Название: Основы силовой электроники.

Излагаются принципы преобразования электрической энергии: выпрямления, инвертирования, преобразования частоты и др. Описаны основные схемы преобразовательных устройств, способы управления ими и регулирования основных параметров, показаны области рационального использования различных типов преобразователей.
Для инженеров и техников по разработке и эксплуатации электрических систем, содержащих преобразовательные устройства, а также занятых испытанием и обслуживанием преобразовательной техники.

В электронной технике выделяют силовую и информационную электронику. Силовая электроника первоначально возникла как область техники, связанная преимущественно с преобразованием различных видов электроэнергии на основе использования электронных приборов. В дальнейшем достижения в области полупроводниковых технологий позволили значительно расширить функциональные возможности, силовых электронных устройств и соответственно области их применения.
Устройства современной силовой электроники, позволяют управлять потоками электроэнергии не только в целях ее преобразования из одного вида в другой, но и распределения, организации быстродействующей защиты электрических цепей, компенсации реактивной мощности и др. Эти функции, тесно связанные с традиционными задачами электроэнергетики, определили и другое название силовой электроники - энергетическая
электроника.
Информационная электроника преимущественно используется для управления информационными процессами. В частности, устройства информационной электроники являются основой систем управления и регулирования различными объектами, в том числе и аппаратами силовой электроники.

Глава первая. Основные элементы силовой электроники
1.1. Силовые полупроводниковые приборы
1.1.1. Силовые диоды
1.1.2. Силовые транзисторы
1.1.3. Тиристоры
1.1.4. Применение силовых полупроводниковых приборов
1.2. Трансформаторы и реакторы
1.3. Конденсаторы
Глава вторая. Выпрямители
2.1. Общие сведения
2.2. Основные схемы выпрямления
2.2.1. Однофазная двухполупериодная схема со средней точкой
2.2.2. Однофазная мостовая схема
2.2.3. Трехфазная схема со средней точкой
2.2.4. Трехфазная мостовая схема
2.2.5. Многомостовые схемы
2.2.6. Гармонический состав выпрямленного напряжения и первичных токов в схемах выпрямления
2.3. Коммутация и режимы работы выпрямителей
2.3.1. Коммутация токов в схемах выпрямления
2.3.2. Внешние характеристики выпрямителей
2.4. Энергетические характеристики выпрямителей и способы их улучшения
2.4.1. Коэффициент мощности и КПД выпрямителей
2.4.2. Улучшение коэффициента мощности управляемых выпрямителей
2.5. Особенности работы выпрямителей на емкостную нагрузку и противо-ЭДС
2.6. Сглаживающие фильтры
2.7. Работа выпрямителя от источника соизмеримой мощности
Глава третья. Инверторы и преобразователи частоты
3.1. Инверторы, ведомые сетью
3.1.1. Однофазный инвертор со средней точкой
3.1.2. Трехфазный мостовой инвертор
3.1.3. Баланс мощностей в инверторе, ведомом сетью
3.1.4. Основные характеристики и режимы работы инверторов, ведомых сетью
3.2. Автономные инверторы
3.2.1. Инверторы тока
3.2.2. Инверторы напряжения
3.2.3. Инверторы напряжения на тиристорах
3.2.4. Резонансные инверторы
3.3. Преобразователи частоты
3.3.1. Преобразователи частоты с промежуточным звеном постоянного тока
3.3.2. Преобразователи частоты с непосредственной связью
3.4. Регулирование выходного напряжения автономных инверторов
3.4.1. Общие принципы регулирования
3.4.2. Регулирующие устройства инверторов тока
3.4.3. Регулирование выходного напряжения посредством широтно-импульсной модуляции (ШИМ)
3.4.4. Геометрическое сложение напряжений
3.5. Способы улучшения формы выходного напряжения инверторов и преобразователей частоты
3.5.1. Влияние несинусоидальности напряжения на потребителей электроэнергии
3.5.2. Выходные фильтры инверторов
3.5.3. Уменьшение высших гармоник в выходном напряжении без применения фильтров
Глава четвертая. Регуляторы-стабилизаторы и статические контакторы
4.1. Регуляторы-стабилизаторы переменного напряжения
4.2. Регуляторы-стабилизаторы постоянного тока
4.2.1. Параметрические стабилизаторы
4.2.2. Стабилизаторы непрерывного действия
4.2.3. Импульсные регуляторы
4.2.4. Развитие структур импульсных регуляторов
4.2.5. Тиристорно-конденсаторные регуляторы постоянного тока с дозированной передачей энергии в нагрузку
4.2.6. Комбинированные преобразователи-регуляторы
4.3. Статические контакторы
4.3.1. Тиристориые контакторы переменного тока
4.3.2. Тиристорные контакторы постоянного тока
Глава пятая. Системы управлении преобразовательными устройствами
5.1. Общие сведения
5.2. Структурные схемы систем управления преобразовательных устройств
5.2.1. Системы управления выпрямителей и зависимых инверторов
5.2.2. Системы управления преобразователей частоты с непосредственной связью
5.2.3. Системы управления автономных инверторов
5.2.4. Системы управления регуляторов-стабилизаторов
5.3. Микропроцессорные системы в преобразовательно» технике
5.3.1. Типовые обобщенные структуры микропроцессора
5.3.2. Примеры использования микропроцессорных систем управления
Глава шестая. Применение силовых электронных устройств
6.1. Области рационального применения
6.2. Общие технические требования
6.3. Защита в аварийных режимах
6.4. Эксплуатационный контроль и диагностика технического состояния
6.5. Обеспечение параллельной работы преобразователей
6.6. Электромагнитные помехи
Список литературы


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Основы силовой электроники - Розанов Ю.К. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.


Содержание:
  • Предисловие
  • Введение
  • Глава первая. Основные элементы силовой электроники
    • 1.1. Силовые полупроводниковые приборы
      • 1.1.1. Силовые диоды
      • 1.1.2. Силовые транзисторы
      • 1.1.3. Тиристоры
      • 1.1.4. Применение силовых полупроводниковых приборов
    • 1.2. Трансформаторы и реакторы
    • 1.3. Конденсаторы
  • Глава вторая. Выпрямители
    • 2.1. Общие сведения
    • 2.2. Основные схемы выпрямления
      • 2.2.1. Однофазная двухполупериодная схема со средней точкой
      • 2.2.2. Однофазная мостовая схема
      • 2.2.3. Трехфазная схема со средней точкой
      • 2.2.4. Трехфазная мостовая схема
      • 2.2.5. Многомостовые схемы
      • 2.2.6. Гармонический состав выпрямленного напряжения и первичных токов в схемах выпрямления
    • 2.3. Коммутация и режимы работы выпрямителей
      • 2.3.1. Коммутация токов в схемах выпрямления
      • 2.3.2. Внешние характеристики выпрямителей
    • 2.4. Энергетические характеристики выпрямителей и способы их улучшения
      • 2.4.1. Коэффициент мощности и КПД выпрямителей
      • 2.4.2. Улучшение коэффициента мощности управляемых выпрямителей
    • 2.5. Особенности работы выпрямителей на емкостную нагрузку и противо-ЭДС
    • 2.6. Сглаживающие фильтры
    • 2.7. Работа выпрямителя от источника соизмеримой мощности
  • Глава третья. Инверторы и преобразователи частоты
    • 3.1. Инверторы, ведомые сетью
      • 3.1.1. Однофазный инвертор со средней точкой
      • 3.1.2. Трехфазный мостовой инвертор
      • 3.1.3. Баланс мощностей в инверторе, ведомом сетью
      • 3.1.4. Основные характеристики и режимы работы инверторов, ведомых сетью
    • 3.2. Автономные инверторы
      • 3.2.1. Инверторы тока
      • 3.2.2. Инверторы напряжения
      • 3.2.3. Инверторы напряжения на тиристорах
      • 3.2.4. Резонансные инверторы
    • 3.3. Преобразователи частоты
      • 3.3.1. Преобразователи частоты с промежуточным звеном постоянного тока
      • 3.3.2. Преобразователи частоты с непосредственной связью
    • 3.4. Регулирование выходного напряжения автономных инверторов
      • 3.4.1. Общие принципы регулирования
      • 3.4.2. Регулирующие устройства инверторов тока
      • 3.4.3. Регулирование выходного напряжения посредством ши-i рбтно-импульсной модуляции (ШИМ)
      • 3.4.4. Геометрическое сложение напряжений
    • 3.5. Способы улучшения формы выходного напряжения инверторов и преобразователей частоты
      • 3.5.1. Влияние несинусоидальности напряжения на потребителей электроэнергии
      • 3.5.2. Выходные фильтры инверторов
      • 3.5.3. Уменьшение высших гармоник в выходном напряжении без применения фильтров
  • Глава четвертая. Регуляторы-стабилизаторы и статические контакторы
    • 4.1. Регуляторы-стабилизаторы переменного напряжения
    • 4.2. Регуляторы-стабилизаторы постоянного тока
      • 4.2.1. Параметрические стабилизаторы
      • 4.2.2. Стабилизаторы непрерывного действия
      • 4.2.3. Импульсные регуляторы
      • 4.2.4. Развитие структур импульсных регуляторов
      • 4.2.5. Тиристорно-конденсаторные регуляторы постоянного тока с дозированной передачей энергии в нагрузку
      • 4.2.6. Комбинированные преобразователи-регуляторы
    • 4.3. Статические контакторы
      • 4.3.1. Тиристориые контакторы переменного тока
      • 4.3.2. Тиристорные контакторы постоянного тока
  • Глава пятая. Системы управлении преобразовательными устройствами
    • 5.1. Общие сведения
    • 5.2. Структурные схемы систем управления преобразовательных устройств
      • 5.2.1. Системы управления выпрямителей и зависимых инверторов
      • 5.2.2. Системы управления преобразователей частоты с непосредственной связью
      • 5.2.3. Системы управления автономных инверторов
      • 5.2.4. Системы управления регуляторов-стабилизаторов
    • 5.3. Микропроцессорные системы в преобразовательной технике
      • 5.3.1. Типовые обобщенные структуры микропроцессора
      • 5.3.2. Примеры использования микропроцессорных систем управления
  • Глава шестая. Применение силовых электронных устройств
    • 6.1. Области рационального применения
    • 6.2. Общие технические требования
    • 6.3. Защита в аварийных режимах
    • 6.4. Эксплуатационный контроль и диагностика технического состояния
    • 6.5. Обеспечение параллельной работы преобразователей
    • 6.6. Электромагнитные помехи
  • Список литературы

ВВЕДЕНИЕ

В электронной технике выделяют силовую и информационную электронику. Силовая электроника первоначально возникла как область техники, связанная преимущественно с преобразованием различных видов электроэнергии на основе использования электронных приборов. В дальнейшем достижения в области полупроводниковых технологий позволили значительно расширить функциональные возможности, силовых электронных устройств и соответственно области их применения.

Устройства современной силовой электроники, позволяют управлять потоками электроэнергии не только в целях ее преобразования из одного вида в другой, но и распределения, организации быстродействующей защиты электрических цепей, компенсации реактивной мощности и др. Эти функции, тесно связанные с традиционными задачами электроэнергетики, определили и другое название силовой электроники - энергетическая электроника. Информационная электроника преимущественно используется для управления информационными процессами. В частности, Устройства информационной электроники являются основой систем управления и регулирования различными объектами, в том числе и аппаратами силовой электроники.

Однако несмотря на интенсивное расширение функций аппаратов силовой электроники и областей их применения основные научно-технические проблемы и задачи, решаемые в области силовой электроники, связаны с. преобразованием электрической энергии.

Электроэнергия используется в разных формах: в виде переменного тока с частотой 50 Гц, в виде постоянного тока (свыше 20% всей вырабатываемой электроэнергии), а также переменного тока повышенной частоты или токов специальной формы (например, импульсной и др.). Это различие в основном обусловлено многообразием и спецификой потребителей, а в ряде случаев (например, в системах автономного электроснабжения) и первичных источников электроэнергии.

Разнообразие в видах потребляемой и вырабатываемой электроэнергии вызывает необходимость ее преобразования. Основными видами преобразования электроэнергии являются:

  • 1) выпрямление (преобразование переменного тока в постоянный);
  • 2) инвертирование (преобразование постоянного тока в переменный);
  • 3) преобразование частоты (преобразование переменного тока одной частоты в переменный ток другой частоты).

Существует- также ряд других, менее распространенных видов преобразования: формы кривой тока, числа фаз и др. В отдельных случаях используется комбинация нескольких видов преобразования. Кроме того, электроэнергия может преобразовываться с целью улучшения качества ее параметров, например для стабилизации напряжения или частоты переменного тока.

Преобразование электроэнергии может производиться различными способами. В частности, традиционным для электротехники является преобразование посредством электромашинных агрегатов, состоящих из двигателя и генератора, объединенных общим валом. Однако этому способу преобразования присущ ряд недостатков: наличие подвижных частей, инерционность и др. Поэтому параллельно с развитием электромашинного преобразования в электротехнике большое внимание уделялось разработке способов статического преобразования» электроэнергии. Большинство таких разработок основывалось на использовании нелинейных элементов электронной техники. Основными элементами силовой электроники, ставшими базой для создания статических преобразователей, явились полупроводниковые приборы. Проводимость большинства полупроводниковых приборов в существенной мере зависит от направления электрического тока: в прямом направлении их проводимость велика, в обратном-мала (т. е. полупроводниковый прибор имеет два явно выраженных состояния: открытое и закрытое). Полупроводниковые приборы бывают неуправляемыми и управляемыми. В последних можно управлять моментом наступления их высокой проводимости (включением) посредством управляющих импульсов малой мощности. Первыми отечественными работами, посвященными исследованию полупроводниковых приборов и их использованию для преобразования электроэнергии были работы академиков В. Ф. Миткевича, Н. Д. Папелекси и др.

В 30-х годах в СССР и за рубежом были распространены газоразрядные приборы (ртутные вентили, тиратроны, газотроны и др.). Одновременно с освоением газоразрядных приборов развивалась теория преобразования электроэнергии. Были разработаны основные типы схем и проведены обширные исследования электромагнитных процессов, протекающих при выпрямлении и инвертировании переменного тока. В это же время появились первые работы по анализу схем автономных инверторов. В развитии теории ионных преобразователей большую роль сыграли работы советских ученых И. Л. Каганова, М. А. Чернышева, Д. А. Завалишина, а также и зарубежных: К. Мюллер-Любека, М. Демонтвинье, В. Шилинга и др.

Новый этап в развитии преобразовательной техники начался с конца 50-х годов, когда появились мощные полупроводниковые приборы - диоды и тиристоры. Эти приборы, разработанные на основе кремния, по своим техническим характеристикам намного превосходят газоразрядные приборы. Они обладают малыми габаритами и массой, имеют высокое значение КПД, обладают быстродействием и повышенной надежностью при работе в широком температурном диапазоне.

Использование силовых полупроводниковых приборов существенным образом повлияло на развитие силовой электроники. Они стали основой для разработки высокоэффективных преобразовательных устройств всех типов. В этих разработках были приняты многие принципиально новые схемотехнические и конструктивные решения. Освоение промышленностью силовых полупроводниковых устройств электроэнергии интенсифицировало проведение в этой области научно-исследовательских работ и создание новых технологий. С учетом специфики силовых полупроводниковых приборов были уточнены старые и разработаны новые методы анализа схем. Значительно расширились классы схем автономных инверторов, преобразователей частоты, регуляторов постоянного тока и многие другие, а также появились новые виды устройств силовой электроники-статические контакторы с естественной и искусственной коммутацией, тиристорные компенсаторы реактивной мощности, быстродействующие аппараты защиты с ограничителями напряжения и др.

Одной из основных областей эффективного использования силовой электроники стал электропривод. Для электропривода постоянного тока разработаны тиристорные агрегаты и комплектные устройства, успешно используемые в металлургии, станкостроении, на транспорте и других отраслях промышленности. Освоение тиристоров обусловило значительный прогресс в области регулируемого электропривода переменного тока.

Созданы высокоэффективные устройства, преобразующие ток промышленной частоты в переменный ток регулируемой частоты для управления скоростью электродвигателей. Для различных областей техники разработано много типов преобразователей частоты со стабилизированными выходными параметрами. В частности, для индукционного нагрева металла созданы высокочастотные мощные тиристорные агрегаты, дающие большой технико-экономический эффект за счет увеличения ресурса их работы по сравнению с электромашинными агрегатами.

На основе внедрения полупроводниковых преобразователей была проведена реконструкция электрических подстанций для подвижного электротранспорта. Значительно улучшено качество некоторых технологических процессов в электрометаллургической и химической отраслях промышленности за счет внедрения выпрямительных агрегатов с глубоким регулированием выходного напряжения и тока.

Достоинства полупроводниковых преобразователей определили их широкое применение в системах бесперебойного электроснабжения. Расширилась область применения силовых электронных устройств в сфере бытовой электроники (регуляторы напряжения и др.).

С начала 80-х годов, благодаря интенсивному развитию электроники, начинается создание нового поколения изделий" силовой электроники. Базой для него явились разработка и освоение промышленностью новых типов силовых полупроводниковых приборов: запираемых тиристоров, биполярных транзисторов, МОП-транзисторов и др. Одновременно существенно повысились быстродействие полупроводниковых приборов, значения предельных параметров диодов и тиристоров, развились интегральные и гибридные технологии изготовления полупроводниковых приборов различных типов, начала широко внедряться микропроцессорная техника для управления и контроля преобразовательными устройствами.

Использование новой элементной базы позволило принципиально улучшить такие важнейшие технико-экономические показатели, как КПД, удельные значения массы и объема, надежность, качество выходных параметров и др. Определилась тенденция повышения частоты преобразования электроэнергии. В настоящее время разработаны миниатюрные вторичные источники питания малой и средней мощности с промежуточным преобразованием электроэнергии на частотах сверхзвукового диапазона. Освоение высокочастотного (свыше 1 мГц) диапазона привело к необходимости решения комплекса научно-технических проблем по конструированию преобразовательных устройств и обеспечению их электромагнитной совместимости в составе технических систем. Получаемый за счет перехода на повышенные частоты технико-экономический эффект полностью компенсировал затраты на решение этих задач. Поэтому в настоящее время тенденция создания многих типов преобразовательных устройств с промежуточным высокочастотным звеном сохраняется.

Следует отметить, что использование полностью управляемых быстродействующих полупроводниковых приборов в традиционных схемах существенно расширяет их возможности в обеспечении новых режимов работы и, следовательно, новых функциональных свойств изделий силовой электронной техники.

Силовой электроникой называют область науки и техники, которая решает проблему создания силовых электронных приборов, а также проблемы получения значительной электрической энергии, управления мощными электрическими процессами и преобразования электрической энергии в достаточно большую энергию другого вида при использовании в качестве основного инструмента этих приборов.

Ниже рассматриваются устройства силовой электроники на основе полупроводниковых приборов. Именно эти приборы используются наиболее широко.

Для получения электрической энергии уже длительное время используются рассмотренные выше солнечные элементы. В настоящее время доля этой энергии в общем объеме электроэнергии невелика. Однако многие ученые, к которым относится и лауреат Нобелевской премии академик Ж.И. Алферов, считают солнечные элементы очень перспективными источниками электрической энергии, не нарушающими энергетический баланс на Земле.

Управление мощными электрическими процессами является именно той проблемой, при решении которой силовые полупроводниковые приборы уже очень широко используются, а интенсивность их применения быстро возрастает. Это объясняется достоинствами силовых полупроводниковых приборов, основными из которых являются высокое быстродействие, малое падение в открытом состоянии и малый в закрытом состоянии (что обеспечивает малые потери мощности), высокая надежность, значительная нагрузочная способность по току и напряжению, малые размеры и вес, простота в управлении, органическое единство с полупроводниковыми устройствами информативной электроники, что облегчает объединение сильноточных и слаботочных элементов.

Во многих странах развернуты интенсивные научно-исследовательские работы по силовой электронике и благодаря этому силовые полупроводниковые приборы, а также электронные устройства на их основе постоянно совершенствуются. Это обеспечивает быстрое расширение области применения силовой электроники, что, в свою очередь, стимулирует научные исследования. Здесь можно говорить о положительной обратной связи в масштабах целой области человеческой деятельности. Результатом является стремительное проникновение силовой электроники в самые различные области техники.

Особенно быстрое распространение устройств силовой электроники началось после создания силовых полевых транзисторов и IGBT.

Этому предшествовал достаточно длительный период, когда основным силовым полупроводниковым прибором был незапираемый тиристор, созданный в 50е годы прошлого столетия. Незапираемые тиристоры сыграли выдающуюся роль в развитии силовой электроники и широко используются в наше время. Но невозможность выключения с помощью импульсов управления часто затрудняет их применение. Десятилетия разработчикам силовых устройств приходилось смиряться с этим недостатком, используя в ряде случаев довольно сложные узлы силовых схем для выключения тиристоров.

Широкое распространение тиристоров обусловило популярность возникшего в то время термина «тиристорная техника», который использовали в том же смысле, что и термин «силовая электроника».

Разработанные в указанный период силовые биполярные транзисторы нашли свою область применения, но радикально ситуацию в силовой электронике не изменили.

Только с появлением силовых полевых транзисторов и 10 ВТ в руках инженеров оказались полностью управляемые электронные ключи, приближающиеся по своим свойствам к идеальным. Это резко облегчило решение самых различных задач по управлению мощными электрическими процессами. Наличие достаточно совершенных электронных ключей дает возможность не только мгновенно подключать нагрузку к источнику постоянного или переменного и отключать ее, но и формировать для нее очень большие сигналы тока или практически любой требуемой формы.

Наиболее распространенными типовыми устройствами силовой электроники являются:

бесконтактные переключающие устройства переменного и постоянного тока (прерыватели), предназначенные для включения или выключения нагрузки в цепи переменного или постоянного тока и, иногда, для регулирования мощности нагрузки;

выпрямители , преобразующие переменное в одной полярности (однонаправленное);

инверторы , преобразующие постоянное в переменное;

преобразователи частоты , преобразующие переменное одной частоты в переменное другой частоты;

преобразователи постоянного (конверторы), преобразующие постоянное одной величины в постоянное другой величины;

преобразователи числа фаз , преобразующие переменное с одним числом фаз в переменное с другим числом фаз (обычно однофазное преобразуется в трехфазное или трехфазное - в однофазное);

компенсаторы (корректоры коэффициента мощности), предназначенные для компенсации реактивной мощности в питающей сети переменного и для компенсации искажений формы тока и напряжения.

По существу устройства силовой электроники выполняют преобразование мощных электрических сигналов. Поэтому силовую электронику называют также преобразовательной техникой.

Устройства силовой электроники, как типовые, так и специализированные, используются во всех областях техники и практически в любом достаточно сложном научном оборудовании.

В качестве иллюстрации укажем некоторые объекты, в которых устройства силовой электроники выполняют важные функции:

Электропривод (регулирование скорости и момента вращения и др.);

Установки для электролиза (цветная металлургия, химическая промышленность);

Электрооборудование для передачи электроэнергии на большие расстояния на постоянном токе;

Электрометаллургическое оборудование (электромагнитное перемешивание металла и др.);

Электротермические установки (индукционный нагрев и др.);

Электрооборудование для зарядки аккумуляторов;

Компьютеры;

Электрооборудование автомобилей и тракторов;

Электрооборудование самолетов и космических аппаратов;

Устройства радиосвязи;

Оборудование для телевещания;

Устройства для электроосвещения (питание люминесцентных ламп и др.);

Медицинское электрооборудование (ультразвуковая терапия и хирургия и др.);

Электроинструмент;

Устройства бытовой электроники.

Развитие силовой электроники изменяет и сами подходы к решению технических задач. К примеру, создание силовых полевых транзисторов и IGBT существенно способствует расширению области применения индукторных двигателей, которые в ряде областей вытесняют коллекторные двигатели.

Существенным фактором, благотворно влияющим на распространение устройств силовой электроники, являются успехи информативной электроники и, в частности, микропроцессорной техники. Для управления мощными электрическими процессами используются все более сложные алгоритмы, которые могут быть рационально реализованы только при применении достаточно совершенных устройств информативной электроники.

Эффективное совместное использование достижений силовой и информативной электроники дает действительно выдающиеся результаты.

Существующие устройства для преобразования электрической энергии в энергию другого вида при непосредственном использовании полупроводниковых приборов еще не имеют большой выходной мощности. Однако и здесь получены обнадеживающие результаты.

Полупроводниковые лазеры превращают электрическую энергию в энергию когерентного излучения в ультрафиолетовом, видимом и в инфракрасном диапазонах. Эти лазеры были предложены в 1959 г., а впервые реализованы на основе арсенида галлия (GaAs) в 1962 г. Лазеры на основе полупроводников отличаются высоким коэффициентом полезного действия (выше 10 %) и большим сроком службы. Их применяют, к примеру, в инфракрасных прожекторах.

Сверхъяркие светодиоды белого свечения, появившиеся в 90х годах прошлого века, уже используются в ряде случаев для освещения вместо ламп накаливания. Светодиоды существенно более экономичны и имеют значительно больший срок службы. Предполагается, что область применения светодиодных светильников будет быстро расширяться.

  • формат pdf
  • размер 4.64 МБ
  • добавлен 24 октября 2008 г.

Учебник. – Новосибирск: Изд-во НГТУ, 1999.

Части: 1.1, 1.2, 2.1, 2.2, 2.3, 2.4

Настоящий учебник предназначен (при двух уровнях глубины изложения материала) для студентов факультетов ФЭН, ЭМФ, не являющихся «специалистами» по силовой электронике, но изучающих курсы различных названий по использованию устройств силовой электроники в электроэнергетических, электромеханических, электротехнических системах. Разделы учебника, выделенные рубленым шрифтом, предназначены (также при двух уровнях глубины изложения) для дополнительного, более глубокого изучения курса, что позволяет использовать его и как учебное пособие для студентов специальности «Промэлектроника» РЭФ, которые готовятся «как специалисты» по силовой электронике. Таким образом, в предлагаемом издании реализован принцип «четыре в одном». Добавленные в отдельные разделы обзоры научно-технической литературы по соответствующим разделам курса позволяют рекомендовать пособие как информационное издание и для магистрантов и аспирантов.

Предисловие.
Научно-технические и методические основы исследования устройств силовой электроники.
Методология системного подхода к анализу устройств силовой электроники.
Энергетические показатели качества преобразования энергии в вентильных преобразователях.
Энергетические показатели качества электромагнитных процессов.
Энергетические показатели качества использования элементов устройства и устройства в целом.
Элементная база вентильных преобразователей.
Силовые полупроводниковые приборы.
Вентили с неполным управлением.
Вентили с полным управлением.
Запираемые тиристоры, транзисторы.
Трансформаторы и реакторы.
Конденсаторы.
Виды преобразователей электрической энергии.
Методы расчета энергетических показателей.
Математические модели вентильных преобразователей.
Методы расчета энергетических показателей преобразователей.
Интегральный метод.
Спектральный метод.
Прямой метод.
Метод Аду.
Метод Аду.
Метод Аду(1).
Методы АдуМ1, Адум2, Адум(1).
Теория проеобразования переменного тока в постоянный при идеальных параметрах преобразователя.
Выпрямитель как система. Основные определения и обозначения.
Механизм преобразования переменного тока в выпрямленный в базовой ячейке Дт/От.
Двухфазный выпрямитель однофазного тока (m1 = 1, m2 = 2, q = 1).
Выпрямитель однофазного тока по мостовой схеме (m1 = m2 = 1, q = 2).
Выпрямитель трехфазного тока со схемой соединения обмоток транс.
форматора треугольник - звезда с нулевым выводом (m1 =m2 = 3, q = 1).
Выпрямитель трехфазного тока со схемой соединения обмоток транс форматора звезда - зигзаг с нулем (m1 = m2 = 3, q = 1).
Шестифазный выпрямитель трехфазного тока с соединением вторичных обмоток трансформатора звезда - обратная звезда с уравнительным реактором (m1 = 3, m2 = 2 х 3, q = 1).
Выпрямитель трехфазного тока по мостовой схеме (m1=m2=3, q=2).
Управляемые выпрямители. Регулировочная характеристика теория преобразования переменного тока в постоянный (с рекуперацией) с учетом реальных параметров элементов преобразователя.
Процесс коммутации в управляемом выпрямителе с реальным трансформатором. Внешняя характеристика.
Теория работы выпрямителя на противоЭдс при конечном значении индуктивности Ld.
Режим прерывистого тока (? 2?/qm2).
Режим предельно-непрерывного тока (? = 2?/qm2).
Режим непрерывного тока (? 2?/qm2).
Работа выпрямителя с конденсаторным сглаживающим фильтром.
Обращение направления потока активной мощности в вентильном преобразователе с противоЭДС в звене постоянного тока - режим зависимого инвертирования.
Зависимый инвертор однофазного тока (m1=1, m2=2, q=1).
Зависимый инвертор трехфазного тока (m1=3, m2=3, q=1).
Общая зависимость первичного тока выпрямителя от анодного и вы прямленного токов (закон Чернышева).
Спектры первичных токов трансформаторов выпрямителей и зависимых инверторов.
Спектры выпрямленного и инвертируемого напряжений вентильного преобразователя.
Оптимизация числа вторичных фаз трансформатора выпрямителя. Эквивалентные многофазные схемы выпрямления.
Влияние коммутации на действующие значения токов трансформатора и его типовую мощность.
КПД и коэффициент мощности вентильного преобразователя в режим выпрямления и зависимого инвертирования.
Коэффициент полезного действия.
Коэффициент мощности.
Выпрямители на полностью управляемых вентилях.
Выпрямитель с опережающим фазовым регулированием.
Выпрямитель с широтно-импульсным регулированием выпрямленного напряжения.
Выпрямитель с принудительным формированием кривой тока, потребляемого из питающей сети.
Реверсивный вентильный преобразователь (реверсивный выпрямитель).
Электромагнитная совместимость вентильного преобразователя с питающей сетью.
Модельный пример электрического проектирования выпрямителя.
Выбор схемы выпрямителя (этап структурного синтеза).
Расчет параметров элементов схемы управляемого выпрямителя (этап параметрического синтеза).
Заключение.
Литература.
Предметный указатель.

Смотрите также

  • формат djvu
  • размер 1.39 МБ
  • добавлен 20 апреля 2011 г.

Новосибирск: НГТУ, 1999. - 204 с. Настоящий учебник предназначен (при двух уровнях глубины изложения материала) для студентов факультетов ФЭН, ЭМФ, не являющихся «специалистами» по силовой электронике, но изучающих курсы различных названий по использованию устройств силовой электроники в электроэнергетических, электромеханических, электротехнических системах. Разделы учебника, выделенные рубленым шрифтом, предназначены (также при двух уровнях глу...

Зиновев Г.С. Основы силовой электроники. Часть 1

  • формат pdf
  • размер 1.22 МБ
  • добавлен 11 октября 2010 г.

Новосибирск: НГТУ, 1999. Настоящий учебник предназначен (при двух уровнях глубины изложения материала) для студентов факультетов ФЭН, ЭМФ, не являющихся «специалистами» по силовой электронике, но изучающих курсы различных названий по использованию устройств силовой электроники в электроэнергетических, электромеханических, электротехнических системах. Разделы учебника, выделенные рубленым шрифтом, предназначены (также при двух уровнях глубины изло...

Зиновьев Г.С. Основы силовой электроники (1/2)

  • формат pdf
  • размер 1.75 МБ
  • добавлен 19 июня 2007 г.

Учебник. – Новосибирск: Изд-во НГТУ, Часть первая. 1999. – 199 с. Настоящий учебник предназначен (при двух уровнях глубины изложения материала) для студентов факультетов ФЭН, ЭМФ, не являющихся «специалистами» по силовой электронике, но изучающих курсы различных названий по использованию устройств силовой электроники в электроэнергетических, электромеханических, электротехнических системах. Разделы учебника, выделенные рубленым шрифтом, предназн...

Зиновьев Г.С. Основы силовой электроники. Том 2,3,4

  • формат pdf
  • размер 2.21 МБ
  • добавлен 18 ноября 2009 г.

Учебник. – Новосибирск: Изд-во НГТУ, Части вторая, третья и четвертая. 2000. – 197 с. Вторая часть учебника, являясь продолжением первой части, изданной в 1999 г. , посвящена изложению базовых схем преобразователей постоянного напряжения в по- стоянное, постоянного – в переменное (автономные инверторы), переменного напряже- ния в переменное напряжение неизменной или регулируемой частоты. Материал также структурирован в соответствии с принципом «...

Зиновьев Г.С. Основы силовой электроники. Том 5

  • формат pdf
  • размер 763.08 КБ
  • добавлен 18 мая 2009 г.

Учебник. – Новосибирск: Изд-во НГТУ, Часть пятая. 2000. – 197 с. Вторая часть учебника, являясь продолжением первой части, изданной в 1999 г. , посвящена изложению базовых схем преобразователей постоянного напряжения в по- стоянное, постоянного – в переменное (автономные инверторы), переменного напряже- ния в переменное напряжение неизменной или регулируемой частоты. Материал также структурирован в соответствии с принципом «четыре в одном» по че...


Зиновьев Г.С. Основы силовой электроники. Часть 2

  • формат djvu
  • размер 3.62 МБ
  • добавлен 20 апреля 2011 г.

Новосибирск: НГТУ, 2000. Настоящий учебник является второй частью из трех запланированных по курсу «Основы силовой электроники». К первой части учебника примыкает методическое руководство к лабораторным работам, реализованным с помощью кафедрального пакета программ моделирования устройств силовой электроники PARUS-PARAGRAPH. Материал второй части учебника поддерживается компьютеризированными курсами лабораторных работ.