Среди оптимизационных задач в теории принятия решений наиболее известны задачи линейного программирования, в которых максимизируемая функция F(X) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера (см. ).

Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола - 20 единиц (футов красного дерева). Стул требует 10 человеко-часов, стол - 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула - 45 долларов США, при производстве стола - 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?

Обозначим: Х 1 - число изготовленных стульев, Х 2 - число сделанных столов. Задача оптимизации имеет вид:

45 Х 1 + 80 Х 2 → max ,

5 Х 1 + 20 Х 2 ≤ 400 ,

10 Х 1 + 15 Х 2 ≤ 450 ,

В первой строке выписана целевая функция - прибыль при выпуске Х 1 стульев и Х 2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х 1 и Х 2 . При этом должны быть выполнены ограничения по материалу (вторая строчка) - истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) - затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х 1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х 1 положительно. Но невозможно представить себе отрицательный выпуск - Х 1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.

Условия производственной задачи можно изобразить на координатной плоскости. Будем по горизонтальной оси абсцисс откладывать значения Х 1 , а по вертикальной оси ординат - значения Х 2 . Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х 1 , Х 2) объемов выпуска в виде треугольника (рис.1).


Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, конкретно, треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1 , соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х 2 , соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - материал останется.

Аналогичным образом можно изобразить и ограничения по труду (рис.2).

Таким образом, ограничения по труду также изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1 , соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х 2 , соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - часть рабочих будет простаивать.

Мы видим, что очевидного решения нет - для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?

Чтобы ответить на этот вопрос, надо "совместить" рис.1 и рис.2, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве (рис.3).

Таким образом, множество возможных значений объемов выпуска стульев и столов (Х 1 , Х 2), или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис.3. Три его вершины очевидны - это (0,0), (45,0) и (0,20). Четвертая - это пересечение двух прямых - границ треугольников на рис.1 и рис.2, т.е. решение системы уравнений

5 Х 1 + 20 Х 2 = 400 ,

10 Х 1 + 15 Х 2 = 450 .

Из первого уравнения: 5 Х 1 = 400 - 20 Х 2 , Х 1 = 80 - 4 Х 2 . Подставляем во второе уравнение: 10 (80 - 4 Х 2) + 15 Х 2 = 800 - 40Х 2 + 15 Х 2 = 800 - 25 Х 2 = 450, следовательно, 25 Х 2 = 350, Х 2 = 14, откуда Х 1 = 80 - 4 х 14 = 80 -56 = 24. Итак, четвертая вершина четырехугольника - это (24, 14).

Надо найти максимум линейной функции на выпуклом многоугольнике. (В общем случае линейного программирования - максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве.) Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае - в одной вершине, и это - единственная точка максимума. В частном - в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума.

Целевая функция 45 Х 1 + 80 Х 2 принимает минимальное значение, равное 0, в вершине (0,0). При увеличении аргументов эта функция увеличивается. В вершине (24,14) она принимает значение 2200. При этом прямая 45 Х 1 + 80 Х 2 = 2200 проходит между прямыми ограничений 5 Х 1 + 20 Х 2 = 400 и 10 Х 1 + 15 Х 2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24,14).

Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 долларам США.

Двойственная задача . Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или наоборот, вместо минимума - максимум). Задача, двойственная к двойственной - эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа):

45 Х 1 + 80 Х 2 → max , 400 W 1 + 450 W 2 → min ,

5 Х 1 + 20 Х 2 ≤ 400 , 5 W 1 + 10 W 2 ≥ 45,

10 Х 1 + 15 Х 2 ≤ 450 , 20 W 1 + 15 W 2 ≥ 80,

Х 1 ≥ 0 , W 1 ≥ 0,

Х 2 ≥ 0 . W 2 ≥ 0.

Почему двойственная задача столь важна? Можно доказать, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной). При этом оптимальные значения W 1 и W 2 показывают стоимость материала и труда соответственно, если их оценивать по вкладу в целевую функцию. Чтобы не путать с рыночными ценами этих факторов производства, W 1 и W 2 называют "объективно обусловленными оценками" сырья и рабочей силы.

Линейное программирование как научно-практическая дисциплина. Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них ограничения - системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны.

Впервые такие задачи решались советским математиком Л.В. Канторовичем (1912-1986) в 1930-х годах как задачи производственного менеджмента с целью оптимизации организации производства и производственных процессов, например, процессов загрузки станков и раскройки листов материалов. После второй мировой войны аналогичными задачами занялись в США. В 1975 г. Т. Купманс (1910-1985, родился в Нидерландах, работал в основном в США) и академик АН СССР Л.В. Канторович были награждены Нобелевскими премиями по экономике.

Рассмотрим несколько задач линейного программирования.

Задача об оптимизации смеси (упрощенный вариант). На химическом комбинате для оптимизации технологического процесса надо составить самую дешевую смесь, содержащую необходимое количество определенных веществ (обозначим их Т и Н). Энергетическая ценность смеси (в калориях) должна быть не менее заданной. Пусть для простоты смесь составляется из двух компонентов - К и С. Сколько каждого из них взять для включения в смесь? Исходные данные для расчетов приведены в табл.3.

Табл.3. Исходные данные в задаче об оптимизации смеси.

3,8 К + 4,2 С → min ,

0,10 К + 0,25 С ≥ 1,00 ,

1,00 К + 0,25 С ≥ 5,00 ,

110,00 К + 120,00 С ≥ 400,00 ,

Ее графическое решение представлено на рис.4.

Рис.4. Графическое решение задачи об оптимизации смеси.

На рис.4 ради облегчения восприятия четыре прямые обозначены номерами (1) - (4). Прямая (1) - это прямая 1,00К + 0,25С = 5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5,0) на оси абсцисс и (0,20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (1), в отличие от ранее рассмотренных случаев в предыдущей производственной задаче.

Прямая (2) - это прямая 110,00 К + 120,00 С = 400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при К=0, прямая (1) проходит через точку (0,20), а прямая (2) - через точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений

1,00 К + 0,25 С = 5,00 ,

110,00 К + 120,00 С = 400,00 .

Из первого уравнения К = 5 - 0,25 С. Подставим во второе: 110 (5- 0,25 С) + 120 С = 400, откуда 550 - 27,5 С + 120 С = 400. Следовательно, 150 = - 92,5 С, т.е. решение достигается при отрицательном С. Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничения по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением - некоторые ограничения с математической точки зрения могут оказаться лишними. С экономической точки зрения они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения.

Прямая (4) - это прямая 0,1 К + 0,25 С = 1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10,0) на оси абсцисс и (0,4) на оси ординат. Обратите внимание, что допустимые значения параметров (К,С) лежат выше прямой (4), как и для прямой (1).

Следовательно, область допустимых значений параметров (К, С) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых). Область допустимых значений параметров (К, С) можно назвать "неограниченным многоугольником". Минимум целевой функции 3,8 К + 4,2 С может достигаться только в вершинах этого "многоугольника". Вершин всего три. Это пересечения с осями абсцисс (10,0) и ординат (0,20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина - это точка пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений

0,10 К + 0,25 С = 1,00 ,

1,00 К + 0,25 С = 5,00 .

Из второго уравнения К = 5 - 0,25 С, из первого 0,10 (5 - 0,25 С) + 0,25 С = 0,5 - 0,025 С + 0,25 С = 0,5 + 0,225 С = 1, откуда С = 0,5/0,225 = 20/9 и К = 5 - 5/9 = 40/9. Итак, А = (40/9; 20/9).

Прямая (3) на рис.4 - это прямая, соответствующая целевой функции 3,8 К + 4,2 С. Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А, через которую и проходит прямая (3). Следовательно, минимум равен 3,8х40/9 + 4,2х20/9 = 236/9. Задача об оптимизации смеси полностью решена.

Двойственная задача, построенная по описанным выше правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):

3,8 К + 4,2 С → min , W 1 + 5 W 2 + 400 W 3 → max ,

0,10 К + 0,25 С ≥ 1,00 , 0,1 W 1 + 1,10 W 2 + 110 W 3 ≤ 3,8 ,

1,00 К + 0,25 С ≥ 5,00 , 0,25W 1 + 0,25 W 2 + 120 W 3 ≤ 4,2 ,

110,00 К + 120,00 С ≥ 400,00 , W 1 ≥ 0 ,

К ≥ 0 , W 2 ≥ 0 ,

С ≥ 0 . W 3 ≥ 0 .

Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т.е. оба числа равны 236/9. Интерпретация двойственных переменных: W 1 - "стоимость" единицы вещества Т, а W 2 - "стоимость" единицы вещества Н, измеренные "по их вкладу" в целевую функцию. При этом W 3 = 0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W 1 , W 2 , W 3 - это т.н. объективно обусловленные оценки (по Л.В. Канторовичу) ресурсов (веществ Т и Н, калорий).

Планирование номенклатуры и объемов выпуска. Вернемся к организации производства. Предприятие может выпускать автоматические кухни (вид кастрюль), кофеварки и самовары. В табл.4 приведены данные о производственных мощностях, имеющихся на предприятии (в штуках изделий).

Табл.4. Производственные мощности (в шт.)

Кофеварки

Самовары

Штамповка

Объем выпуска

Удельная прибыль (на одно изделие)

При этом штамповка и отделка проводятся на одном и том же оборудовании. Оно позволяет штамповать за заданное время или 20000 кухонь, либо 30000 кофеварок, либо и то, и другое, не в меньшем количестве. А вот сборка проводится на отдельных участках.

Задача линейного программирования имеет вид:

Х 1 ≥ 0 , Х 2 ≥ 0 , Х 3 ≥ 0 , (0)

Х 1 / 200 + Х 2 / 300 + Х 3 / 120 ≤ 100 , (1)

Х 1 / 300 + Х 2 / 100 + Х 3 / 100 ≤ 100 , (2)

Х 1 / 200 ≤ 100 , (3)

Х 2 / 120 ≤ 100 , (4)

Х 3 / 80 ≤ 100 , (5)

F = 15 Х 1 + 12 Х 2 + 14 Х 3 → max .

Здесь:
(0) - обычное в экономике условие неотрицательности переменных,
(1) - ограничение по возможностям штамповки (выраженное для облегчения восприятия в процентах),
(2) - ограничение по возможностям отделки,
(3) - ограничение по сборке для кухонь,
(4) - то же для кофемолок,
(5) - то же для самоваров (как уже говорилось, все три вида изделий собираются на отдельных линиях).

Наконец, целевая функция F - общая прибыль предприятия.

Заметим, что неравенство (3) вытекает из неравенства (1), а неравенство (4) - из (2). Поэтому неравенства (3) и (4) можно сразу отбросить.

Отметим сразу любопытный факт. Как будет установлено, в оптимальном плане Х 3 = 0, т.е. самовары выпускать невыгодно.

Предыдущая

Методы линейного программирования применяются для решения многих экстремальных задач, с которыми довольно часто приходится иметь дело в экономике. Решение таких задач сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин.
Линейное программирование основано на решении системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимозаменяемость факторов, когда логика в расчетах, математическая логика совмещаются с логически обоснованным пониманием сущности изучаемого явления.
С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок). В сельском хозяйстве он используется для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этим же методом решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.
Все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу - значит выбрать из всех допустимо возможных (альтернативных) вариантов лучший, Оптимальный. Важность и ценность использования в экономике метода линейного программирования состоят в том, что оптимальный вариант выбирается из весьма значительного количества альтернативных вариантов. При помощи других способов решать такие задачи практически невозможно.

В качестве примера рассмотрим решение задачи рациональности использования времени работы производственного оборудования.
В соответствии с оперативным планом участок шлифовки за первую неделю декабря выпустил 500 колец для подшипников типа А, 300 колец для подшипников типа Б и 450 колец для подшипников типа В. Все кольца шлифовались на двух взаимозаменяемых станках разной производительности. Машинное время каждого станка составляет 5000 мин. Трудоемкость операций (в минутах на одно кольцо) при изготовлении различных колец характеризуется следующими данными (табл. 6.5).
Таблица 6.5
Следует определить оптимальный вариант распределения операций по станкам и время, которое было бы затрачено при этом оптимальном варианте. Задачу выполним симплексным методом.
Для составления математической модели данной задачи введем следующие условные обозначения: jc, х2, хъ, - соответственно количество колец для подшипников типов Л, Б, В, производимых на станке I; х4, х5, х6, - соответственно количество колец для подшипников типов А, Б, В, производимых на станке II.
Линейная форма, отражающая критерий оптимальности, будет иметь вид:
min а(х) = 4x,-f 10x2-f 10x3-f 6x4-f 8х5+20х6 при ограничениях
4х, -f 10х2 -f 10;t3 lt; 5000
6х4 -f 8х5 -f 20х6 ~lt; 5000
х, = 500
х2 +х5 = 300
х3 +х6 = 450
Xj^0,j=l, ..., 6

Преобразуем условие задачи введением дополнительных (вспомогательных) и фиктивных переменных. Условие запишем так:
шіп lt;х(х) = 4дг, + 10x2+ 10x3 + 6x4 + 8x5 + 20x6+
+ Мх9 + Мх{0+Мх{,
Система уравнений, отражающая ограничительные условия машинного времени и количество произведенной продукции:
4х, + l(bc2 + 10х3 +х1 = 5000
6х4 + 8х5 + 20х6 + xs = 5000
Xj +х4 +х9 = 500
х2 +х5 +х10 = 300
XJ +X6 + *!1 = 450
-*,^0,7=1, ..., 11
Решение этой задачи представлено в табл. 6.6. Оптимальный вариант получен на седьмом этапе (итерации). Если бы на станке I производилось 125 колец подшипников типа А, 450 колец подшипников типа В, на станке II - 375 колец подшипников типа А и 300 колец подшипников типа Б, то при такой загрузке оборудования было бы высвобождено 350 мин машинного времени станка II. Общие затраты времени по оптимальному варианту составили бы 9650 мин, тогда как фактически затрачено 10000 мин машинного времени.
Весьма типичной задачей, решаемой с помощью линейного программирования, является транспортная задача. Ее смысл заключается в минимизации грузооборота при доставке товаров широкого потребления от производителя к потребителю, с оптовых складов и баз в розничные торговые предприятия. Она решается симплекс-методом или распределительным методом.
Решение транспортной задачи распределительным методом было дано в третьем издании учебника «Теория экономического анализа» («Финансы и статистика», 1996).

Решение задачи рациональности использования станков симплексным методом


Базис

с

Ро

4

10

10

6

8

20

0

0

м

м

м

Л

Рг

Ръ

Л

Р ъ


Pi

Р8

р*

Л 0

Л,

Л

0

5000

4

10

0

0

0

0

і

0

0

0

0

Р,

0

5000

0

0

0

6

8

20

0

1

0

0

0

Л

м

500

1

0

0

1

0

0

0

0

1

0

0

Л 0

м

300

ш

0

0

0

1

0

0

0

0

1

0

Л.

м

450

0

0

1

0

0

1

0

0

0

0

1

Zj-Cj


1250М

М-4

М-10

М-10

М-6

М-8

М-20

0

0

0

0

0

Pi

0

3000

0

10

10

-4

0

0

0

0

-4

0

0

р*

0

5000

0

0

0

6

8

20

1

1

0

0

0

Ро

4

500

1

0

0

1

0

0

0

0

1

0

0

Ло

м

300

0

1

0

0

ш

0

0

0

0

1

0

Л.

м

450

0

0

1

0

0

1

0

0

0

0

1

zr-9


750Л/+2000

0

М-10

М-10

-2

М-8

О
2

0

0

-М + 4

0

0

Базис

С

Р0

4

Pi

10

6

8

20

0

0

м

м

М



Pi

10

^3

л

Р5

р6

Pi

р«

р9

Pi 0

Рц

Pi

0

3000

0

10

10

-4

0

0

1

0

-4

0

0

Р*

0

2600

0

-8

0

6

0

20

0

1

0

-8

0

Pi

4

500

1

0

0

1

0

0

0

0

1

0

0

Р5

8

300

0

1

0

0

1

0

0

0

0

1

0

РП

М

450

0

0

1

0

0

1

0

0

0

0

1

Zj-Cj


450Л/+4400

0

-2

М-10

-2

0

М-20

0

0

-М+4

-М+8

0

Ръ

10

300

0

1

1

4
10

0

0

1
10

0

4
10

0

0

Р%

0

2600

0

-8

0

6

0

20

0

1

0

-8

0

Pi

4

500

1

0

0

1

0

0

0

0

1

0

0

Р5

8

300

0

1

0

0

1

0

0

0

0

1

0

Рц

М

150

0

-1

0

j4_
10

0

1

_ J_ 10

0

4
10

0

1

zrCj


150Л/+7400

0

-M+S

0

- М-6 10

0

М-20

- ~М+1 10

0

-±м
10

- Af+8"

0

Базис

с

Л,

4

10

10

6

8

20

0

0

М

М

м

Л

Рг

Л

л

PS

р6

Pi

рamp;

Р9

Ло

л.

Л

10

300

0

1

1

4

0

0

1


0


4

0

0







“10



То




“ 10



р6

20

130

0

4

0

3

0

1

0


1


0

4

0





~Ї0


10





20



10


л

4

500

1

0

0

1

0

0

0


0


1

0

0

Ps

8

300

0

1

0

0

1

0

0


0


0

1

0

Р\\

М

20

0

6

0

1

0

0

1


1


4

4

1





10


~10



То


20

То

10


Zj-Cj


20М+10000

0


0


0

0

м+\


-м+\

--М

-*М

0





10


10



10

20


10

10


л

10

380

0

14

1

0

0

0

3


2


12

0

0





10





10


10

10



р%

20

70

0

14

0

0

0

1

3


2


12

16

-3





10





10


10


10

10


Л

4

300

1

6

0

0

0

0

1


1


-3


-10












2





р5

8

300

0

1

0

0

1

0

0


0


0

1

0

Р4

6

200

0

-6

0

1

0

0

-1


1


4

4

10












’ 2





Z.-Ci


10000

0

0

0

0

0

0

1

1




Базис


Лgt;

4

10

10

6

8

20

0

0

м

м

л/

о

Л

Рг

ръ

Р*

Р5

Р6

Л

Рamp;

р9

Л 0

л.

Рг

10

450

0

0

1

0

0

1

0

0




Р%

0

350

0

7

0

0

0

5

3
5

1




Л

4

125

1

5
2

0

0

0

5
2

1
4

0




Ps

8

300

0

1

0

0

1

0

0

0




Р4

6

375

0

5
2

0

1

0

5
2

1
4

0




Zj-Cj


9650

0

-7

0

0

0

-5

1
2

0



15. Аналитические методы. Методы линейного программирования.

15.1. Аналитические методы

На протяжении всей своей эволюции человек, совершая те или иные деяния, стремился вести себя таким образом, чтобы результат, достигаемый как следствие некоторого поступка, оказался в определенном смысле наилучшим. Двигаясь из одного пункта в другой, он стремился найти кратчайший среди возможных путь. Строя жилище, он искал такую его геометрию, которая при наименьшем расходе топлива, обеспечивала приемлемо комфортные условия существования. Занимаясь строительством кораблей, он пытался придать им такую форму, при которой вода оказывала бы наименьшее сопротивление. Можно легко продолжить перечень подобных примеров.

Наилучшие в определенном смысле решения задач принято называть оптимальными . Без использования принципов оптимизации в настоящее время не решается ни одна более или менее сложная проблема. При постановке и решении задач оптимизации возникают два вопроса: что и как оптимизировать?

Ответ на первый вопрос получается как результат глубокого изучения проблемы, которую предстоит решить. Выявляется тот параметр, который определяет степень совершенства решения возникшей проблемы. Этот параметр обычно называют целевой функцией иликритерием качества . Далее устанавливается совокупность величин, которые определяют целевую функцию. Наконец, формулируются все ограничения, которые должны учитываться при решении задачи. После этого строится математическая модель, заключающаяся в установлении аналитической зависимости целевой функции от всех аргументов и аналитической формулировки сопутствующих задаче ограничений. Далее приступают к поиску ответа на второй вопрос.

Итак, пусть в результате формализации прикладной задачи установлено, что целевая функция , где множество Х – обобщение ограничений, его называют множеством допустимых решений. Существо проблемы оптимизации заключается в поиске на множестве Х – множестве допустимых решений такого решения
, при котором целевая функцияf достигает наименьшего или наибольшего значения.

Составной частью методов оптимизации является линейное программирование.

15.2. Основные понятия линейного программирования

Первое упоминание (1938 г.) о математических методах в эффективном управлении производством принадлежит советскому математику Л. В. Канторовичу. Год спустя,в 1939 г., Л. В. Канторович опубликовал работу «Математические методы организации и планирования производства» и практически применил полученные результаты. Термин «линейное программирование» ввели американские математики Дж. Данциг и Т. Купманс в конце 40-х годов. Дж. Данциг разработал математический аппарат симплексного метода решения задач линейного программирования (1951 г.). Симплексный метод находит применение для решения широкого круга задач линейного программирования и до настоящего времени является одним из основных методов.

Линейное программирование - это раздел математики, ориентированный на нахождение экстремума (максимума или минимума) в задачах, которые описываются линейными уравнениями. Причем линейными уравнениями описывается как сама целевая функция, так и входные параметры (переменные) условия ограничений на входные параметры. Необходимым условием задач линейного программирования является обязательное наличие ограничений на ресурсы (сырье, материалы, финансы, спрос произведенной продукции и т.д.). Другим важным условием решения задачи является выбор критерия останова алгоритма, т. е. целевая функция должна быть оптимальна в некотором смысле. Оптимальность целевой функции должна быть выражена количественно. Если целевая функция представлена одним или двумя уравнениями, то на практике такие задачи решаются достаточно легко. Критерий останова алгоритма (или критерий оптимальности) должен удовлетворять следующим требованиям:

    быть единственным для данной задачи;

    измеряться в единицах количества;

    линейно зависеть от входных параметров.

Исходя из вышесказанного, можно сформулировать задачу линейного программирования в общем виде:

найти экстремум целевой функции

при ограничениях в виде равенств:

(2.2)

при ограничениях в виде неравенств:

(2.3)

и условиях неотрицательности входных параметров:

В краткой форме задача линейного программирования может быть записана так:

(2.5)

при условии

где
- входные переменные;

Числа положительные, отрицательные и равные нулю.

В матричной форме эта задача может быть записана так:

Задачи линейного программирования можно решить аналитически и графически.

15.3. Каноническая задача линейного программирования

, i=1,…,m,

, j=1,…,n.

Основные вычислительные методы решения задач линейного программирования разработаны именно для канонической задачи.

15.4. Общая задача линейного программирования

Необходимо максимизировать (минимизировать) линейную функцию от n переменных.

при ограничениях

, i =1,…, k ,

, i =1+ k ,…, m ,

, …,

Здесь k m , r n . Стандартная задача получается как частный случай общей приk = m , r = n ; каноническая – приk =0, r = n .

Пример.

Кондитерская фабрика производит несколько сортов конфет. Назовем их условно "A", "B" и "C". Известно, что реализация десяти килограмм конфет "А" дает прибыль 90 рублей, "В" - 100 рублей и "С" - 160 рублей. Конфеты можно производить в любых количествах (сбыт обеспечен), но запасы сырья ограничены. Необходимо определить, каких конфет и сколько десятков килограмм необходимо произвести, чтобы общая прибыль от реализации была максимальной. Нормы расхода сырья на производство 10 кг конфет каждого вида приведены в таблице 1.

Таблица 1. Нормы расходов сырья

на производство

Экономико-математическая формулировка задачи имеет вид

Найти такие значения переменных Х=(х1, х2, х3) , чтобы

целевая функция

при условиях-ограничениях:

В связи с развитием техники, ростом промышленного производства все большую роль играют задачи отыскания оптимальных решений в различных сферах человеческой деятельности. Основным инструментом при решении этих задач стало математическое моделирование -- формальное описание изучаемого явления и исследование с помощью математического аппарата.

Всякая модель реального процесса предполагает идеализацию и абстракцию, но они не должны уходить слишком далеко от содержания задачи, чтобы построенная модель не утратила существенных черт моделируемого объекта, т. е. была ему адекватна. С другой стороны, если построить сложную модель, учитывающую все тончайшие особенности изучаемого процесса, то это может нарушить смысл моделирования, одна из целей которого -- упростить постановку задачи, чтобы легче было ее исследовать (слишком сложная модель, как правило, не поддается анализу).

В большом числе случаев первой степенью приближения к реальности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, предполагаются линейными. Здесь имеется полная аналогия с тем, как весьма важная и зачастую исчерпывающая информация о поведении произвольной функции получается на основе изучения ее производной -- происходит замена этой функции в окрестности каждой точки линейной зависимостью. Значительное количество экономических, технических и других процессов достаточно хорошо и полно описывается линейными моделями. Сказанным определяется важность той роли, которую играет линейное программирование -- метод отыскания условного экстремума линейной функции на множестве, заданном при помощи линейных соотношений типа равенств и неравенств (линейных ограничений) .

Условия применимости линейной модели

Делимость. Если способ применяется с интенсивностями a и b (a < b), то его можно применять с любой интенсивностью x .

Это условие не тривиально. Если, например, интенсивность выполнения работы измерять числом назначенных на нее работников, то допустимы только целые значения интенсивности. Если же интенсивность измеряется числом человеко-часов в сутки, то принцип делимости, по-видимому, выполнен.

Пропорциональность. Затраты, выпуски и полезность, производимые каждым способом, пропорциональны его интенсивности.

Это условие постоянной отдачи (во всех смыслах), отсутствия эффекта масштаба. Особое внимание следует уделять выявлению диапазона интенсивности технологического способа, в котором этот способ удовлетворяет условию пропорциональности. Например, если сварщик проваривает контейнер за 6 часов, то двое сварщиков, пожалуй, справятся с этой работой за 3 часа. Но шестеро - за час - не сварят контейнер.

Аддитивность. Полезности и -- для каждого ингредиента -- затраты и выпуски, производимые всеми способами, суммируются.

Принцип аддитивности требует аккуратного и согласованного описания входящей в модель номенклатуры: технологических способов, ингредиентов, полезностей.

Формы записи задач линейного программирования

В самом общем виде задача ЛП записывается следующим образом:

  • 2 (2)
  • 3 (3)
  • 4 (4)
  • 5 (5)

Определение 1. Матрица называется матрицей задачи (1) - (5). ?

Более унифицированное представление задачи ЛП -- стандартная форма:

для i {1,…, m}, x 0.

Особенности стандартной формы: все переменные неотрицательны (n1 = n), ограничения-равенства отсутствуют (m1 = 0). Если ЦФ максимизируется, то m2 = 0 и нет ограничений вида (3); в противном случае m2 = m и нет ограничений вида (4). Полагая и, стандартную форму можно записать следующим образом:

6c x max (min) при Ax () b, x 0. (6)

Но самый простой вид имеет каноническая форма записи задач ЛП.

Определение 2. Задача (1) - (4) представлена в канонической форме, если все ограничения, кроме условий неотрицательности переменных, являются равенствами (m1 = m) и все переменные неотрицательны (n1 = n). ?

Задача ЛП в канонической форме имеет, следовательно, вид

  • 7c x max (min) при Ax = b, x 0. (7)
  • 1.2 Основы симплекс-метода

Рассмотрим задачу ЛП в канонической форме:

  • 9 (9)
  • 10х 0 (10)

Пусть и -- соответственно строка i и столбец j матрицы А0. Будем считать, что строки матрицы линейно независимы.

Любую задачу ЛП можно привести к канонической форме; если задача в канонической форме разрешима, то среди ее решений есть хотя бы одна крайняя точка множества допустимых решений; крайние точки множества допустимых решений задачи ЛП в канонической форме совпадают с БДР.

Опираясь на перечисленные факты, можно представить себе следующую процедуру решения задачи. Проверим каким-либо образом, имеет ли задача решение и, если имеет, приведем ее к канонической форме. Пусть матрица А0 канонической формы имеет размерность m Ч n и ранг m. Построим все m Ч m-подматрицы матрицы А0, отбрасывая вырожденные, оставшиеся подматрицы соответствуют базисам матрицы А0. Выберем из них допустимые базисы, построим соответствующие БДР. Выберем БДР, которое доставляет максимум целевой функции.

Но такой алгоритм на практике не может быть реализован, так как число БДР экспоненциально растет с ростом размерности задачи (числа переменных и/или ограничений). Процедуру можно ускорить, если организовать ее так, чтобы в процессе перебора БДР значение ЦФ не убывало (последовательное улучшение плана). Эта исходная идея симплекс-метода, которая реализуется следующим образом.

1. 3 Симплекс-таблицы

линейный программирование симплекс оптимизация

Преобразования задачи ЛП в канонической форме, осуществляемые симплекс-методом, удобно представлять как преобразования симплекс-таблиц. Общий вид симплекс-таблицы, которая соответствует текущей итерации симплекс-метода, представляет таблица 1.

В верхней строке записаны: заголовок первого столбца, идентификаторы всех (основных, дополнительных, вспомогательных и др.) переменных задачи и заголовок последнего столбца. Следующие m строк описывают уравнения задачи в виде:

который они имеют к началу итерации. Сначала указан идентификатор базисной переменной (в текущем базисе) для соответствующего уравнения. Затем следуют коэффициенты при переменных (в том порядке, в котором переменные записаны в первой строке). Последний элемент строки -- правая часть ограничения.

Нижняя строка соответствует уравнению

12, где и. (12)

представляющему ЦФ. Переменная z играет в нем роль базисной (имеет коэффициент 1 и не входит в другие уравнения); число F -- это правая часть уравнения (12), значение ЦФ на текущем базисном решении.

Таблица 1. Общий вид симплекс-таблицы

Замечание. Таблица описывает систему уравнений (11), поэтому текущее БДР можно получить, полагая базисные переменные равными соответствующим элементам последнего столбца, а небазисные -- равными нулю. ?

На рассматриваемой итерации происходит следующее.

Если в z-строке, в столбцах, соответствующих переменным, нет отрицательных элементов, то текущее БДР оптимально и в первом столбце таблицы записаны переменные оптимального базиса. В противном случае столбец переменной xs, для которого s < 0, становится направляющим.

Если все элементы направляющего столбца неположительны, то задача неограниченна. В противном случае вычисляем отношение элементов последнего и направляющего столбцов для всех строк, имеющих положительный элемент в направляющем столбце. Строка r, для которой это отношение минимально, становится направляющей. В первом столбце следующей симплекс-таблицы переменная xs займет место переменной xj(r).

Теперь ars -- разрешающий элемент. Элементы следующей симплекс-таблицы вычисляем по формулам:

13 при при i r (13)

  • 14 (14)
  • 15 (15)

Рассмотрим j = j(k). Из (11) и (12) следует, что столбец j (базисный) имеет единицу в строке k и нули в остальных строках: j = 0, aij = 1 при i = k, иначе aij = 0. Пусть k r (столбец j сохраняется в новом базисе). Тогда ari = 0 и из (13), (14), (16) следует, что для всех i и. Учитывая это, сформулируем правила преобразования симплекс-таблицы при переходе к новому базису:

  • · в заголовок направляющей строки ставим заголовок направляющего столбца;
  • · все числа направляющей строки делим на разрешающий элемент;
  • · направляющий столбец становится единичным, с единицей в направляющей строке;
  • · столбцы текущего базиса с номерами, отличными от j(r), не изменяются;
  • · все остальные числа таблицы (включая элементы нижней строки и последнего столбца) пересчитываем по формулам (13) - (15), (16).