не знал бы о существовании электрического тока. Но мало кто помнит из школьного курса физики больше, чем название величин: сила тока, напряжение, сопротивление, закон Ома. И лишь очень немногие помнят, в чём заключается смысл этих слов.

В этой статье мы обсудим, как появляется электрический ток, как он передаётся по цепи и как использовать эту величину в расчётах. Но перед тем как перейти к основной части, обратимся к истории открытия электрического тока и его источников, а также определению того, чем является электродвижущая сила.

История

Электричество как источник энергии было известно ещё с древних времён, ведь сама природа генерирует его в огромных объёмах. Яркий пример - молния или электрический скат. Несмотря на такую близость к человеку, обуздать эту энергию удалось лишь в середине семнадцатого века: Отто фон Герике, бургомистр из Магдебурга, создал машину, позволяющую генерировать электростатический заряд. В середине восемнадцатого века Питер фон Мушенбрук - учёный из Голландии - создаёт первый в мире электрический конденсатор, названный Лейденской банкой в честь университета, где он работал.

Пожалуй, отсчёт эпохи настоящих открытий, посвящённых электричеству, принято начинать с работ Луиджи Гальвани и Алессандро Вольта, изучивших соответственно электрические токи в мышцах и возникновение тока в так называемых гальванических элементах. Дальнейшие исследования открыли нам глаза на связь электричества и магнетизма, а также на несколько очень полезных явлений (таких как электромагнитная индукция), без которых сегодня невозможно представить нашу жизнь.

Но мы не будем углубляться в магнитные явления и остановимся только на электрических. Итак, разберём, как же возникает электричество в гальванических элементах и что это вообще такое.

Что такое гальванический элемент?

Можно сказать, что это производящий электроэнергию за счёт химических реакций, происходящих между его компонентами. Самый простой гальванический элемент был изобретён Алессандро Вольтом и назван в его честь вольтовым столбом. Он состоит из нескольких слоёв, чередующихся между собой: медная пластина, проводящая прокладка (в домашнем варианте конструкции используется вата, смоченная солёной водой) и цинковая пластина.

Какие реакции протекают в нём?

Рассмотрим подробнее процессы, позволяющие нам получить электричество с помощью гальванического элемента. Таких превращений всего два: окисление и восстановление. При окислении одного элемента, восстановителя, происходит отдача им электронов другому элементу - окислителю. Окислитель, в свою очередь, восстанавливается, принимая электроны. Таким образом происходит движение заряженных частиц от одной пластины к другой, а это, как известно, и называется электрическим током.

А сейчас плавно перейдём к основной теме этой статьи - ЭДС источника тока. И для начала рассмотрим, что же представляет собой эта электродвижущая сила (ЭДС).

Что такое ЭДС?

Эту величину можно представить как работу сил (именно "работу"), совершаемую при перемещении заряда по замкнутой электрической цепи. Очень часто ещё делают уточнения, что заряд должен обязательно быть положительным и единичным. И это существенное дополнение, так как только при этих условиях можно считать электродвижущую силу точной измеримой величиной. Кстати, измеряется она в тех же единицах, что и напряжение: в вольтах (В).

ЭДС источника тока

Как известно, каждый аккумулятор или батарейка обладают своим значением сопротивления, которое они способны выдавать. Это значение, ЭДС источника тока, показывает, какую работу производят внешние силы для перемещения заряда по цепи, в которую включена батарейка или аккумулятор.

Уточнить стоит также и то, какой вид тока производит источник: постоянный, переменный или импульсный. Гальванические элементы, в том числе аккумуляторы и батарейки, производят всегда только постоянный электрический ток. ЭДС источника тока в таком случае будет равна по модулю выходному напряжению на контактах источника.

Сейчас пришла пора разобраться, для чего такая величина, как ЭДС, нужна вообще, как её использовать при расчётах других величин электрической цепи.

Формула ЭДС

Мы уже выяснили, что ЭДС источника тока равна работе сторонних сил по перемещению заряда. Для большей наглядности мы решили записать формулу этой величины: E=A сторонних сил /q, где A - работа, а q - заряд, над которым была совершена работа. Обратите внимание, что берётся общий заряд, а не единичный. Делается это потому, что мы считаем работу сил по перемещению всех зарядов в проводнике. И это отношение работы к заряду всегда будет постоянным для данного источника, так как какое количество заряженных частиц ни бери, удельная величина работы на каждый из них будет одинаковой.

Как видите, формула электродвижущей силы не так сложна и состоит всего из двух величин. Пришла пора перейти к одному из главных вопросов, вытекающих из этой статьи.

Зачем нужна ЭДС?

Уже было сказано, что ЭДС и напряжение - величины, фактически, одинаковые. Если мы знаем значения ЭДС и внутреннее сопротивление источника тока, то несложно будет подставить их в закон Ома для полной цепи, который выглядит следующим образом: I=e/(R+r), где I - сила тока, e - ЭДС, R - сопротивление цепи, r - внутреннее сопротивление источника тока. Отсюда мы можем находить две характеристики цепи: I и R. Следует обратить внимание, что все эти рассуждения и формулы справедливы лишь для цепи постоянного тока. В случае с переменным формулы будут совсем другие, так как он подчиняется своим колебательным законам.

Но всё же остаётся непонятным, какое применение имеет ЭДС источника тока. В цепи, как правило, очень много элементов, выполняющих свою функцию. В любом телефоне стоит плата, представляющая также не что иное, как электрическую цепь. А каждой такой схеме для работы требуется источник тока. И очень важно, чтобы его ЭДС подходила по параметрам для всех элементов цепи. Иначе схема либо перестанет работать, либо сгорит из-за высокого напряжения внутри неё.

Заключение

Думаем, для многих эта статья оказалась полезной. Ведь в современном мире очень важно знать как можно больше о том, что нас окружает. В том числе существенны знания о природе электрического тока и его поведении внутри цепей. И если вы думаете, что такая вещь, как электрическая цепь, применяется только в лабораториях и вы далеки от этого, то вы сильно ошибаетесь: все приборы, потребляющие электроэнергию, на самом деле состоят из цепей. И у каждой из них есть свой источник тока, создающий ЭДС.

Закон Ома для полной цепи, определение которого касается значения электрического тока в реальных цепях, находится в зависимости от источника тока и от сопротивления нагрузки. Этот закон носит и другое название - закон Ома для замкнутых цепей. Принцип действия данного закона заключается в следующем.

В качестве самого простого примера, электрическая лампа, являющаяся потребителем электрического тока, совместно с источником тока есть не что иное, как замкнутая . Данная электрическая цепь наглядно показана на рисунке.

Электроток, проходя через лампочку, также проходит и через сам источник тока. Таким образом, во время прохождения по цепи, ток испытает сопротивление не только проводника, но и сопротивление, непосредственно, самого источника тока. В источнике сопротивление создается электролитом, находящимся между пластинами и пограничными слоями пластин и электролита. Отсюда следует, что в замкнутой цепи, ее общее сопротивление будет состоять из суммы сопротивлений лампочки и источника тока.

Внешнее и внутреннее сопротивление

Сопротивление нагрузки, в данном случае лампочки, соединенной с источником тока, носит название внешнего сопротивления. Непосредственное сопротивление источника тока называется внутренним сопротивлением. Для более наглядного изображения процесса, все значения необходимо условно обозначить. I - , R - внешнее сопротивление, r - внутреннее сопротивление. Когда по электрической цепи протекает ток, то для того, чтобы поддерживать его, между концами внешней цепи должна присутствовать разность потенциалов, которая имеет значение IхR. Однако, протекание тока наблюдается и во внутренней цепи. Значит, для того, чтобы поддержать электроток во внутренней цепи, также необходима разность потенциалов на концах сопротивления r. Значение этой разности потенциалов равно Iхr.

Электродвижущая сила аккумулятора

Аккумулятор должен иметь следующее значение электродвижущей силы, способной поддерживать необходимый ток в цепи: Е=IхR+Iхr . Из формулы видно, что электродвижущая сила аккумулятора составляет сумму внешнего и внутреннего . Значение тока нужно вынести за скобки: Е=I(r+R) . Иначе можно представить: I=Е/(r+R) . Двумя последними формулами выражается закон Ома для полной цепи, определение которого звучит следующим образом: в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений этой цепи.

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

- электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

- термоэлектрическая - в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

- фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

- химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.