В 1970 году начато строительство волоконно-оптических линий связи компанией Corning, признанное стартом новой отрасли. Сегодня развитие оптоволоконных технологий опережает остальные наращивая объемы выпуска волокна на 40% в год!

Главный разработчик и лицензиар этих технологий - США - за последние годы произвел 10 миллионов километров оптического волокна, что эквивалентно 250 обхватам земного шара по экватору. Волоконно-оптические линии связи - идеальная среда для информационного обмена. Их свойству - разделять сигнал миллионам потребителей - нет альтернативы. Они, словно нервные окончания, передают сигналы между материками, странами, регионами, внутри города, по предприятию, образуя волоконно-оптические линии связи (ВОЛС).

Их активные элементы преобразуют, формируют, усиливают передаваемый световой сигнал. Перечислим их. Источником монохромно-когерентного излучения служит лазер.

Модуляторы создают световую волну, варьируемую соответственно структуре входного электрического сигнала. Мультиплексоры объединяют и разъединяют сигналы. Регенераторы восстанавливают параметры оптического импульса. Фотоприемник производит обратное преобразование: свет - электричество. Волоконно-оптические линии связи имеют существенные достоинства: относительно легко монтируются посредством муфт, способны передавать световой сигнал практически без потерь, надежно защищают информацию.

Среди глобальных волоконно-оптических линий связи наиболее многочисленны трансатлантические. Они соединяют страны Европы с Соединенными Штатами и Канадой.

Наибольшие по длине - транстихоокеанские, сблизившие США с Японией, Китаем, Южной Кореей, Гонконгом, Гавайями. Прокладка волоконно-оптических линий связи осуществляется специализированными судами. Россия также участвует в подобных проектах. В прошлом году начато строительство линии, соединяющей Камчатку, Сахалин и Магадан. Отметим, что для магистральных ВОЛС используется волокно с размерами сердцевина/оболочка - 1,3-1,55 мкм.

Государству важны региональные ВОЛС между центром и районами и внутри городов. Их составляют градиентные волокна - 50/125 мкм. Крупные предприятия используют волоконно-оптические линии связи для совершенствования управления по образцу «электронного офиса», а также - для автоматизации производства.

Характерно, что развитые страны (среди них - Япония, Англия, Италия, Франция) при строительстве используют исключительно оптоволокно. Региональному уровню соответствует более скоростной, обладающий меньшим коэффициентом потерь, одномодовый кабель. Предприятию подходит более дешевый и проще монтируемый многомодовый кабель. Оптоволокно используется как датчик температуры, давления, напряжения. Ему находят применение в гидрофонах, гидролокации, сейсмологии, навигации. Используется в системах охраны, сигнализации.

Подводя итог, следует сделать на том, что данная технология еще далеко себя не исчерпала, находясь на средней точке своего развития. Ведущие фирмы-производители CISCO, 3COM, D-LINK, DELL, ALLIED TELESYN всячески модернизируют оптоэлектронную продукцию. Разработано новое многомодовое (более дешевая технология)

ВОЛС (волоконно-оптические линии связи , оптоволокно) – оптические линии связи , состоящие из пассивных и активных элементов, передающие информацию при помощи светового излучения.

Различают 2 вида оптоволоконного кабеля:

  • одномодовый (обозначается OS1) – диаметр волокна 9/125 мкм. Для формирования сигнала, как правило, используется лазер;
  • многомодовый (обозначается OM1, OM2, OM3, в зависимости от характеристик световодов, центральных жил) – диаметр волокна 50/125 мкм или 62,5/125 мкм. Для формирования сигнала может использоваться лазер или светодиод.

Соединение оптоволоконного кабеля

На сегодняшний момент различают 2 способа соединения: склейкой и сваркой.

Склейка, или оптическая сборка – это соединение с помощью специальных разъёмов, содержащих клей-гель или эпоксидный клей. Данный метод чаще используется в труднодоступных местах или на взрывоопасных производствах, где недопустимо образование искр. Из-за сложности проводимых операций, например, полировка оптического кабеоя под UPC или APC, этот метод оказывается дороже. Для контроля качества выполненных работ используют микроскоп с увеличением в 200 крат, но практика показывает, что при таком способе соединения потери остаются достаточно высокими по сравнению со сваркой.

Сварка – это соединение с использованием специализированного сварочного аппарата, который выполняет все операции автоматически, за счет этого влияние человеческого фактора можно свести к минимуму. В аппарат подаются подготовленные специальным образом концы оптического кабеля (сколотые), которые затем соединяются при помощи электрической дуги. В процессе сварки сварочный аппарат проводит множество проверок (тип волокна, качество свариваемых краев, наличие неоднородностей в месте сварки, механическая прочность места сварки и т.д.), что в свою очередь значительно позволяет снизить расходы и время монтажа.

Тестирование сетей из оптоволокна

После проведенного монтажа все оптические линии необходимо досконально проверить. Для этих целей используется специализированное оборудование – рефлектометр, позволяющий определить следующие параметры:

  • длину и тип оптического кабеля;
  • наличие трещин и скрытых дефектов;
  • расстояние до дефектов;
  • затухание.

Также используется микроскоп с увеличением не ниже 200 крат, через который производится съемка мест сварки. Впоследствии все эти данные попадают в отчет, в котором показывается, как были выполнены работы.

Преимущества оптики перед обычными кабельными сетями

Дальность передачи данных

Дальность передачи данных в оптоволоконных сетях значительно выше, чем в линиях, построенных на основе медных кабелей (LAN).

В зависимости от типа оптоволоконного кабеля, дальность передачи данных без повторителей на скорости 10 Гбит/с возможна:

до 5 км – OS1;

до 33 метров – OM1;

до 82 метров – OM2;

до 300 метров – OM3.

Защищенность сети ВОЛС

Оптическое волокно имеет более совершенную защиту от несанкционированного доступа к информации по сравнению с сетями, передающими посредством электрических импульсов. Стороннее подключение к линии оптоволокна невозможно из-за особенности строения кабеля. При попытке считать информацию нужно разрушить целостность лакового покрытия кабеля, что неминуемо прервет передачу данных в сети и факт подключения будет очевидным.

Особенности монтажа ВОЛС по сравнению с LAN и WI-FI

Медные LAN линии могут влиять:

  • электрические сети;
  • наличие оптических коммуникаций;
  • наличия водопроводных труб и труб пожаротушения;
  • влияние погодных факторов.

На Wi-Fi сети могут влиять:

  • преграды (стены);
  • погодные условия;
  • бытовые приборы;
  • прямая видимость;
  • требования законодательства (если трансляция идет вне помещений, то необходима регистрация такого канала в надзорных органах, что приводит к значительному удорожанию канала).

Рентабельность вложения в оптоволоконные сети

Оборудование для оптоволоконных сетей стоит дороже, чем для медных линий или для точки доступа Wi-Fi. Однако при расчете пропускной способности по отношению к цене, оптика является более выгодным решением.

Учитывая все вышеперечисленные достоинства сетей нового поколения, можно с уверенностью рекомендовать ВОЛС в качестве единственно возможного варианта!

Скорость и безопасность передачи больших объемов данных значительно повысит потенциал вашего бизнеса и позволит вывести его на новый уровень.

Закажите устройство волоконно-оптических линий связи в компании « » по указанным на сайте телефонам!

Почему вам нужно заказать наладку видеонаблюдение в

Почему стоит доверить комплексную работу профессионалам «Терра Ментор»:

  • проведут предпроектное обследование;
  • разработают проект и рабочую документацию;
  • произведут монтаж и пусконаладочные работы пассивных и активных элементов ВОЛС.

Расширение аудитории потребителей интернет-услуг и, соответственно, пользователей широкополосных сетей требует внедрения новых технологий. Средства передачи данных должны регулярно повышать линий связи, что заставляет сервисные компании обновлять транспортные информационные каналы. Но, кроме роста объемов передаваемых данных возникают и проблемы иного рода, которые выражаются в увеличении стоимости обслуживания более массивных сетей и расширении спектра потребностей конечных пользователей. Одним из способов совокупной оптимизации характеристик является PON-технология, которая также позволяет сохранять потенциал сетей для дальнейшего расширения их мощности и функциональных возможностей.

Оптоволокно и технология PON

Новая разработка облегчает техническую организацию и дальнейшую эксплуатацию информационных сетей передачи данных, но достигается это во многом за счет достоинств привычных оптических линий. Даже сегодня на фоне внедрения высокотехнологичных материалов продолжается использование каналов, построенных на устаревающих телефонных парах и средствах xDSL. Очевидно, что сеть доступа на подобных элементах существенно проигрывает в эффективности волоконно-коаксиальным линиям, которые тоже нельзя рассматривать как что-то продуктивное по меркам сегодняшнего дня.

Альтернативой традиционным сетям и беспроводным давно выступает оптическое волокно. Но если раньше прокладка таких кабелей являлась непосильной задачей для многих организаций, то сегодня оптические компоненты стали гораздо доступнее. Собственно, и раньше оптоволокно использовалось для обслуживания рядовых абонентов, в том числе по Следующим этапом развития стала телекоммуникационная сеть, построенная на архитектуре Micro-SDH, открывшей принципиально новые решения. Как раз в этой системе и нашла свое применение концепция сетей PON.

Стандартизация сети

Первые попытки стандартизации технологии были предприняты еще в 1990-х годах, когда группа телекоммуникационных компаний задалась идеей на практике реализовать идею множественного доступа по единому пассивному оптоволокну. В результате организация получила название FSAN, объединив и операторов, и производителей сетевого оборудования. Главной же целью FSAN и было создание пакета с общими рекомендациями и требованиями к разработке технических средств PON, чтобы изготовители оборудования и провайдеры могли вместе работать в одном сегменте. На сегодняшний день пассивные линии связи, базирующиеся на технологии PON, организуются в соответствии с нормативами ITU-T, ATM и ETSI.

Принцип действия сети

Главная особенность идеи PON заключается в том, что инфраструктура работает на базе одного модуля, который отвечает за функции приема и передачи данных. Располагается этот компонент в центральном узле системы OLT и позволяет обслуживать информационными потоками множество абонентов. Конечным приемником выступает устройство ONT, которое, в свою очередь, также выступает передатчиком. Количество абонентских точек, подключенных к центральному модулю приема и передачи, зависит только от мощности и максимальной скорости используемой аппаратуры PON. Технология, в принципе, не ограничивает количество участников сети, однако для оптимального использования ресурсов разработчики телекоммуникационных проектов все же ставят определенные барьеры в соответствии с конфигурацией конкретной сети. Трансляция информационного потока от центрального приемно-передающего модуля к абонентскому устройству осуществляется при длине волны, составляющей 1550 нм. И напротив, обратные от потребительских устройств к точке OLT передаются с длиной волны порядка 1310 нм. Данные потоки стоит рассмотреть отдельно.

Прямые и обратные потоки

Основной (то есть прямой) поток от центрального модуля сети относится к широковещательным. Это значит, что оптические линии сегментируют общий поток данных, выделяя адресные поля. Таким образом, каждое абонентское устройство «читает» только информацию, предназначенную специально для него. Такой принцип распределения данных можно назвать демультиплексорным.

В свою очередь, обратный поток использует одну линию для трансляции данных от всех абонентов, подключенных к сети. Так используется схема множественного обеспечения доступа с разделениями по времени. Для исключения вероятности пересечения сигналов от нескольких узлов-приемников информации устройство каждого абонента имеет свое индивидуальное расписание по обмену данными с поправкой на задержку. Это общий принцип, по которому реализуется PON-технология в плане взаимодействия приемно-передающего модуля с конечными потребителями. Однако конфигурация схемы прокладки сетей может иметь разные топологии.

Топология «точка-точка»

В данном случае используется система P2P, которая может выполняться и для распространенных стандартов, и для особых проектов, предполагающих, к примеру, задействование оптических устройств. В плане безопасности данных абонентских точек интернет-соединение этого типа обеспечивает максимальную защищенность, возможную для подобных сетей. Однако прокладка оптической линии для каждого пользователя осуществляется отдельно, поэтому стоимость организации таких каналов существенно возрастает. В некотором роде, это не общая, а индивидуальная сеть, хотя центр, с которым работает абонентский узел, также может обслуживать и других пользователей. В целом же такой подход целесообразен для использования крупными абонентами, которым особенно важна безопасность линии.

Топология «кольцо»

Эта схема базируется на конфигурации SDH и наилучшим образом раскрывается в магистральных сетях. И наоборот, оптические линии кольцевого типа оказываются менее эффективными в эксплуатации сетей доступа. Так, при организации городской магистрали места расстановки узлов рассчитываются еще на стадии разработки проекта, однако сети доступа не дают возможности заранее оценить количество абонентских узлов.

При условии случайного временного и территориального подключения абонентов кольцевая схема может быть значительно усложнена. На практике подобные конфигурации нередко превращаются в изломанные схемы, имеющие множество ответвлений. Такое происходит, когда введение новых абонентов выполняется через разрыв существующих сегментов. Например, в линии связи могут формироваться петли, которые совмещаются в одном проводе. В результате появляются «ломаные» кабели, что в процессе эксплуатации снижает надежность сети.

Особенности архитектуры EPON

Первые попытки построить сеть PON, приближенную по степени охвата потребителей к технологии Ethernet, были предприняты в 2000 г. Платформой для разработки принципов формирования сетей стала архитектура EPON, а в качестве основного стандарта была введена спецификация IEEE, на основе которой были выработаны отдельные решения для организации сетей PON. Технология EFMC, к примеру, обслуживала топологию «точка-точка» с применением витой медной пары. Но сегодня эта система практически не используется в связи с переходом на оптоволокно. Как альтернатива, более перспективными направлениями по-прежнему остаются технологии на базе ADSL.

В современном виде стандарт EPON реализуется по нескольким схемам подключения, но главным условием его воплощения является использование волокна. Помимо применения разных конфигураций, технология подключения PON по стандарту EPON также предусматривает возможность использования некоторых вариантов оптических приемопередатчиков.

Особенности архитектуры GPON

Архитектура GPON позволяет реализовывать сети доступа на базе стандарта APON. В процессе организации инфраструктуры практикуется увеличение сети, а также создание условий для более эффективной передачи приложений. GPON представляет собой масштабируемую кадровую структуру, позволяющую обслуживать абонентов на скорости информационных потоков до 2,5 Гбит/c. При этом обратный и прямой потоки могут работать как на одном, так и с разными скоростными режимами. Кроме того, сеть доступа в конфигурации GPON может обеспечивать любую инкапсуляцию в транспортный синхронный протокол независимо от сервиса. Если в SDH возможна реализация исключительно статического деления полос, то новый протокол GFP в структуре GPON при сохранении характеристик кадра SDH дает возможность и динамического распределения полос.

Преимущества технологии

Среди основных преимуществ в схеме PON выделяют отсутствие промежуточных звеньев между центральным приемником-передатчиком и абонентами, экономность, легкость подключения и удобство в обслуживании. В немалой степени эти достоинства обусловлены рациональной организацией сетей. Например, интернет-соединение обеспечивается напрямую, поэтому выход из строя одного из смежных абонентских устройств никак не влияет на его работоспособность. Хотя массив пользователей, конечно, объединяется подключением к одному центральному модулю, от которого зависит качество обслуживания всех участников инфраструктуры. Отдельно стоит рассмотреть древовидную топологию P2MP, которая максимально оптимизирует оптические каналы. Благодаря экономному распределению линий приема и передачи информации данная конфигурация обеспечивает эффективность работы сети независимо от расположения абонентских узлов. В то же время допускается ввод новых пользователей без кардинальных изменений существующей структуры.

Недостатки сети PON

Широкому применению данной технологии пока еще препятствует несколько значимых факторов. В первую очередь это сложность системы. Эксплуатационные преимущества сети данного типа можно обеспечить только при условии изначального выполнения качественного проекта с учетом множества технических нюансов. Иногда выходом из положения становится технология доступа PON, которая предусматривает организацию простой типологической схемы. Но в этом случае следует готовиться к другому недостатку - отсутствию возможности резервирования.

Тестирование сети

Когда все этапы первичной разработки сетевой схемы пройдены и выполнены технические мероприятия, специалисты приступают к тестированию инфраструктуры. Одним из главных показателей качественно выполненной сети является показатель затухания на линии. Для анализа канала на предмет наличия проблемных зон используются оптические тестеры. Все измерения производятся на активной линии с применением мультиплексоров и фильтров. Масштабная телекоммуникационная сеть обычно тестируется с применением оптических рефлектометров. Но такое оборудование требует специальной подготовки от пользователей, не говоря о том, что расшифровкой рефлектограмм должны заниматься экспертные группы.

Заключение

При всех сложностях в переходе на новые технологии компании, предоставляющие телекоммуникационные услуги, быстро осваивают по-настоящему эффективные решения. Постепенно распространяются и непростые в техническом исполнении оптоволоконные системы, к которым относится и технология PON. «Ростелеком», к примеру, начал внедрять услуги нового формата еще в 2013 г. Доступ к возможностям оптических сетей PON первыми получили жители Ленинградской области. Что самое интересное, поставщик услуг обеспечил оптоволоконной инфраструктурой даже местные поселки. На практике это позволило абонентам пользоваться не только телефонной связью с доступом в интернет, но и подключаться к цифровому телевизионному вещанию.


все о пассивных оптических сетях (PON)

Пару лет назад мы уже публиковали краткий ознакомительный материал о пассивных оптических сетях (PON). Однако в те времена рынок еще только присматривался к этой относительно молодой технологии – в мире только-только появлялись первые инсталляции PON-сетей и счет их шел на единицы. О приходе же PON в Беларусь тогда еще и речи не было. Сегодня ситуация изменилась: PON отлично показал себя в крупных операторских сетях по всему миру, и постепенно идет в массы, становясь доступным и привлекательным решением последней мили и для более мелких провайдеров.
В Беларуси тоже наметилась подвижка – оборудованием PON производства компании Terawave Communications занялась фирма Solo. О чем с радостью и сообщила на семинаре, проходившем в Минске 9 августа.
Вот вам и хороший повод для большого, подробного и доходчивого технического материала по PON, вступление к которому вы сейчас и читаете:)
Об оборудовании же мы расскажем в ближайших номерах, следите за рубрикой hardware.

архитектура сетей PON

Развитие сети Internet, в том числе появление новых услуг связи, способствует росту передаваемых по сети потоков данных и заставляет операторов искать пути увеличения пропускной способности транспортных сетей. При выборе решения необходимо учитывать:
- разнообразие потребностей абонентов;
- потенциал для развития сети;
- экономичность.
На развивающемся телекоммуникационном рынке опасно как принимать поспешные решения, так и дожидаться появления более современной технологии. Тем более, что на взгляд авторов такая технология уже появилась – это технология пассивных оптических сетей PON (passive optical network).
Распределительная сеть доступа PON, основанная на древовидной волоконной кабельной архитектуре с пассивными оптическими разветвителями на узлах, возможно, представляется наиболее экономичной и способной обеспечить широкополосную передачу разнообразных приложений. При этом архитектура PON обладает необходимой эффективностью наращивания как узлов сети, так и пропускной способности в зависимости от настоящих и будущих потребностей абонентов.
Строительство сетей доступа в настоящее время главным образом идет по четырем направлениям:
- сети на основе существующих медных телефонных пар и технологии xDSL;
- гибридные волоконно-коаксиальные сети (HFC);
- беспроводные сети;
- волоконно-оптические сети.
Использование постоянно совершенствующихся технологий xDSL – это самый простой и недорогой способ увеличения пропускной способности существующей кабельной системы на основе медных витых пар. Для операторов когда требуется обеспечить скорость до 1-2 Мбит/c такой путь является наиболее экономичным и оправданным. Однако, скорость передачи до десятков мегабит в секунду на существующих кабельных системах, с учетом больших расстояний (до нескольких км) и низкого качества меди, представляется непростым и достаточно дорогим решением.
Другое традиционное решение – гибридные волоконно-коаксиальные сети (HFC, Hybrid Fiber-Coaxial). Подключение множества кабельных модемов на один коаксиальный сегмент приводит к снижению средних затрат на построение инфраструктур сети в расчете на одного абонента и делает привлекательным такие решения. В целом же здесь сохраняется конструктивное ограничение по полосе пропускания.
Беспроводные сети доступа могут быть привлекательны там, где возникают технические трудности для использования кабельных инфраструктур. Беспроводная связь по своей природе не имеет альтернативы для мобильных служб. В последние годы наряду с традиционными решениями на основе радио- и оптического Ethernet доступа, все более массовой становится технология WiFi, позволяющая обеспечить общую полосу до 10 Мбит/c и в ближайшей перспективе до 50 Мбит/c.
Следует отметить, что для трех перечисленных направлений дальнейшее увеличение пропускной способности сети связано с большими трудностями, которые отсутствуют при использовании такой среды передачи, как волокно.
Таким образом, единственный путь, который позволяет заложить способность сети работать с новыми приложениями, требующими все большей скорости передачи – это прокладка оптического кабеля (ОК) от центрального офиса до дома или до корпоративного клиента. Это весьма радикальный подход. И еще 5 лет назад он считался крайне дорогим. Однако в настоящее время благодаря значительному снижению цен на оптические компоненты этот подход стал актуален. Сегодня прокладывать ОК для организации сети доступа стало выгодно и при обновлении старых, и при строительстве новых сетей доступа (последних миль). При этом имеется множество вариантов выбора волоконно-оптической технологии доступа. Наряду со ставшими традиционными решениями на основе оптических модемов, оптического Ethernet, технологии Micro SDH появились новые решения с использованием архитектуры пассивных оптических сетей PON.

основные топологии оптических сетей доступа

Существуют четыре основные топологии построения оптических сетей доступа: "точка-точка", "кольцо", "дерево с активными узлами", "дерево с пассивными узлами".

точка-точка (P2P)

Топология P2P (рис.1) не накладывает ограничения на используемую сетевую технологию. P2P может быть реализована как для любого сетевого стандарта, так и для нестандартных (proprietary) решений, например оптические модемы. С точки зрения безопасности и защиты передаваемой информации при соединении P2P обеспечивается максимальная защищенность абонентских узлов. Поскольку ОК нужно прокладывать индивидуально до абонента, этот подход является наиболее дорогим и привлекателен в основном для крупных абонентов.

Рис. 1. Топология "точка-точка".

кольцо

Кольцевая топология (рис. 2.) на основе SDH положительно зарекомендовала себя в городских телекоммуникационных сетях. Однако в сетях доступа не все обстоит также хорошо. Если при построении городской магистрали расположение узлов планируется на этапе проектирования, то в сетях доступа нельзя заранее знать где, когда и сколько абонентских узлов будет установлено. При случайном территориальном и временном подключении пользователей кольцевая топология может превратится в сильно изломанное кольцо с множеством ответвлений, подключение новых абонентов осуществляется путем разрыва кольца и вставки дополнительных сегментов. На практике часто такие петли совмещаются в одном кабеле, что приводит к появлению колец, похожих больше на ломаную – “сжатых” колец (collapsed rings), что значительно снижает надежность сети. Фактически, главное преимущество кольцевой топологии сводится к минимуму.


Рис. 2. Топология "кольцо".

дерево с активными узлами

Дерево с активными узлами (рис. 3.) – это экономичное с точки зрения использования волокна решение. Это решение хорошо вписывается в рамки стандарта Ethernet с иерархией по скоростям от центрального узла к абонентам 1000/100/10 Мбит/с (1000Base-LX, 100Base-FX, 10Base-FL). Однако в каждом узле дерева обязательно должно находиться активное устройство (применительно к IP-сетям, коммутатор или маршрутизатор). Оптические сети доступа Ethernet, преимущественно использующие данную топологию, относительно недороги. К основному недостатку следует отнести наличие на промежуточных узлах активных устройств, требующих индивидуального питания.


Рис. 3. Топология "дерево с активными узлами".

дерево с пассивным оптическим разветвлением PON (P2MP)

Решения на основе архитектуры PON (рис. 4.) используют логическую топологию "точка-многоточка" P2MP (point-to-multipoint), которая положена в основу технологии PON, к одному порту центрального узла можно подключать целый волоконно-оптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом в промежуточных узлах дерева устанавливаются компактные, полностью пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания.


Рис. 4. Топология "Дерево с пассивным оптическим разветвлением".

Общеизвестно, что PON позволяет экономить на кабельной инфраструктуре за счет сокращения суммарной протяженности оптических волокон, так как на участке от центрального узла до разветвителя используется всего одно волокно. В меньшей степени обращают внимание на другой источник экономии – сокращение числа оптических передатчиков и приемников в центральном узле. Между тем экономия второго фактора в некоторых случаях оказывается даже более существенной. Так, по оценкам компании NTT конфигурация PON с разветвителем в центральном офисе в непосредственной близости к центральному узлу оказывается экономичнее, чем сеть точка-точка, хотя сокращение длины оптического волокна практически нет! Более того, если расстояния до абонентов не велики (как в Японии) с учетом затрат на эксплуатацию (в Японии это существенный фактор) оказывается, что PON с разветвителем в центральном офисе экономичнее, чем PON с разветвителем, приближенным к абонентским узлам.
Преимущества архитектуры PON:
- отсутствие промежуточных активных узлов; экономия волокон;
- экономия оптических приемопередатчиков в центральном узле;
- легкость подключения новых абонентов и удобство обслуживания (подключение, отключение или выход из строя одного или нескольких абонентских узлов никак не сказывается на работе остальных).
Древовидная топология P2MP позволяет оптимизировать размещение оптических разветвителей исходя из реального расположения абонентов, затрат на прокладку ОК и эксплуатацию кабельной сети.
К недостаткам можно отнести возросшую сложность технологии PON и отсутствие резервирования в простейшей топологии дерева.

прицип действия PON

Основная идея архитектуры PON – использование всего одного приемо-передающего модуля в OLT для передачи информации множеству абонентских устройств ONT и приема информации от них. Реализация этого принципа показана на рис.5.
Число абонентских узлов, подключенных к одному приемо-передающему модулю OLT, может быть настолько большим, насколько позволяет бюджет мощности и максимальная скорость приемопередающей аппаратуры. Для передачи потока информации от OLT к ONT – прямого (нисходящего) потока, как правило, используется длина волны 1550 нм. Наоборот, потоки данных от разных абонентских узлов в центральный узел, совместно образующие обратный (нисходящий) поток, передаются на длине волны 1310 нм. В OLT и ONT встроены мультиплексоры WDM, разделяющие исходящие и входящие потоки.


Рис. 5. Основные элементы архитектуры PON и принцип действия

прямой поток

Прямой поток на уровне оптических сигналов, является широковещательным. Каждый ONT, читая адресные поля, выделяет из этого общего потока предназначенную только ему часть информации. Фактически, мы имеем дело с распределенным демультиплексором.

обратный поток

Все абонентские узлы ONT ведут передачу в обратном потоке на одной и той же длине волны, используя концепцию множественного доступа с временным разделением TDMA (time division multiple access). Для того, чтобы исключить возможность пересечения сигналов от разных ONT, для каждого из них устанавливается свое индивидуальные расписания по передаче данных c учетом поправки на задержку, связанную с удалением данного ONT от OLT. Эту задачу решает протокол TDMA MAC.

стандарты PON

Первые шаги в технологии PON были предприняты 1995 году, когда влиятельная группа из семи компаний (British Telecom, France Telecom, Deutsche Telecom, NTT, KPN, Telefoniсa и Telecom Italia) создала консорциум для того, чтобы претворить в жизнь идеи множественного доступа по одному волокну. Эта неформальная организация, поддерживаемая ITU-T, получила название FSAN (full service access network). Много новых членов - как операторов, так и производителей оборудования - вошло в нее в конце 90-х годов. Целью FSAN была разработка общих рекомендаций и требований к оборудованию PON для того, чтобы производители оборудования и операторы могли сосуществовать вместе на конкурентном рынке систем доступа PON. На сегодня FSAN насчитывает 40 операторов и производителей и работает в тесном сотрудничестве с такими организациями по стандартизации, как ITU-T, ETSI и ATM форум.

Некоторые стандарты ITU-T, регламентирующие технологию xPON.

APON/BPON

В середине 90-х годов общепринятой была точка зрения, что только протокол ATM способен гарантировать приемлемое качество услуг связи QoS между конечными абонентами. Поэтому FSAN, желая обеспечить транспорт мультисервисных услуг через сеть PON, выбрал за основу технологию ATM. В результате в октябре 1998 года появился первый стандарт ITU-T G.983.1, базирующийся на транспорте ячеек ATM в дереве PON и получивший название APON (ATM PON). Далее в течение нескольких лет появляется множество новых поправок и рекомендаций в серии G.983.x (x=1–7), скорость передачи увеличивается до 622 Мбит/c. В марте 2001 года появляется рекомендация G.983.3, добавляющая новые сущности в стандарт PON:
- передачу разнообразных приложений (голоса, видео, данные) – это фактически позволило производителям добавлять соответствующие интерфейсы на OLT для подключения к магистральной сети и на ONT для подключения к абонентам;
- расширение спектрального диапазона – открывает возможность для дополнительных услуг на других длинах волн в условиях одного и того же дерева PON, например, шировещательное телевидение на третьей длине волны (triple play).
За расширенным таким образом стандартом APON закрепляется название BPON (broadband PON).
APON сегодня допускает динамическое распределение полосы DBA (dynamic bandwidth allocation) между различными приложениями и различными ONT и рассчитан на предоставление как широкополосных, так и узкополосных услуг.
Оборудование APON разных производителей поддерживает магистральные интерфейсы: SDH (STM-1), ATM (STM-1/4), Fast Ethernet, Gigabit Ethernet, видео (SDI PAL), и абонентские интерфейсы E1 (G.703), Ethernet 10/100Base-TX, телефония (FXS).
Из-за шировещательной природы прямого потока в дереве PON и потенциально существующей возможности несанкционированного доступа к данным со стороны ONT, которому эти данные не адресованы в APON предусмотрена возможность данных в прямом потоке с использованием техники шифрования с открытыми ключами. Необходимости в шифровании обратного потока нет, поскольку OLT находится на территории оператора.

Основные сведения стандарта PON G.983.1

В ноябре 2000 года комитет LMSC (LAN/MAN standards committee) IEEE создает специальную комиссию под названием “Ethernet на первой миле” (EFM, Ethernet in the first mile) 802.3ah, реализуя тем сам пожелания многих экспертов построить архитектуру сети PON, наиболее приближенную к широко распространенным в настоящее время сетям Ethernet. Параллельно идет формирование альянса EFMA (Ethernet in the first mile alliance), который создается в декабре 2001 г. Фактически альянс EFMA и комиссия EFM дополняют друг друга и тесно работают над стандартом. Если EFM концентрируется на технических вопросах и разработке стандарта в рамках IEEE, то EFMA больше изучает индустриальные и коммерческие аспекты использования новой технологии. Цель совместной работы – достижение консенсуса между операторами и производителями оборудования и выработка стандарта IEEE 802.3ah, полностью совместимого с разрабатываемым стандартом магистрального пакетного кольца IEEE 802.17.
Комиссия EFM 802.3ah должна стандартизировать три разновидности решения для сети доступа:
EFMC (EFM copper) – решение “точка-точка” с использованием витых медных пар. На сегодняшний день работа по этому стандарту практически завершена. Из двух альтернатив, между которыми развернулась основная борьба – G.SHDSL и ADSL+ - выбор был сделан в пользу G.SHDSL.
EFMF (EFM fiber) – решение, основанное на соединении “точка-точка” по волокну. Здесь предстоит стандартизировать различные варианты: “дуплекс по одному волокну, на одинаковых длинах волн”, “дуплекс по одному волокну, на разных длинах волн”, “дуплекс по паре волокон”, новые варианты оптических приемопередатчиков. Подобные решения уже несколько лет предлагаются рядом компаний как “proprietary”. Пришло время их стандартизировать.
EFMP (EFM PON) – решение, основанное на соединении “точка-многоточка” по волокну. Это решение, являющееся по сути альтернативой APON, получило схожее название EPON.
В настоящее время разработка стандартов 802.3ah в том числе EFMP находится на завершающей стадии, а принятие ожидается уже в этом году. Аргументы в пользу технологии EPON подкрепляются ориентацией сети Internet исключительно на протокол IP и стандарты Ethernet.

GPON

Архитектуру сети доступа GPON (Gigabit PON) можно рассматривать как органичное продолжение технологии APON. При этом реализуется как увеличение полосы пропускания сети PON, так и повышение эффективности передачи разнообразных мультисервисных приложений. Стандарт GPON ITU-T Rec. G.984.3 GPON был принят в октябре 2003 года.
GPON предоставляет масштабируемую структуру кадров при скоростях передачи от 622 Мбит/с до 2,5 Гбит/c, поддерживает как симметричную битовую скорость в дереве PON для нисходящего и восходящего потоков, так и ассиметричную и базируется на стандарте ITU-T G.704.1 GFP (generic framing protocol, общий протокол кадров), обеспечивая инкапсуляцию в синхронный транспортный протокол любого типа сервиса (в том числе TDM). Исследования показывают, что даже в самом худшем случае распределения трафика и колебаний потоков утилизация полосы составляет 93% по сравнению с 71% в APON, не говоря уже о EPON.
Если в SDH деление полосы происходит статично, то GFP (generic framing protocol), сохраняя структуру кадра SDH, позволяет динамически распределять полосу.

сравнение технологий APON, EPON, GPON

В таблице представлен сравнительный анализ этих трех технологий.

Примечания:
1 – обсуждается в проекте.
2 – стандарт допускает наращивание сети до 128 ONT.
3 – допускается передача в прямом и обратном направлении на одной и той же длине волны.
4 – осуществляется на более высоких уровнях.

подробнее об APON

А теперь – немного чисто технической конкретики о том, как работают сети PON. В качестве примера взята разновидность APON.
Взаимодействие абонентского узла с центральным начинается с установления соединения. После чего происходит передача данных. Все это выполняется в соответствии с протоколом APON MAC. В процессе установления соединения запускается процедура ранжирования (ranging), которая включает в себя: ранжирование по расстоянию, ранжирование по мощности и синхронизацию. Центральный узел, словно дирижер, обеспечивает слаженную работу всех абонентских узлов – оркестрантов.

APON MAC - протокол взаимодействия центрального узла с абонентскими

Протокол MAC для систем доступа APON решает три задачи:
- исключение коллизий между передачами в обратном потоке;
- четкое, эффективное, динамическое деление полосы обратного потока;
- поддержание наилучшего согласования для транспорта приложений, инициированных конечными пользователями.
Протокол APON MAC основан на механизме запрос/разрешение. Основная идея состоит в отправке со стороны ONT запросов на требуемую полосу. На основании знаний о том, как загружен обратный поток, и какие услуги a priori закреплены за тем или иным ONT, OLT принимает решение по обработке эти запросов.

процедуры ранжирования

В основе инициализации сети PON лежат три процедуры: определение расстояний от OLT до разных ONT (distance ranging); синхронизация всех ONT (clock ranging); и определение при приеме на OLT интенсивностей оптических сигналов от разных ONT (power ranging).

ранжирование по расстоянию

Ранжирование по расстоянию (distance ranging) – определение временной задержки, связанной с удалением ONT от OLT – выполняется на этапе регистрации абонентских узлов, и требуется для того, чтобы обеспечить безколлизионный транспорт и создать единую синхронизацию в обратном потоке.
Сначала администратор сети заносит в OLT данные о новом ONT, его серийный номер, параметры предоставляемых ONT услуг. Затем после физического подключения к сети PON этого абонентского узла и включения питания на нем, центральный узел начинает процесс ранжирования. Ранжирование с ONT, который прописан в реестре OLT происходит каждый раз при включении ONT. При выключении и включении питания на OLT ранжирование происходит со всеми зарегистрированными ONT.
ОLT, посылая сигнал ранжируемому ONT, слушает отклик от него и на основании этого вычисляет временную задержку на двойном пробеге RTT (round trip time), затем в прямом потоке передает ONT вычисленное значение. На основании этого абонентский узел ONT вносит соответствующую задержку, которая предшествует началу отправки кадра в обратном потоке. Абонентские узлы, находящиеся на разном расстоянии будут вносить разные задержки. При этом одинаковой по всем абонентским узлам будет сумма вносимой аппаратной задержки и задержки распространения светового сигнала по оптическому пути от ONT к OLT.
С учетом того, что расстояния OLT-ОNT могут изменяться в больших пределах (стандарт G.983.1 определяет диапазон 0-20 км), оценим возможные вариации задержки. Если учесть, что скорость света в волокне составляет 2*105 км/c, то приросту расстояния OLT-ONT на 1 км будет соответствовать увеличение времени задержки на двойном пробеге на 10 мкс. А для расстояния 20 км RTT составит 0,2 мс. Фактически это минимальное теоретическое время, которое требуется OLT, чтобы выполнить ранжирование с одним ONT. Ранжирование по расстоянию большего числа абонентских узлов происходит последовательно и требует пропорционального возрастания суммарного времени ранжирования. В течение этого времени обратный поток не может использоваться для передачи данных другими ONT.
После того, как ранжирование по расстоянию выполнено, OLT на основании прописанных услуг для каждого ONT и с использованием протокола МАС принимает решение, какому абонентскому узлу передавать в каждом конкретном временном слоте.
Заметим, что общая задержка при отправлении кадра в обратный поток вносится не только конечным временем распространения сигнала по волокну, но и элементами электроники OLT и ONT. Задержка со стороны последних может испытывать небольшой дрейф, например вследствие колебаний температуры оборудования. По этому на этапе передачи данных OLT сообщает ONT о небольших подстройках задержки, вносимой в обратный поток – микроранжирование (micro ranging). В результате точность, с которой стабилизируются отправляемые кадры от разных ONT, составляет 2–3 бита.

ранжирование по мощности

Ранжирование по мощности (power ranging) – изменение порога дискриминации фотоприемника с целью повышения чувствительности фотоприемника или во избежании его нежелательного насыщения. Поскольку ONT удалены на разные расстояния от OLT, то и вносимые потери в оптические сигналы, при распространении по дереву PON будут разными. Это может привести к нарушению работы фотоприемников из-за слабости сигнала либо из-за перегрузки.
Возможны два варианта выхода из сложившейся ситуации – либо подстраивать мощность передатчиков ONT, либо подстраивать порог срабатывания на фотоприемнике OLT. Был выбран второй вариант как более надежный.
Подстройка порога срабатывания фотоприемника OLT происходит каждый раз при получении нового пакета ATM из обратного потока по преамбуле на основе измерения интегральной мощности в преамбуле пакета.
Подстройка по мощности также необходима на всех ONT. Она выполняется аналогичным путем, но только один раз прежде чем синхронизировать приемник на для работы с синхронным TDM потоком от OLT. Затем непрерывно подсчитывается интегральная мощность на ONT, и делается плавная подстройка порога дискриминации фотоприемника.

синхронизация

Синхронизация или ранжирование по фазе (phase ranging) необходима как для прямого, так и для обратного потока.
Абонентские узлы ONT синхронизируются вначале своей инициализации и затем все время поддерживают синхронизацию, подстраиваясь под непрерывный TDM трафика от OLT, и осуществляя, как принято называть, синхронный прием данных.
Напротив центральный узел OLT синхронизируется каждый раз по преамбуле вновь приходящего пакета ATM. Знания вычисленной на этапе ранжирования по расстоянию временной задержки со стороны ONT, отправившего этот пакет, здесь не достаточно – требуется большая точность. Метод приема данных с синхронизацией по преамбуле принято называть асинхронным. Синхронизация по преамбуле аналогична решению в технологии десятимегабитного Ethernet с размером преамбулы 64 бита (8 байт). Однако сохранить такого же размера преамбулы для относительно небольшого пакета ATM (в обратном потоке) означало бы кране неэффективное использование полосы. Для технологии APON была разработана новая методика синхронизации, основанная на методе CPA (clock phase alignment), позволяющая провести необходимую синхронизацию по получению всего трех бит! Больший размер преамбулы пакета ATM в обратном потоке был выбран постольку, поскольку преамбула также несет функцию обеспечения процедуры ранжирования по мощности.

структура кадра APON для прямого и обратного потока

Для управления механизмом запрос/разрешение, FSAN определил структуру кадра APON для прямого и обратного потока. Этот формат был стандартизирован ITU-T в рекомендации G.983.1. На рис. 6 представлен формат кадра APON для симметричного режима трафика 155/155Мбит/c. Кадр прямого потока состоит из 56 ячеек ATM по 53 байта. Кадр обратного потока состоит из 52 пакетов ATM по 56 байт и одного слота MBS общей длины также 56 байт, рассмотренного ниже.


Рис. 6. Формат кадра ITU G.983 - структура кадра прямого и обратного потока.

прямой поток

Разрешения на передачу посылаются пачками (bursts) в специальных служебных ячейках ATM – двух на один кадр, которые называются ячейками работы и обслуживания физического уровня PLOAM (physical layer operation and maintenance). Они следуют строго регулярно, чередуясь с 27 ячейками данных. В одной ячейке PLOAM размещается 26 разрешений для ONT, каждое на передачу всего одного (!) пакета ATM. Оставшиеся 54 ячейки в кадре прямого потока несут данные и не задействуются для работы механизма запрос/разрешение.

обратный поток

Обратный поток представляет совокупность пачек данных (bursts) от разных ONT. Абонентский узел может передавать данные только после получения соответствующего разрешения прочитанного из ячейки PLOAM. Пачки данных от ONT в APON передаются пакетами ATM. Единственное отличие пакета ATM от ячейки в том, что пакет имеет дополнительно преамбулу 3 байта. Таким образом длина пакета ATM 56 байт. Преамбула не нужна для ячеек в прямом потоке из-за синхронного режима приема данных, как указывалось выше. Первые два бита преамбулы не содержат оптического сигнала, что является достаточным для устранения перекрытие пакетов от разных ONT – в линии неизбежны небольшие колебания задержки при распространении сигнала.
Если принять во внимание, что разрешение на передачу необходимо для каждого пакета ATM, то суммарное число прописанных в ячейках PLOAM разрешений за продолжительное время должно соответствовать числу пакетов ATM, испущенных всеми ONT за это время. Почему в PLOAM помещается 26 разрешений? Две ячейки PLOAM могут дать разрешения на передачу 52 пакетов ATM, ровно столько, сколько их есть в кадре ATM для обратного потока.

слот MBS

Слот многократных запросов MBS (multi burst slot) в обратном потоке является служебным. Он информирует OLT о характере запросов по передаче со стороны ONT. Этот слот имеет 8 подполей или минислотов, соответствующих различным ONT (рис. 7). Если система PON рассчитана на 32 абонентских узла, то передать свои сведения о запросах на передачу все 32 ONT смогут только после четырех последовательно переданных слотов MBS, что составляет цикл. В системе из 64 ONT, цикл состоит из восьми слотов MBS. Передача одного кадра при скорости 155 Мбит/с длится 0,15 мс. На передачу всего цикла при 32 ONT потребуется 0,6 мс Другими словами, с периодичностью 0,6 мс ONT посылает служебные запросы о намерениях передавать. Запрос ONT посылает, когда в его выходном буфере сформировалась очередь для передачи. Поскольку ОNT сможет передавать только после получения разрешения в ячейке PLOAM, то чтобы оценить максимальное время с момента, кода в буфере подготовлена очередь, до момента начала передачи, следует к времени цикла 0,6 мс добавить задержку на двойном пробеге RTT (для сети с радиусом 20 км RTT составляет 0,2 мс), и получается 0,8 мс. К этому значению могут быть добавлены аппаратные задержки на OLT и ONT.


Рис. 7. Структура слота MBS.

Минислот состоит и 4-х полей: преамбулы (3 байта), аналогичной преамбуле в пакете ATM; двух полей ABR/GFR и VBR, длиной 8 и 16 бит, соответствующих двум типам запросов на полосу; поля контрольной суммы CRC (8 бит).

надежность и резервирование в APON

Слабой стороной систем доступа APON с топологией простого дерева является отсутствие резервирования. Самым неблагоприятным в этом случае мог бы быть сценарий с повреждением волокна, идущего от OLT к ближайшему разветвителю (фидерного волокна). Теряет связь весь сегмент, подключенный по этому волокну – десятки абонентских узлов, сотни абонентов остаются без сети. Среднее время ремонта (MTTR, Mean Time To Repair) может варьироваться в больших пределах от нескольких дней до нескольких недель в зависимости от оператора. В указанном случае однократного повреждения волокна наиболее отчетливо проявляется недостаток сети PON по сравнению с кольцевой топологией SDH.
Поэтому в уже в первой рекомендации G.983.1 в приложении IV обсуждался вопрос о построении защищенных систем APON. В силу специфики топологии PON, эта задача не является столь простой как в кольцевых топологиях SDH, поскольку полоса обратного потока в PON является общей и формируется множеством абонентских узлов. В рекомендациях G.983.1 предложено было изучить четыре различных топологии. Только две из них окончательно были выбраны для проработки в более поздней рекомендации G.983.5.
На рис. 8-10 показаны основные варианты построения резервных систем PON. Первое решение (рис. 8) обеспечивает частичное резервирование со стороны центрального узла. Для реализации данного решения требуется разветвитель 2xN. Центральный узел оснащается двумя оптическими модулями LT-1 и LT-2, в которых происходит терминирование двух волокон. В нормальном режиме при отсутствии повреждений волокон основной канал является активным, и по нему организуется дуплексная передача. Резервный канал – неактивный – лазерный диод на LT-2 выключен. Фотоприемник на LT-2 при этом может прослушивать обратный поток. Если повреждается идущее от центрального узла волокно основного канала, то автоматически активизируется приемо-передающая система LT-2, и на нее переключается модуль мультиплексирования, коммутации и кросс-коннекта на OLT, обеспечивая транспорт от интерфейсов магистрали. Для повышения надежности целесообразно брать фидерные волокна от разных, физически разнесенных оптических кабелей.


Рис. 8. Защищенная топология PON. Частичное резервирование со стороны центрального узла.

Частичное резервирование со стороны абонентского узла (рис. 9) позволяет повысить надежность работы абонентского узла. В этом случае требуется два оптических модуля LT-1 и LT-2 на абонентский узел. Переключение на резервный канал происходит аналогично предыдущему варианту. При резервировании абонентских узлов не обязательно подключать все абонентские узлы по резервному потоку. Различие по стоимости абонентских узлов с резервированием (два модуля LT-1 и LT-2) и без него (один модуль LT) позволяет дифференцированно предлагать услуги различным категориям абонентов.


Рис. 9. Защищенная топология PON. Частичное резервирование со стороны абонентского узла.

На рис. 10 показан вариант с полным резервированием системы PON. Система становится устойчивой как к выходу из строя приемо-передающего оборудования OLT и ONT, так и к повреждению любого участка волоконно-оптической кабельной системы. Информационные потоки на ONT генерируются одновременно обеими узлами LT-1 и LT-2 и передаются в два параллельных обратных потока. На OLT только одна версия двух копий сигналов передается дальше на магистраль. Аналогично происходит дублирование трафика в прямом потоке. При повреждении волокна или приемо-передающих интерфейсов переключение на резервный поток будет очень быстрым и не приведет к прерыванию связи.


Рис. 10. Защищенная топология PON. Полное резервирование.

Первое решение, кроме того, что оно обеспечивает только частичное резервирование, требует большого времени на реконфигурацию при повреждении волокна. Основной вклад в задержку вносит прогрев лазера на OLT (LT-2) и выполнение процедуры ранжирования. Практически трудно не выйти за пределы 50 мс, одного из требований, сформулированных в рекомендации G.983.5.
Вывод. Для рассмотренных конфигураций, предлагаемых ITU-T, практически только решение с полным резервированием удовлетворяет всем требованиям и представляется наиболее привлекательным.

Петренко И.И, Убайдуллаев Р.Р., к.ф-м.н, Телеком Транспорт.

Самой высокой пропускной способностью среди всех существующих средств связи обладает оптическое волокно (диэлектрические волноводы). Волоконно-оптические кабели применяются для создания - волоконно-оптических линий связи, способных обеспечить самую высокую скорость передачи информации (в зависимости от типа используемого активного оборудования скорость передачи может составлять десятки гигабайт и даже терабайт в секунду).

Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством - малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем.

Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже - в силу высокой стоимости строительства оптических линий связи.

Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернета одновременно на всех машинах, качественную телефонную связь и телевизионный приём.

При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:

  • Высокую пропускную способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна - несколько терабит информации за 1 секунду.
  • Волоконно-оптический кабель отличается низким уровнем шума, что положительно сказывается на его пропускной способности и возможности передавать сигналы различной модуляции.
  • Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
  • Благодаря малому затуханию светового сигнала оптические системы могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).

  • Информационная безопасность. Волоконно-оптическая связь обеспечивает надёжную защиту от несанкционированного доступа и перехвата конфиденциальной информации. Такая способность оптики объясняется отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям. В случае попыток прослушки встроенная система контроля может отключить канал и предупредить о подозреваемом взломе. Именно поэтому ВОЛС активно используют современные банки, научные центры, правоохранительные организации и прочие структуры, работающие с секретной информацией.
  • Высокая надёжность и помехоустойчивость системы. Волокно, будучи диэлектрическим проводником, не чувствительно к электромагнитным излучениям, не боится окисления и влаги.
  • Экономичность. Несмотря на то, что создание оптических систем в силу своей сложности дороже, чем традиционных СКС, в общем итоге их владелец получает реальную экономическую выгоду. Оптическое волокно, которое изготавливается из кварца, стоит примерно в 2 раза дешевле медного кабеля, дополнительно при строительстве обширных систем можно сэкономить на усилителях. Если при использовании медной пары ретрансляторы нужно ставить через каждые несколько километров, то в ВОЛС это расстояние составляет не менее 100 км. При этом скорость, надёжность и долговечность традиционных СКС значительно уступают оптике.

  • Срок службы волоконно-оптических линий составляет полрядка четверти века. Через 25 лет непрерывного использования в несущей системе увеличивается затухание сигналов.
  • Если сравнивать медный и оптический кабель, то при одной и той же пропускной способности второй будет весить примерно в 4 раза меньше, а его объём даже при использовании защитных оболочек будет меньше, чем у медного, в несколько раз.
  • Перспективы. Использование волоконно-оптических линий связи позволяет легко наращивать вычислительные возможности локальных сетей благодаря установке более быстродействующего активного оборудования, причем без замены коммуникаций.

Область применения ВОЛС

Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.

К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки - для оснащения отдельных рабочих мест, а снаружи - для объединения зданий.

Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.

Длина коммуникационных магистралей ВОЛС может достигать сотен километров (например, при постройке коммуникаций между городами), тогда как стандартная длина оптических волокон составляет несколько километров (в том числе потому, что работа со слишком большими длинами в некоторых случаях весьма неудобна). Таким образом, при построении трассы необходимо решить проблему сращивания отдельных световодов.

Различают два типа соединений: разъёмные и неразъёмные. В первом случае для соединения применяются оптические коннекторы (это связано с дополнительными финансовыми затратами, и, кроме того, при большом количестве промежуточных разъёмных соединений увеличиваются оптические потери).

Для неразъёмного соединения локальных участков (монтажа трасс) применяются механические соединители, клеевое сращивание и сваривание волокон. В последнем случае используют аппараты для сварки оптических волокон . Предпочтение тому или иному методу отдаётся с учётом назначения и условий применения оптики.

Наиболее распространённой является технология склеивания, для которой используется специальное оборудование и инструмент и которая включает несколько технологических операций.

В частности, перед соединением оптические кабели проходят предварительную подготовку: в местах будущих соединений удаляются защитное покрытие и лишнее волокно (подготовленный участок очищается от гидрофобного состава). Для надёжной фиксации световода в соединителе (коннекторе) используется эпоксидный клей, которым заполняется внутреннее пространство коннектора (он вводится в корпус разъёма с помощью шприца или дозатора). Для затвердевания и просушки клея применяется специальная печка, способная создать температуру 100 град. С.

После затвердевания клея излишки волокна удаляются, а наконечник коннектора шлифуется и полируется (качество скола имеет первостепенное значение). Для обеспечения высокой точности выполнение данных работ контролируется с помощью 200-кратного микроскопа . Полировка может осуществляться вручную или с помощью полированной машины.

Самое качественное соединение с минимальными потерями обеспечивает сваривание волокон. Этот метод используется при создании высокоскоростных ВОЛС. Во время сваривания происходит оплавление концов световода, для этого в качестве источника тепловой энергии могут использоваться газовая горелка, электрический заряд или лазерное излучение.

Каждый из методов имеет свои преимущества. Лазерная сварка благодаря отсутствию примесей позволяет получать самые чистые соединения. Для прочной сварки многомодовых волокон, как правило, используют газовые горелки. Наиболее распространенной является электрическая сварка, обеспечивающая высокую скорость и качество выполнения работ. Длительность плавления различных типов оптовых волокон отличается.

Для сварочных работ применяются специальный инструмент и дорогостоящее сварочное оборудование - автоматическое или полуавтоматическое. Современные сварочные аппараты позволяют контролировать качество сварки, а также проводить тестирование мест соединения на растяжение. Усовершенствованные модели оснащены программами, которые позволяют оптимизировать процесс сварки под конкретный тип оптоволокна.

После сращения место соединения защищается плотно насаживаемыми трубками, которые обеспечивают дополнительную механическую защиту.

Ещё один метод сращивания элементов оптоволокна в единую линию ВОЛС - механическое соединение. Этот способ обеспечивает меньшую чистоту соединения, чем сваривание, однако затухание сигнала в данном случае всё-таки меньше, чем при использовании оптических коннекторов.

Преимущество этого метода перед остальными состоит в том, что для проведения работ используются простые приспособления (например, монтажный столик), которые позволяют проводить работы в труднодоступных местах или внутри малогабаритных конструкций.

Механическое сращивание подразумевает использование специальных соединителей - так называемых сплайсов. Существует несколько разновидностей механических соединителей, которые представляют собой вытянутую конструкцию с каналом для входа и фиксации сращиваемых оптических волокон. Сама фиксация обеспечивается с помощью предусмотренных конструкцией защёлок. После соединения сплайсы дополнительно защищаются муфтами или коробами.

Механические соединители могут использоваться неоднократно. В частности, их применяют во время проведения ремонтных или восстановительных работ на линии.

ВОЛС: типы оптических волокон

Оптические волокна, используемые для построения ВОЛС, отличаются по материалу изготовления и по модовой структуре света. Что касается материала, различают полностью стеклянные волокна (со стеклянной сердцевиной и стеклянной оптической оболочкой), полностью пластиковые волокна (с пластиковой сердцевиной и оболочкой) и комбинированные модели (со стеклянной сердцевиной и с пластиковой оболочкой). Самую лучшую пропускную способность обеспечивают стеклянные волокна, более дешёвый пластиковый вариант используют в том случае, если требования к параметрам затухания и пропускной способности не критичны.