Название: Основы силовой электроники.

Излагаются принципы преобразования электрической энергии: выпрямления, инвертирования, преобразования частоты и др. Описаны основные схемы преобразовательных устройств, способы управления ими и регулирования основных параметров, показаны области рационального использования различных типов преобразователей.
Для инженеров и техников по разработке и эксплуатации электрических систем, содержащих преобразовательные устройства, а также занятых испытанием и обслуживанием преобразовательной техники.

В электронной технике выделяют силовую и информационную электронику. Силовая электроника первоначально возникла как область техники, связанная преимущественно с преобразованием различных видов электроэнергии на основе использования электронных приборов. В дальнейшем достижения в области полупроводниковых технологий позволили значительно расширить функциональные возможности, силовых электронных устройств и соответственно области их применения.
Устройства современной силовой электроники, позволяют управлять потоками электроэнергии не только в целях ее преобразования из одного вида в другой, но и распределения, организации быстродействующей защиты электрических цепей, компенсации реактивной мощности и др. Эти функции, тесно связанные с традиционными задачами электроэнергетики, определили и другое название силовой электроники - энергетическая
электроника.
Информационная электроника преимущественно используется для управления информационными процессами. В частности, устройства информационной электроники являются основой систем управления и регулирования различными объектами, в том числе и аппаратами силовой электроники.

Глава первая. Основные элементы силовой электроники
1.1. Силовые полупроводниковые приборы
1.1.1. Силовые диоды
1.1.2. Силовые транзисторы
1.1.3. Тиристоры
1.1.4. Применение силовых полупроводниковых приборов
1.2. Трансформаторы и реакторы
1.3. Конденсаторы
Глава вторая. Выпрямители
2.1. Общие сведения
2.2. Основные схемы выпрямления
2.2.1. Однофазная двухполупериодная схема со средней точкой
2.2.2. Однофазная мостовая схема
2.2.3. Трехфазная схема со средней точкой
2.2.4. Трехфазная мостовая схема
2.2.5. Многомостовые схемы
2.2.6. Гармонический состав выпрямленного напряжения и первичных токов в схемах выпрямления
2.3. Коммутация и режимы работы выпрямителей
2.3.1. Коммутация токов в схемах выпрямления
2.3.2. Внешние характеристики выпрямителей
2.4. Энергетические характеристики выпрямителей и способы их улучшения
2.4.1. Коэффициент мощности и КПД выпрямителей
2.4.2. Улучшение коэффициента мощности управляемых выпрямителей
2.5. Особенности работы выпрямителей на емкостную нагрузку и противо-ЭДС
2.6. Сглаживающие фильтры
2.7. Работа выпрямителя от источника соизмеримой мощности
Глава третья. Инверторы и преобразователи частоты
3.1. Инверторы, ведомые сетью
3.1.1. Однофазный инвертор со средней точкой
3.1.2. Трехфазный мостовой инвертор
3.1.3. Баланс мощностей в инверторе, ведомом сетью
3.1.4. Основные характеристики и режимы работы инверторов, ведомых сетью
3.2. Автономные инверторы
3.2.1. Инверторы тока
3.2.2. Инверторы напряжения
3.2.3. Инверторы напряжения на тиристорах
3.2.4. Резонансные инверторы
3.3. Преобразователи частоты
3.3.1. Преобразователи частоты с промежуточным звеном постоянного тока
3.3.2. Преобразователи частоты с непосредственной связью
3.4. Регулирование выходного напряжения автономных инверторов
3.4.1. Общие принципы регулирования
3.4.2. Регулирующие устройства инверторов тока
3.4.3. Регулирование выходного напряжения посредством широтно-импульсной модуляции (ШИМ)
3.4.4. Геометрическое сложение напряжений
3.5. Способы улучшения формы выходного напряжения инверторов и преобразователей частоты
3.5.1. Влияние несинусоидальности напряжения на потребителей электроэнергии
3.5.2. Выходные фильтры инверторов
3.5.3. Уменьшение высших гармоник в выходном напряжении без применения фильтров
Глава четвертая. Регуляторы-стабилизаторы и статические контакторы
4.1. Регуляторы-стабилизаторы переменного напряжения
4.2. Регуляторы-стабилизаторы постоянного тока
4.2.1. Параметрические стабилизаторы
4.2.2. Стабилизаторы непрерывного действия
4.2.3. Импульсные регуляторы
4.2.4. Развитие структур импульсных регуляторов
4.2.5. Тиристорно-конденсаторные регуляторы постоянного тока с дозированной передачей энергии в нагрузку
4.2.6. Комбинированные преобразователи-регуляторы
4.3. Статические контакторы
4.3.1. Тиристориые контакторы переменного тока
4.3.2. Тиристорные контакторы постоянного тока
Глава пятая. Системы управлении преобразовательными устройствами
5.1. Общие сведения
5.2. Структурные схемы систем управления преобразовательных устройств
5.2.1. Системы управления выпрямителей и зависимых инверторов
5.2.2. Системы управления преобразователей частоты с непосредственной связью
5.2.3. Системы управления автономных инверторов
5.2.4. Системы управления регуляторов-стабилизаторов
5.3. Микропроцессорные системы в преобразовательно» технике
5.3.1. Типовые обобщенные структуры микропроцессора
5.3.2. Примеры использования микропроцессорных систем управления
Глава шестая. Применение силовых электронных устройств
6.1. Области рационального применения
6.2. Общие технические требования
6.3. Защита в аварийных режимах
6.4. Эксплуатационный контроль и диагностика технического состояния
6.5. Обеспечение параллельной работы преобразователей
6.6. Электромагнитные помехи
Список литературы

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Основы силовой электроники - Розанов Ю.К. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

12.10.2017

А Вы знаете основы силовой электроники?


Мы можем проследить подавляющее продвижение в этом вопросе к разработке коммерческих тиристоров или кремниевых выпрямителей (SCR) компании General Electric Co.

Концепция силовой электроники

Силовая электроника — одна из современных тем электротехники, которая в последнее время добилась больших успехов и оказала влияние на жизнь человека практически во всех сферах. Мы сами себя используем так много силовых электронных приложений в нашей повседневной жизни, даже не осознавая этого. Теперь возникает вопрос: «Что такое силовая электроника?»

Мы можем определить силовую электронику как предмет, который представляет собой гибрид энергетики, аналоговой электроники, полупроводниковых приборов и систем управления. Мы основываем основы каждого субъекта и применяем его в объединенной форме, чтобы получить регулируемую форму электрической энергии. Электрическая энергия сама по себе не применима до тех пор, пока она не превратится в осязаемую форму энергии, такую ​​как движение, свет, звук, тепло и т. Д. Чтобы регулировать эти формы энергии, эффективным способом является регулирование самой электрической энергии, и эти формы содержание субъектной силовой электроники.

Мы можем проследить подавляющее продвижение в этом вопросе к разработке коммерческих тиристоров или кремниевых выпрямителей (SCR) компании General Electric Co. в 1958 году. До этого контроль над электрической энергией осуществлялся главным образом с использованием тиратронов и выпрямителей ртутной дуги, которые работают на принцип физических явлений в газах и парах. После SCR появилось много мощных электронных устройств, таких как GTO, IGBT, SIT, MCT, TRIAC, DIAC, IEGT, IGCT и так далее. Эти устройства рассчитаны на несколько сотен вольт и ампер в отличие от устройств уровня сигнала, работающих на нескольких вольтах и ​​амперах.

Для достижения цели силовой электроники устройства работают как не более чем переключатель. Все силовые электронные устройства действуют как переключатель и имеют два режима, то есть ON и OFF. Например, BJT (Bipolar Junction Transistor) имеет три области работы в отключенных характеристиках выходных характеристик, активных и насыщенных. В аналоговой электронике, где BJT должен работать как усилитель, схема сконструирована таким образом, чтобы смещать ее в активную область работы. Однако в силовой электронике BJT будет работать в области отсечки, когда он выключен, и в области насыщения, когда он включен. Теперь, когда устройства должны работать как коммутатор, они должны следовать основной характеристике коммутатора, то есть когда переключатель включен, он имеет нулевое падение напряжения на нем и передает через него полный ток, а когда он находится в состоянии ВЫКЛ, он имеет полное падение напряжения на нем и нулевой ток, протекающий через него.

Теперь, поскольку в обоих режимах величина V или I равна нулю, мощность переключателя также всегда равна нулю. Эта характеристика легко визуализируется в механическом переключателе, и то же самое необходимо соблюдать и в силовом электронном переключателе. Однако практически всегда существует ток утечки через устройства, когда он находится в состоянии ВЫКЛ, т.е. Ileakage ≠ 0, и всегда есть перепад напряжения в состоянии ВКЛ, то есть Von ≠ 0. Однако величина Von или Ileakage очень меньше, и, следовательно, мощность через устройство также очень мала, в порядке нескольких милливольт. Эта мощность рассеивается в устройстве, и поэтому надлежащая эвакуация тепла с устройства является важным аспектом. Помимо этих потерь состояния состояния и состояния OFF, есть также потери переключения в силовых электронных устройствах. Это происходит главным образом, когда коммутатор переключается из одного режима в другой, а V и I через устройство меняются. В силовой электронике оба потерь являются важными параметрами любого устройства и необходимы для определения его номинальных значений напряжения и тока.

Только силовые электронные устройства не так полезны в практических применениях и поэтому требуют разработки с цепью вместе с другими поддерживающими компонентами. Эти поддерживающие компоненты похожи на часть принятия решения, которая управляет силовыми электронными переключателями для достижения желаемого результата. Это включает в себя схему обжига и цепь обратной связи. На приведенной ниже блок-схеме показана простая силовая электронная система.

Блок управления принимает выходные сигналы от датчиков и сравнивает их со ссылками и соответственно вводит входной сигнал в схему обжига. Схема обжига в основном представляет собой схему генерации импульсов, которая дает импульсный выход таким образом, чтобы управлять силовыми электронными переключателями в блоке главной цепи. Конечным результатом является то, что нагрузка получает требуемую электрическую мощность и, следовательно, обеспечивает желаемый результат. Типичным примером вышеупомянутой системы было бы управление скоростью двигателей.

В основном существует пять типов силовых электронных схем, каждый из которых имеет разные целевые функции:

  1. Выпрямители — преобразует фиксированный переменный ток в переменный DC
  2. Чопперы — преобразует постоянный постоянный ток в переменный DC
  3. Инверторы — преобразуют постоянный ток в переменный ток с переменной амплитудой и переменной частотой
  4. Контроллеры напряжения переменного тока — преобразуют фиксированный переменный ток в переменный ток на одинаковой входной частоте
  5. Cycloconverters — преобразует фиксированный переменный ток в переменный ток с переменной частотой

Существует общее заблуждение относительно термина преобразователя. Конвертер — это в принципе любая схема, которая преобразует электроэнергию из одной формы в другую. Следовательно, все перечисленные пять являются типами преобразователей.

Еще по теме:

    А Вы знаете, что такое подключение розетки? Подключение розетки Люди часто нервничают, когда дело доходит…

    Проводка для лебедки Основы проводки лебедки просты, и самая важная задача проводки, кроме как обеспечить…

    А Вы знаете, что такое силовой трансформатор? Силовой трансформатор Иногда известный просто как трансформатор, силовой…

  • 6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
  • 7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
  • 22. Характеристики выключения тиристора, время выключения (восстановление).
  • 8. Классификация исполнительных сэу.
  • 9. Классификация преобразовательных сэу.
  • 10. Простые и комбинированные преобразователи и их структурные схемы.
  • 17. Определение основных потерь в вентилях на низких частотах.
  • 11. Роль эвм, микропроцессорной техники в развитии сэу.
  • 12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
  • 13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
  • 14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
  • 15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
  • 16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
  • 18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
  • 19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
  • 20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
  • 23. Система параметров тиристора по току и напряжению.
  • 24. Система динамических параметров тиристора.
  • 21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
  • 34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
  • 25. Характеристики управляющего перехода тиристора и параметры цепи управления.
  • 26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
  • 27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
  • 29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
  • 28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
  • 33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
  • 30. Структура и вах тиристора-диода.
  • 32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
  • 36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
  • 38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
  • 37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
  • 39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
  • 41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
  • 42.Режимы работы спп в сэу и их характеристика.
  • 44. Исполнительные сэу, классификация, области использования.
  • 45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
  • 54. Преобразовательные сэу, классификация, области использования.
  • 46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
  • 51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
  • 52. Регулировочная характеристика последовательных шир, расчет основных элементов.
  • 53. Регулировочная характеристика параллельных шир, расчет основных элементов.
  • 55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
  • 56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 1. Схема однополупериодного выпрямления
  • 2. Двухполупериодная схема выпрямления с выводом нулевой точки
  • 3. Однофазная мостовая схема выпрямления
  • 57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
  • 61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
  • 66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
  • 67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
  • Силовая электроника – наука о взаимодействии электронов и других заряженных частиц, квантов излучения с электромагнитными полями в вакууме, в различных средах и на границах их раздела – (физическая электроника): а так же методы создания электронных приборов и устройств в которых это взаимодействие используется для обработки и хранения информации и преобразования энергии – (техническая электроника).

    Силовая электроника является одной из областей электроники и непосредственно исп-ся при преобразовании вида, уровня напряжения, числа фаз, порядка их чередования, трансформация пост.тока. а так же при преобразовании энергии источников питания в энергию управляющего воздействия подаваемого на управляемый объект(ОУ)-нагрузку.

    Электроника подразделяется на:

    Электроника СУ и контроля (информационная электроника, малая мощность на выходе);

    Технологическая электроника (силовая электроника, неограниченная мощность);

    Электроника связи (радио, телевидение, высокие частоты);

    В настоящее время созданы современные силовые полупроводниковые приборы и другие пассивные компоненты, позволяющие реализовать СЭУ на относительно большие мощности.

    Наличие микропроцессорной техники позволяет получить определенные необходимые характеристики СЭУ.

    Основные направления:

      Улучшения параметров и характеристик полупроводниковых приборов;

      Разработка новых типов полупроводниковых приборов;

      Создание интеллектуальных приборов;

      Использование микроконтроллеров средств вычислительной техники в системе управления контроля и регулирования;

      Создание модулей из полупроводниковых приборов или законченных схем.

    2. Основные задачи и проблемы, возникающие при проектировании силовых электронных устройств (сэу).

    Под СЭУ понимается большая группа устройств, предназначенных для получения электрического управляющего воздействия необходимой мощности (исполнительные СЭУ), а так же для преобразования, регулирования или стабилизации параметров электрической энергии (преобразовательные СЭУ).

    Основными задачами при проектировании СЭУ является повышение надежности, КПД и коэффициента мощности, что в конечном счете определяет ее габариты, массу, экономическую эффективность и др.

    3. Обобщенная структурная схема и основные элементы сэу.

    На рис приведена структурная схема СЭУ, основной частью котрого явл-ся силовой блок (СБ), силовая схема.

    Выходной сигнал СБ – СУ (Uвых) подается на управляемый объект – нагрузку (U УО, Zн). Неотъемлемыми частями СЭУ явл-ся блок или схема управления (БУ), блок или схема контроля, защита и регулирование (БКиЗ). Силовой блок состоит из силовых активных (САЕ) и пассивных (СПЕ) элементов, соединенных по определенной схеме и служат для преобразования и управления энергией, поступающей от источника питания (ИП). В качестве САЕ в настоящее время используются силовые полупроводниковые приборы (СПП): мощные транзисторы(биполярные, полевые, совмещенные), тиристоры, симисторы, оптотиристоры и интеллектуальные СПП, модули и т.д. функцию преобразования входного сигнала х, а так же сигналов α, β обратной связи (ОС) с блока БКиЗ в сигналы управления САЕ выполняет БУ. В общем случае БКиЗ получает сигналы γ и δ с датчиков (ДТС, ДТО) контроля режима работы СБ, УО и формирует необх сигнал возд-ия на БУ.

  • В этой статье поговорим о силовой электронике. Что такое силовая электроника, на чем она базируется, какие дает преимущества, и каковы ее перспективы? Остановимся на составных частях силовой электроники, рассмотрим кратко, какие они бывают, чем отличаются между собой, и для каких применений удобны те или иные типы полупроводниковых ключей. Приведем примеры приборов силовой электроники, применяемой в повседневной жизни, на производстве и в быту.

    За последние годы устройства силовой электроники позволили совершить серьезный технологический рывок в энергосбережении. Силовые полупроводниковые приборы, благодаря их гибкой управляемости, позволяют эффективно преобразовывать электроэнергию. Массогабаритные показатели и КПД, достигнутые сегодня, уже вывели преобразовательные устройства на качественно новый уровень.

    Во многих отраслях применяются устройства плавного пуска, регуляторы скорости, источники бесперебойного питания, работающие на современной полупроводниковой базе, и показывающие высокую эффективность. Все это силовая электроника.

    Управление потоками электрической энергии в силовой электронике осуществляется при помощи полупроводниковых ключей, которые заменяют собой механические коммутаторы, и управление которыми можно осуществлять по требуемому алгоритму с целью получить нужную среднюю мощность и точное действие рабочего органа того или иного оборудования.

    Так, силовая электроника применяется на транспорте, в добывающей отрасли, в сфере связи, на многих производствах, да и ни один мощный бытовой прибор не обходится сегодня без входящих в его конструкцию силовых электронных блоков.

    Главными кирпичиками силовой электроники являются именно полупроводниковые ключевые компоненты, способные с разной скоростью, вплоть до мегагерц, размыкать и замыкать цепь. Во включенном состоянии сопротивление ключа составляет единицы и доли ома, а в выключенном - мегаомы.

    Управление ключом не требует много мощности, а потери на ключе, возникающие в процессе коммутации, при грамотно спроектированном драйвере, не превышают одного процента. По этой причине КПД силовой электроники оказывается высоким по сравнению со сдающими свои позиции железными трансформаторами и механическими коммутаторами типа обычных реле.


    Силовыми электронными приборами называются приборы, в которых действующий ток больше или равен 10 амперам. При этом в качестве ключевых полупроводниковых элементов могут быть: биполярные транзисторы, полевые транзисторы, IGBT-транзисторы, тиристоры, симисторы, запираемые тиристоры, и запираемые тиристоры с интегрированным управлением.

    Малая мощность управления позволяет создавать и силовые микросхемы, в которых сочетаются сразу несколько блоков: сам ключ, схема управления и схема контроля, - это так называемые интеллектуальные схемы.

    Эти электронные кирпичики применяются как в мощных промышленных установках, так и в бытовых электроприборах. Индукционная печь на пару мегаватт или домашний отпариватель на пару киловатт - и в том и в другом есть полупроводниковые силовые ключи, просто оперирующие с разной мощностью.

    Так, силовые тиристоры работают в преобразователях мощностью более 1 МВА, в цепях электроприводов постоянного тока и высоковольтных приводов переменного тока, используются в установках компенсации реактивной мощности, в установках индукционной плавки.

    Запираемые тиристоры управляются более гибко, они служат для управления компрессорами, вентиляторами, насосами мощностью в сотни КВА, а потенциально возможная мощность коммутации превышает 3 МВА. позволяют реализовывать преобразователи мощностью до единиц МВА различного назначения, как для управления двигателями, так и для обеспечения бесперебойного питания и коммутации больших токов во многих статических установках.

    Полевые MOSFET-транзисторы отличаются превосходной управляемостью на частотах в сотни килогерц, что значительно расширяет сферу их применяемости в сравнении с IGBT-транзисторами.

    Для пуска и управления двигателями переменного тока оптимальны симисторы, они способны работать на частотах до 50 кГц, а для управления требуют меньше энергии, чем IGBT-транзисторам.

    Сегодня IGBT-транзисторы по максимальному коммутируемому напряжению достигают 3500 вольт, а потенциально возможно 7000 вольт. Эти компоненты могут вытеснить биполярные транзисторы уже в ближайшие годы, и на оборудовании до единиц МВА будут применяться именно они. Для маломощных преобразователей более приемлемыми останутся MOSFET-транзисторы, а для более 3 МВА - запираемые тиристоры.


    По прогнозам аналитиков, большая часть силовых полупроводников в будущем будет иметь модульное исполнение, когда в одном корпусе располагается от двух до шести ключевых элементов. Применение модулей позволяет снизить массу, уменьшить габариты и себестоимость оборудования, в котором они будут применяться.

    Для IGBT-транзисторов прогрессом будет увеличение токов до 2 кА при напряжении до 3,5 кВ и рост рабочих частот до 70 кГц с упрощением схем управления. В одном модуле смогут содержаться не только ключи и выпрямитель, но и драйвер, и схемы активной защиты.

    Выпускаемые в последние годы транзисторы, диоды, тиристоры, уже значительно улучшили свои параметры, такие как ток, напряжение, быстродействие, и прогресс не стоит на месте.


    Для более качественного преобразования переменного тока в постоянный применяют управляемые выпрямители, позволяющие плавно изменять выпрямленное напряжение в диапазоне от нуля до номинального.

    Сегодня в системах возбуждения электроприводов постоянного тока у синхронных двигателей служат главным образом тиристоры. Сдвоенные тиристоры - симисторы, имеют всего один управляющий электрод для двух соединенных встречно-параллельно тиристоров, что делает управление еще более простым.


    Для осуществления обратного процесса, преобразования постоянного напряжения в переменное применяют . Независимые инверторы на полупроводниковых ключах дают на выходе частоту, форму и амплитуду, определяемою электронной схемой, а не сетью. Инверторы изготавливают на базе различных типов ключевых элементов, но для высоких мощностей, более 1МВА, опять же на первое место выходят инверторы на IGBT-транзисторах.

    В отличие от тиристоров, IGBT-транзисторы дают возможность более широко и более точно формировать ток и напряжение на выходе. Маломощные автомобильные инверторы используют в своей работе полевые транзисторы, которые при мощностях до 3 кВт прекрасно справляются со своей задачей, преобразовывая постоянный ток аккумулятора с напряжением 12 вольт сначала в постоянное, посредством высокочастотного импульсного преобразователя, работающего на частоте от 50кГц до сотен килогерц, затем - в переменное 50 или 60 Гц.


    Для перевода тока одной частоты в ток другой частоты применяют . Раньше это делалось исключительно на базе тиристоров, которые обладали не полной управляемостью, приходилось проектировать сложные схемы принудительного запирания тиристоров.

    Использование ключей типа полевых MOSFET и IGBT-транзисторов облегчает проектирование и реализацию преобразователей частоты, и можно прогнозировать, что в перспективе от тиристоров, особенно в приборах малой мощности, откажутся в пользу транзисторов.


    Для реверсирования электроприводов по прежнему применяются тиристоры, достаточно иметь два комплекта тиристорных преобразователей для обеспечения двух разных направлений тока без необходимости переключений. Так работают современные бесконтактные реверсивные пускатели.

    Надеемся, что наша краткая статья была для вас полезной, и теперь вы знаете, что такое силовая электроника, какие элементы силовой электроники применяются в силовых электронных приборах, и как велик потенциал силовой электроники для нашего будущего.

    Учебник. – Новосибирск: Изд-во НГТУ, 1999.

    Части: 1.1, 1.2, 2.1, 2.2, 2.3, 2.4

    Настоящий учебник предназначен (при двух уровнях глубины изложения материала) для студентов факультетов ФЭН, ЭМФ, не являющихся «специалистами» по силовой электронике, но изучающих курсы различных названий по использованию устройств силовой электроники в электроэнергетических, электромеханических, электротехнических системах. Разделы учебника, выделенные рубленым шрифтом, предназначены (также при двух уровнях глубины изложения) для дополнительного, более глубокого изучения курса, что позволяет использовать его и как учебное пособие для студентов специальности «Промэлектроника» РЭФ, которые готовятся «как специалисты» по силовой электронике. Таким образом, в предлагаемом издании реализован принцип «четыре в одном». Добавленные в отдельные разделы обзоры научно-технической литературы по соответствующим разделам курса позволяют рекомендовать пособие как информационное издание и для магистрантов и аспирантов.

    Предисловие.
    Научно-технические и методические основы исследования устройств силовой электроники.
    Методология системного подхода к анализу устройств силовой электроники.
    Энергетические показатели качества преобразования энергии в вентильных преобразователях.
    Энергетические показатели качества электромагнитных процессов.
    Энергетические показатели качества использования элементов устройства и устройства в целом.
    Элементная база вентильных преобразователей.
    Силовые полупроводниковые приборы.
    Вентили с неполным управлением.
    Вентили с полным управлением.
    Запираемые тиристоры, транзисторы.
    Трансформаторы и реакторы.
    Конденсаторы.
    Виды преобразователей электрической энергии.
    Методы расчета энергетических показателей.
    Математические модели вентильных преобразователей.
    Методы расчета энергетических показателей преобразователей.
    Интегральный метод.
    Спектральный метод.
    Прямой метод.
    Метод Аду.
    Метод Аду.
    Метод Аду(1).
    Методы АдуМ1, Адум2, Адум(1).
    Теория проеобразования переменного тока в постоянный при идеальных параметрах преобразователя.
    Выпрямитель как система. Основные определения и обозначения.
    Механизм преобразования переменного тока в выпрямленный в базовой ячейке Дт/От.
    Двухфазный выпрямитель однофазного тока (m1 = 1, m2 = 2, q = 1).
    Выпрямитель однофазного тока по мостовой схеме (m1 = m2 = 1, q = 2).
    Выпрямитель трехфазного тока со схемой соединения обмоток транс.
    форматора треугольник - звезда с нулевым выводом (m1 =m2 = 3, q = 1).
    Выпрямитель трехфазного тока со схемой соединения обмоток транс форматора звезда - зигзаг с нулем (m1 = m2 = 3, q = 1).
    Шестифазный выпрямитель трехфазного тока с соединением вторичных обмоток трансформатора звезда - обратная звезда с уравнительным реактором (m1 = 3, m2 = 2 х 3, q = 1).
    Выпрямитель трехфазного тока по мостовой схеме (m1=m2=3, q=2).
    Управляемые выпрямители. Регулировочная характеристика теория преобразования переменного тока в постоянный (с рекуперацией) с учетом реальных параметров элементов преобразователя.
    Процесс коммутации в управляемом выпрямителе с реальным трансформатором. Внешняя характеристика.
    Теория работы выпрямителя на противоЭдс при конечном значении индуктивности Ld.
    Режим прерывистого тока (? 2?/qm2).
    Режим предельно-непрерывного тока (? = 2?/qm2).
    Режим непрерывного тока (? 2?/qm2).
    Работа выпрямителя с конденсаторным сглаживающим фильтром.
    Обращение направления потока активной мощности в вентильном преобразователе с противоЭДС в звене постоянного тока - режим зависимого инвертирования.
    Зависимый инвертор однофазного тока (m1=1, m2=2, q=1).
    Зависимый инвертор трехфазного тока (m1=3, m2=3, q=1).
    Общая зависимость первичного тока выпрямителя от анодного и вы прямленного токов (закон Чернышева).
    Спектры первичных токов трансформаторов выпрямителей и зависимых инверторов.
    Спектры выпрямленного и инвертируемого напряжений вентильного преобразователя.
    Оптимизация числа вторичных фаз трансформатора выпрямителя. Эквивалентные многофазные схемы выпрямления.
    Влияние коммутации на действующие значения токов трансформатора и его типовую мощность.
    КПД и коэффициент мощности вентильного преобразователя в режим выпрямления и зависимого инвертирования.
    Коэффициент полезного действия.
    Коэффициент мощности.
    Выпрямители на полностью управляемых вентилях.
    Выпрямитель с опережающим фазовым регулированием.
    Выпрямитель с широтно-импульсным регулированием выпрямленного напряжения.
    Выпрямитель с принудительным формированием кривой тока, потребляемого из питающей сети.
    Реверсивный вентильный преобразователь (реверсивный выпрямитель).
    Электромагнитная совместимость вентильного преобразователя с питающей сетью.
    Модельный пример электрического проектирования выпрямителя.
    Выбор схемы выпрямителя (этап структурного синтеза).
    Расчет параметров элементов схемы управляемого выпрямителя (этап параметрического синтеза).
    Заключение.
    Литература.
    Предметный указатель.