Студент должен:

Знать:

· Методы минимизации логических функций.

Уметь:

· Выполнять минимизацию функций методом непосредственных преобразований; Выполнять минимизацию функций методом непосредственных преобразований;

· Выполнять минимизацию функций с помощью карт Карно.

Метод непосредственных преобразований

Логическая функция, задающая принцип построения схемы цифрового устройства, может быть, как было показано выше, представлена в виде таблицы истинности или в виде СДНФ или СКНФ и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизация (упрощение формы записи) функции является важной операцией при синтезе логической схемы, так как благодаря предварительно проведенной минимизацией схема реализуется с наименьшим числом элементов.

Для минимизации разработан ряд методов. Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики.

Например, логическую функцию

в виде СДНФ, можно минимизировать следующим образом:

1. Добавим к данной функции слагаемое , которое уже есть в данной функции, используя правило х+х=х

2. Применим метод склеивания одинаково подчеркнутых элементарных конъюнкций

3. Применим метод склеивания для двух последних элементарных конъюнкций

Полученная в результате минимизации логическая функция называется тупиковой. Логическая функция может иметь несколько тупиковых форм.

Выявление и устранить избыточности в записи функции путем её преобразований с использованием аксиом, законов, тождеств и теорем алгебры логики требуют громоздких выкладок и связаны с большой затратой времени.

Карты Карно

Метод непосредственных преобразований наиболее пригоден для простых формул, когда последовательность преобразований очевидна для исполнителя. Наиболее часто этот метод применяется для окончательной минимизации выражений, полученных после минимизации их другими методами.



Стремление к алгоритмизации поиска соседних элементарных произведений привело к разработке табличных методов минимизации логических функций. Одним из них является метод, основанный на использовании карт Карно.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

Карта Карно - это графическое представление таблицы истинности логических функций. Она представляет собой таблицу, содержащую по 2 n прямоугольных ячеек, где n - число логических переменных.

Например, карта Карно для функции четырех переменных имеет 2 4 = 16 ячеек.


Структура карты Карно для функций двух переменных показана на рисунке 2.2. 2

Рисунок 2.2


На рисунке 2.3 представлена структура карты Карно для функции трёх переменных.

а) таблица истинности; б) структура карты Карно

Рисунок 2.3

Карта размечается системой координат, соответствующих значениям входных переменных. Например, верхняя строка карты для функции трех переменных (рисунок 2.3) соответствует нулевому значению переменной x1, а нижняя - ее единичному значению.

Каждый столбец этой карты характеризуется значениями двух переменных: х2 и х3. Комбинация цифр, которыми отмечается каждый столбец, показывает, для каких значений переменных х2 и х3 вычисляется функция, размещаемая в клетках этого столбца.

Если на указанном наборе переменных функция равна единице, то ее СДНФ обязательно содержит элементарное произведение, принимающее на этом наборе единичное значение. Таким образом, ячейки карты Карно, представляющие функцию, содержат столько единиц, сколько элементарных произведений содержится в ее СДНФ, причем каждой единице соответствует одно из элементарных произведений.

Обратим внимание на то, что координаты строк и столбцов в карте Карно следуют не в естественном порядке возрастания двоичных кодов, а в порядке 00, 01, 11, 10. Изменение порядка следования наборов сделано для того, чтобы соседние наборы были соседними, т.е. отличались значением только одной переменной.

Ячейки, в которых функция принимает значения, равные единице, заполняются единицами. В остальные ячейки записываются нули.

Процесс минимизации рассмотрим на примере, представленном на рисунке 2.4.

а) таблица истинности; б) карта Карно

Рисунок 2.4

Сначала формируем прямоугольники, содержащие по 2k ячеек, где k - целое число.

В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям.

Например, на рисунке 2.4,б объединены ячейки с координатами 001 и 101. При объединении этих ячеек образовался прямоугольник, в котором переменная x1 изменяет свое значение. Следовательно, она исчезнет при склеивании соответствующих элементарных произведений и останутся только х2 и х3, причем переменную х2 берем в инверсном виде, т.к. она равна 0.

Ячейки, расположенные в первой строке (рисунок 2.4 б), содержат единицы и являются соседними. Поэтому все они объединяются в прямоугольник, содержащий 2 2 = 4 ячейки.

Переменные х2 и х3 в пределах прямоугольника меняют свое значение; следовательно, они исчезнут из результирующего элементарного произведения. Переменная х1 остается неизменной и равной нулю. Таким образом, элементарное произведение, полученное в результате объединения ячеек первой строки рисунка 2.4 б, содержит лишь один х1, который берем в инверсном виде, т.к. он равен 0.

Это, в частности, следует из того, что четырем ячейкам первой строки соответствует сумма четырех элементарных произведений:

Двум ячейкам сторого столбца соответствует сумма двух произведений

Функция, соответствующая рисунку 2.4 имеет вид:

Совокупность прямоугольников, покрывающих все единицы, называют покрытием. Заметим, что одна и та же ячейка (например, ячейка с координатами 001) может покрываться два или несколько раз.

Итак, можно сделать следующие выводы:

1. Формула, получающаяся в результате минимизации логической функции с помощью карт Карно, содержит сумму стольких элементарных произведений, сколько прямоугольников имеется в покрытии.

2. Чем больше ячеек в прямоугольнике, тем меньше переменных содержится в соответствующем ему элементарном произведении.

Например, для карты Карно, изображенной на рисунке 2.5 а, прямоугольнику, содержащему четыре ячейки, соответствует элементарное произведение двух переменных, а квадрату, состоящему всего лишь из одной ячейки,- элементарное произведение включающее все четыре переменные.


а) б) в)

Рисунок 2.5

Функция, соответствующая покрытию, показанному на рисунке 2.5 а, имеет вид:

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты Карно как бы «склеиваются», образуя поверхность цилиндра. При склеивании боковых границ получается тороидальная поверхность. Следуя изложенным рассуждениям, устанавливаем, что ячейки с координатами 1011 и 0011, изображенные на рисунке 2.5 б, являются соседними и объединяются в прямоугольник. Действительно, указанным ячейкам соответствует сумма элементарных произведений

Аналогично объединяются и остальные четыре единичные ячейки. В результате их объединения получаем элементарное произведение .

Окончательно функция, соответствующая покрытию, изображенному на рисунке 2.5 б, имеет вид

Карта Карно, показанная на рисунке 2.5 в, содержит единичные ячейки, расположенные по углам. Все четыре ячейки являются соседними, и после объединения дадут элементарное произведение

Рассмотренные выше примеры позволяют сформулировать последовательность проведения минимизации логических функций с помощью карт Карно:

1. Изображается таблица для n переменных и производится разметка ее сторон.

2. Ячейки таблицы, соответствующие наборам переменных, обращающих функцию в единицу, заполняются единицами, остальные ячейки - нулями.

3. Выбирается наилучшее покрытие таблицы правильными прямоугольниками, которые обводим контурами. В каждом прямоугольнике должно быть 2 n ячеек.

4. Одни и те же ячейки с единицами могут входить в разные контуры.

5. Количество прямоугольников должно быть минимальным, а площадь прямоугольников максимальная.

6. Для каждого прямоугольника записываем произведение только тех переменных, которые не изменяют своего значения. Если эта переменная равна нулю, то ее записывают в инверсном виде.

7. Полученные произведения соединяем знаком логического сложения.

Контрольные вопросы:

1. Что называют минтермами и минтермами?

2.Записать функции, заданные таблицами 2.9 и 2.10 в СДНФ и СКНФ.

Таблица 2.9

3. Упростите логические функции, используя аксиомы тождества и законы алгебры логики:

a)

c)

Логические элементы

Студент должен

Знать:

· Таблицы логических состояний для основных функциональных логических схем;

· Основные базисы построения логических схем.

Уметь:

· Определять логические состояния на выходах цифровых схем по известным состояниям на входах;

· Выполнять логическое проектирование в базисах микросхем;

· Выбирать микросхему по справочнику, исходя из заданных параметров и условий использования.

Принцип логического устройства базируется в ИМС на работе биполярных транзисторов в режиме ключа (либо замкнут, либо разомкнут).


Логическое действие осуществляется как с одной (одновходовый логический элемент) так и с множеством (многовходовый логический элемент) входных переменных.

При работе логических устройств используются три основных действия согласно алгебры Буля – «И», «ИЛИ», «НЕ».

Логическая функция может быть выражена словесно, в алгебраической форме, таблицей истинности, называемой переключательной таблицей, с помощью временных диаграмм. Рассмотрим все варианты представления логических функций.

Методы поиска минимумов функций. Поиск максимумов сводится к поиску минимумов путем изменения знака ф-ции. М. ф. м.- раздел вычислительной математики, играющий большую роль в таких приложениях, как выбор оптим. вариантов в задачах планирования, проектирования и операций исследования, управления технологическими процессами, управления движением сложных объектов и т. п. М. ф. м. применяются также для решения систем ур-ний и неравенств при отыскании спектра операторов, при решении краевых задач и т. п.

Наиболее изучены М. ф. м- применительно к ф-циям, определенным во всем -мерном евклидовом простр. Рассмотрим их, не касаясь дискретных и дискретно-непрерывных задач минимизации, а также задач минимизации при наличии ограничений. Последние во многих случаях можно свести к задаче безусловной минимизации (напр., с использованием штрафных ф-ций). Не будем рассматривать методы нахождения минимума, основанные на непосредственном использовании необходимых условий экстремума, т. к. решение получаемых при этом систем нелинейных ур-ний можно рассматривать как задачу минимизации суммы квадратов невязок (или максимума модуля невязок). Возможность применения и сравнительная эффективность различных М. ф. м. во многом определяется классом ф-ций, к которому они применяются. Большинство М. ф. м. дают возможность находить локальный минимум, и лишь априорная информация о свойствах ф-ции (выпуклость, унимодальность) позволяет считать этот минимум глобальным. Методы, гарантирующие поиск глобального минимума с заданной точностью для достаточно общих классов ф-ций, являются весьма трудоемкими. На

практике для нахождения глобального минимума в основном используется сочетание Монте-Карло метода и одного из методов локальной минимизации.

Широкий класс М. ф. м. описывают следующей вычислительной схемой. Пусть минимизируемая ф-ция, определенная в произвольно выбранная начальная точка. Допустим, что имеет непрерывные частные производные до порядка включительно будем рассматривать как производную нулевого порядка). Для получения последовательных приближений к локальному минимуму строится последовательность точек по ф-лам следующего вида:

где обозначает вектор частных производных порядка вычислимые ф-ции своих аргументов. Порядок высших частных производных, вычисляемых для реализации ф-лы (1), наз. порядком метода. Осн. группа применяемых на практике методов имеет ту особенность, что информация, необходимая для вычисления очередного значения выражается через ограниченное к-во параметров, вычисляемых на данном шаге и предыдущих шагах процесса. Метод называют -ступенчатым, если схема алгоритма имеет, начиная с некоторого следующую структуру: на шаге вычисляем параметры где - некоторое натуральное число, и вектор по ф-лам следующего вида:

(начальные параметры вычисляются с помощью спец. процедур). В широко распространенных методах спуска оператор конкретизируется в следующей форме:

где вещественное число, которое наз. шаговым множителем, вектор определяет направление спуска. Среди методов спуска выделяются методы монотонного спуска или релаксационные методы. Метод релаксационным, если при к Бели непрерывно дифференцируема, то релаксационность метода (3) обеспечивается, когда направление спуска образует острый угол с направлением градиента и достаточно мал. Обшая теория релаксационных процессов развита наиболее полно для случая выпуклых ф-ций. В качестве осн. параметров, характеризующих процесс, рассматриваются углы релаксации между и направлением градиента), а также множители релаксации определяемые равенством

где градиент ф-ции (для квадратичного функционала при наискорейшем спуске). Обозначим через приведенный коэфф. релаксации. Необходимое и достаточное условие сходимости релаксационного процесса для сильно выпуклой ф-ции :

Среди релаксационных методов наиболее известны градиентные методы. Рассмотрим более подробно одноступенчатые методы градиентного типа. Общая схема их следующая:

В рамках этой схемы можно выделить такие модификации:

а) градиентный спуск с постоянным шагом: единичная матрица;

б) наискорейший градиентный спуск: , где определяется из условия минимума

в) метод Ньютона-Рафсона: , где - гессиан в точке

г) промежуточные схемы: . К числу наиболее распространенных двухступенчатых градиентных методов можно отнести методы сопряженных градиентов; примером двухступенчатой схемы является метод сопряженных градиентов Флетчера - Ривза:

Методы a) и б) при достаточно общих условиях (первый - при достаточно малом а) сходятся к локальному минимуму со скоростью геом. прогрессии. Метод в) при достаточно общих условиях сходится из достаточно малой окрестности минимума с квадратичной скоростью. Промежуточная схема г) более гибкая и позволяет при определенной регулировке последовательностей также получить квадратическую скорость сходимости при более слабых требованиях на начальное приближение.

Недостатком методов в), г) является необходимость вычисления гессиана. От этого недостатка избавлены методы сопряженных градиентов и так называемые алгоритмы с изменяемой метрикой, обладающие свойствами ускоренной сходимости для достаточно гладких ф-ций в окрестности минимума. Схемы алгоритмов с изменяемой метрикой по своему характеру являются комбинацией схемы сопряженных градиентов и метода Ньютона - Рафсона. Одновременно с движением по схеме типа сопряженных градиентов происходит итеративная аппроксимация матрицы, обратной гессиану в точке минимума. После каждых п шагов процесса происходит шаг по методу Ньютона-Рафсона, где вместо выступает ее аппроксимация.

Если градиент разрывен, перечисленные выше методы не применимы. Поэтому большое значение имеют методы минимизации выпуклых (не обязательно дифференцируемых) ф-ций; эти методы можно условно разбить на 2 группы: 1) методы градиентного типа и 2) методы «секущих плоскостей». К 1-й группе относятся различные модификации обобщенных градиентов метода, а также схемы с ускоренной сходимостью, основанные на растяжении простр. в направлении градиента или разности двух последовательных градиентов. К методам 2-й группы относится, напр., метод Келли. Пусть ЗП - выпуклое (ограниченное) мн-во, на котором определена последовательность точек, в которых вычисляется обобщенный градиент . Тогда находится как решение задачи: найти

Метод Келли сходится по функционалу при любом начальном . Из распространенных методов минимизации следует отметить, в частности, метод оврагов для минимизации ф-ций с сильно вытянутыми гиперповерхностями уровня; методы покоординатного поискас изменяемой системой координат; методы случайного поиска; комбинированные методы быстрого спуска и случайного поиска, когда направление убывания ф-ции находится методом Монте-Карло; методы дифференциального спуска, стохастической аппроксимации методы и др. В задачах оптим. регулирования большое значение имеют методы поиска нулевого порядка. В основе алгоритмов минимизации для этого случая обычно лежит идея линейной или квадратичной аппроксимации минимизируемой ф-ции или разностной аппроксимации соответствующих частных производных. Для поиска экстремума глобального предложен ряд методов. Осн. из них: метод Монте-Карло, комбинация метода Монте-Карло определения начальной точки с одним из алгоритмов локального поиска, методы, основанные на построении нижней огибающей данной ф-ции, методы последовательного отсечения подмн-в, методы построения траекторий, всюду плотно покрывающих область определения ф-ции, и минимизации вдоль этих траекторий.

Для решения спец. классов многоэкстремальных задач используются методы программирования динамического.

В наст, время создаются оптим. алгоритмы минимизации ф-ций разных классов. Пусть класс ф-ций, определенных в кубе , и имеющих в частные производные до s-го порядка, удовлетворяющие условию Липшица с константой L. Любой алгоритм минимизации из , использующий информацию о значениях f и ее производных до порядка включительно не более чем в N точках эквивалентен (в смысле результата) некоторому алгоритму А получения последовательности итераций (1) для и аппроксимации искомого значения при помощи итоговой операции

где - некоторая вычислимая ф-ция. Введем следующие обозначения:

Алгоритм, для которого достигается оптимальным. Условия означают соответственно асимптотическую оптимальность и оптимальность по порядку алгоритма Можно показать, что

причем выбор , влияет лишь на константу в указанной оценке. В частном случае и имеем:

где миним. сеть в .

Другой подход к построению оптим. алгоритмов минимизации связан с обобщением идей последовательных статистических решений. Алгоритм минимизации рассматривается как управляемая последовательность опытов, каждый из которых дает тот или иной исход. На совокупности исходов определяется априорная вероятностная мера. После получения конкретного исхода очередного опыта происходит перераспределение вероятностей по ф-ле Байеса и выбирается следующий опыт или принимается окончательное решение. Алгоритмы отличаются друг от друга правилом, по которому выбирается следующий опыт, правилами остановки и выбора окончательного решения. Качество решения определяется ф-цией потерь, которая усредняется в соответствии с полученным на данном этапе вероятностным распределением. В этих терминах ставится задача выбора оптим. алгоритма как построения последовательного байесовского правила поиска решений. Такая постановка интересна тем, что в ее рамках можно учитывать статистические свойства класса решаемых задач, сопоставлять «средние» потери, связанныз с погрешностью решения, с затратами, связанными с уточнением решения. Лит.: Любич Ю. И., Майстровский Г. Д. Общая теория релаксационных процессов для выпуклых функционалов. «Успехи математических наук», 1970, т. 25, в. 1; Михалевич В. С. Последовательные алгоритмы оптимизации и их применение. «Кибернетика», 1965, N5 1-2; Иванов В. В. Об оптимальных алгоритмах минимизации функций некоторых классов. «Кибернетика», 1972, № 4; Уайлд Д. Дк. Методы поиска экстремума. Пер. с англ. М., 1967.

В. В. Иванов, В. С. Михалевич, Н. 3. Шор.

Алгебры логики

3.3.1. Минимизация ФАЛ с помощью матрицы Карно

Матрица Карно представляет собой своеобразную таблицу истинности ФАЛ, которая разбита на клетки. Количество клеток матрицы равно 2 n , где n – число аргументов ФАЛ. Столбцы и строки матрицы обозначаются наборами аргументов. Каждая клетка матрицы соответствует конституэнте единицы ФАЛ (двоичному числу). Двоичное число клетки состоит из набора аргументов строки и столбца. Матрица Карно для ФАЛ, зависящей от двух аргументов, представлена в виде таблицы 3.3., от трех аргументов таблицей 3.4. и от четырех аргументов таблицей 3.5.

Таблица 3.3.


Таблица 3.5.

х 3 х 4 х 1 х 2
0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0
1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0
1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0

Клетки матриц (таблицы 3.3., 3.4. и 3.5.) пронумерованы десятичными эквивалентами двоичных чисел клеток. Рядом расположенные клетки матриц, как по горизонтали, так и по вертикали, содержат соседние двоичные числа. Кроме этого соседние двоичные числа находятся во всех столбцах верхней и нижней строк, так же как во всех строках крайних столбцов.

Процесс минимизации ФАЛ с помощью матрицы Карно основан на законе склеивания соседних двоичных чисел. Можно склеивать двоичные числа рядом расположенных клеток, но рекомендуется склеивать наборы аргументов, которыми обозначены строки и столбцы матриц. Рассмотрим склеивание двоичных чисел клеток первого столбца матрицы (табл. 3.5.).

Клетки 0 и 4, соответственно двоичные числа 0000 и 0100, результат склеивания 0-00.

Клетки 8 и 12, двоичные числа 1000 и 1100, результат 1-00. Полученные импликанты склеиваются между собой, т.к. тире стоит в одном и том же разряде и двоичные числа импликант являются соседними, окончательный результат - - 00.

Клетки 8 и 12

Таким образом, если склеиваются все двоичные числа одного столбца, то пропадают те разряды, которыми обозначены строки. Аналогично, если будут склеиваться все двоичные числа одной строки, например 4, 5, 7, 6, то пропадают все разряды, которыми обозначены столбцы, т.е. результат будет следующий 01- -.

Если будут склеиваться двоичные числа только двух любых клеток, то прочерк ставиться вместо того разряда двоичных чисел строки или столбца, который изменится при переходе клеток из одной строчки в другую (или из одного столбца в другой). Например, склеиваются числа клеток 5 и 13, получим результат -101, или клеток 7 и 6 результат 011-.

При склеивании двоичных чисел восьми рядом расположенных клеток пропадает три переменные, например для клеток 3, 7, 15, 11, 2, 6, 14, 10 пропадают переменные х 1 , х 2 , х 3 . Переменные х 1 , х 2 пропадают потому, что склеиваются все клетки столбцов, а х 3 потому, что последние два столбца склеиваются между собой.

Прежде, чем рассмотреть примеры минимизации ФАЛ с помощь матрицы Карно, необходимо дать классификацию наборов аргументов, с помощью которых определяются функции алгебры логики.

Известно, что для каждой ФАЛ имеет место количество наборов аргументов 2 n , где n – число аргументов от которых зависит функция или логическое выражение.

Наборы аргументов делятся на три вида

1. Наборы аргументов, на которых функция равна единице, называются рабочими.

2. Наборы аргументов, на которых функция равна нулю, называются запрещенными.

3. Наборы аргументов, на которых функция может быть равна или единице, или нулю, называются безразличными.

Если заданная ФАЛ не имеет безразличных наборов, то она может быть представлена в буквенном выражении в виде СДНФ. При наличии в заданной ФАЛ безразличных наборов, ее представление может иметь следующую форму.

где – десятичные эквиваленты рабочих наборов,

– десятичные эквиваленты запрещенных наборов.

Наборы аргументов, которых нет среди рабочих и запрещенных, будут безразличными.

Пример 3.3. Минимизировать заданную ФАЛ в виде СДНФ с помощью матрицы Карно .

Следовательно, функция задана только рабочими наборами. Остальные будут запрещенными. Функция зависит только от трех аргументов. Строим матрицу Карно и в ее клетках, которые соответствуют рабочим наборам ставим единицы, а в остальных клетках ставим нули.

Таблица 3.5.

х 2 х 3 х 1
0

Для минимизации клетки матрицы, в которых стоят единицы, объединяются в контуры. В контур могут включаться две клетки, четыре или все восемь. В данном примере в контур включены четыре рядом расположенные клетки одной строки. Импликантой заданного контура будет 1 - -. Результат минимизации следующий , т.е. произошло сокращение заданной функции в СДНФ на 11 букв.

Пример 3.4. Минимизировать логическое выражение, заданное рабочими и запрещенными наборами с помощью матрицы Карно.

Строим матрицу Карно на четыре переменных и заполним клетки единицами и нулями соответственно для рабочих и запрещенных наборов.

Таблица 3.6.

х 3 х 4 х 1 х 2 00
(1)
(1) (1)

При объединении клеток с единицами в контуры желательно, чтобы в каждый контур включалось наибольшее число клеток из максимально возможного. Для этого клетки некоторых безразличных наборов используем как клетки рабочих наборов, подставив в них единицы в скобках. В результате получим три контура, содержащие по 4 клетки. В обобщенном коде контура, включающего в себя все клетки одной строки, пропадают переменные х 2 х 3 (10 - -). В обобщенном коде контура, включающего все клетки одного столбца пропадают переменные х 1 х 2 (- - 11) и для контура, содержащего по две клетки двух строк пропадают переменные х 2 (при переходе в контуре из одной строки в другую) и х 3 (при переходе из одного столбца в другой). В результате получим минимальную ДНФ в следующем виде

Возможные варианты объединения клеток матрицы Карно в контуры показаны на рисунке 3.4.


х 3 х 4 х 1 х 2

А = 0 - 0 - З = - 0 - 0
Н Б = 1 - 1 - К = - - - 1
В = - - 0 0 Л = - 1 - -
Г = 1 0 - - М = - - - 0
Д = - 0 0 1 Н = - 0 - -
Е = - 0 1 -
Ж = - 1 - 1

Рис. 3.1. Возможные варианты объединения клеток матрицы Карно в контуры


3.3.2. Минимизация функций алгебры логики с помощью матрицы на пять переменных

Матрица минимизации на пять переменных строится аналогично матрице Карно, т.е. в этой матрице рядом расположенные столбцы и строки должны быть обозначены соседними двоичными числами наборов переменных

В матрице на пять переменных (таблица 3.7.) строкам соответствуют наборы переменных х 1 х 2 х 3 , а столбцам наборы переменных х 4 х 5 . Каждой клетке матрицы соответствует пятиразрядное двоичное число. В клетках матрицы (табл. 3.7.) проставлены десятичные эквиваленты соответствующих двоичных чисел.

Таблица 3.7.

х 4 х 5 х 1 х 2 х 3

Минимизация ФАЛ с помощью матрицы на пять переменных заключается в объединении клеток с рабочими наборами (включая при необходимости и клетки с безразличными наборами) в контуры и получении для этих контуров соответствующих им обобщенных кодов.

Особенность здесь заключается в том, что в столбцах матрицы на пять переменных объединять по четыре клетки в контуры можно только или четыре клетки сверху, или четыре клетки внизу, или четыре клетки посередине. Например, для последнего столбца матрицы контуры могут состоять из клеток 2, 6, 14, 10, или 26, 30, 22, 18 или 14, 10, 26, 30.

Пример 3.6. Минимизировать с помощью матрицы на пять переменных следующее логическое выражение

Строим матрицу на пять переменных и заполняем клетки рабочих наборов единицами, запрещенных – нулями.

Объединяем в контуры клетки с рабочими наборами, включая в них необходимые клетки безразличных наборов. Для каждого контура определяем обобщенных код.

Таблица 3.8.

х 4 х 5
х 1 х 2 х 3
(1) (1) (1)
(1)
(1) (1)
(1) (1)
(1) (1)
(1)
(1) (1)

Получаем минимальную ДНФ

Контрольные вопросы

1. Дать определение сокращенной ДНФ.

2. Что представляет собой тупиковая ДНФ?

3. Как выбирается минимальная ДНФ из тупиковых ДНФ?

4. Для чего используется импликантная таблица и как она строится?

5. Пояснить аналитический способ минимизации ФАЛ Квайна-Мак-Класски.

6. Как строится матрица Карно на три и четыре переменных?

7. Минимизировать аналитическим способом следующие логические выражения, заданные только рабочими наборами

8. Минимизировать с помощью матрицы Карно логические выражения, заданные рабочими и запрещенными наборами


Похожая информация.


Метод применим для функций от любого числа переменных, но мы рассмотрим его для функций от 3-х переменных.

Представим в виде ДНФ с неопределенными коэффициентамиk:

(**)

В этой ДНФ представлены все возможные элементарные коньюнкции, которые могут входить в функцию, а коэффициенты kмогут принимать значения 0 или 1. Значения коэффициентов нужно выбрать так, чтобы данная ДНФ была минимальной.

Будем рассматривать данную нам функцию на всех наборах и приравнивать выражение (**) на каждом из наборов (отбрасывая нулевые конъюнкции) соответствующему значению функции. Получим систему изуравнений вида:

Если в каком-то из этих уравнений правая часть равна 0, то все слагаемые левой части тоже равны 0. Эти коэффициенты можно исключить из всех уравнений, правые части которых равны 1. В этих уравнениях значение 1 следует присвоить тому коэффициенту, который соответствует коньюнкции наименьшего ранга. Эти коэффициенты и определят МДНФ.

Пример

Составляем систему, используя выражение (**).

После исключения нулевых слагаемых получаем

Полагаем остальные коэффициенты считаем нулевыми. Получаем МДНФ:

2.2. Метод Квайна - Мак - Класки

Рассмотренный метод неопределенных коэффициентов эффективен, если число аргументов функции не больше, чем 5 – 6. Это связано с тем, что число уравнений равно 2 n . Более эффективным является выписывание не всех возможных конъюнкций для функции, а только тех, которые могут присутствовать в ДНФ данной функции. На этом основан метод Квайна. При этом предполагается, что функция задана в виде СДНФ. В данном методе элементарные конъюнкции рангаn, входящие в ДНф, называются минитермами рангаn. Метод Квайна состоит из последовательного выполнения следующих этапов.

1. Нахождение первичных импликант

Просматриваем последовательно каждый минитерм функции и производим склеивание его со всеми минитермами, с которыми это возможно. В результате склеивания минитермов n-го ранга, мы получим минитермы (n-1)-га ранга. Минитермыn-го ранга, которые участвовали в операции склеивания, помечаем. Затем рассматриваем минитермы (n-1)-го ранга и операцию склеивания применяем к ним. Помечаем склеивающиеся минитермы (n-1)-го ранга и записываем получившиеся в результате склеивания минитермы (n-2)-го ранга и т. д. Этап заканчивается, если вновь полученные минитермыl -го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются первичными импликантами. Их дизъюнкция представляет собой Сокр. ДНФ функции.

Склеиваем минитермы 4-го ранга и помечаем склеивающиеся минитермы звездочками

Образуем минитермы 2-го ранга:

Первичными (простыми) импликантами являются:

2. Расстановка меток

Для данной функции Сокр. ДНФ имеет вид:

Для построения тупиковых ДНФ и Сокр. ДНФ нужно выбросить лишние интервалы. Строим таблицу, строки которой соответствуют первичным импликантам, а столбцы – минитермам СДНФ. Если в некоторый из минитерм входит какой-то из импликант, то на пересечении соответствующей строки и столбца ставится метка, например, 1.

Продолжение примера

3. Нахождение существенных импликант

Если в каком-либо столбце содержится только одна единица, то первичная импликанта, определяющая эту строку, называется существенной. Например, существенной импликантой является . Существенная импликанта не может быть удалена из Сокр. ДНФ, т. к. только она способна покрыть некоторые минитермы СДНФ. Поэтому из таблицы исключаем строки, соответствующие этим импликантам, и столбцы, имеющие единицы в этих строках.

В рассматриваемом примере исключаем строку и столбцы.

В результате получаем таблицу

4. Вычеркивание лишних столбцов и строк

Если в полученной таблице есть одинаковые столбцы, то вычеркиваем все, кроме одного. Если после этого в таблице появятся пустые строки, то их вычеркиваем.

5. Выбор минимального покрытия максимальными интервалами

В полученной таблице выбираем такую совокупность строк, которая содержит единицы во всех столбцах. При нескольких возможных вариантах такого выбора, предпочтение отдается варианту с минимальным числом букв в строках, образующих покрытие.

Продолжение примера

Минимальное покрытие таблицы образуют строки, соответствующие импликантам . Тогда МДНФ имеет вид:

В методе Квайна есть одно существенное неудобство, связанное с необходимостью полного по парного сравнивания минитермов на этапе построения Сокр. ДНФ. В 1956 г. Мак - Класки предположил модернизацию первого этапа метода Квайна, дающую существенное уменьшение количества сравнений минитермов.

Идея метода Мак - Класки заключается в следующем. Все минитермы записываются в виде двоичных номеров, например, как 1010. Эти номера разбиваются на группы по числу единиц в номере, т. е. вi-ю группу попадают номера, имеющие в своей записиiединиц. По парное сравнение производится только между соседними по номеру группами, т. к. минитермы, пригодные для склеивания, отличаются друг от друга только в одном разряде. При образовании минитермов с ранга выше нулевого, в разряды, соответствующие исключенным переменным, ставится тире.

Пример

Найдем МДНФ для функции:

Минитермы 4-го ранга по группам

Минитермы 3-го ранга

Минитермы 2-го ранга

Непомеченные минитермы или простые импликанты

Строим таблицу меток

Обе первичные импликанты существенны и определяют минимальное покрытие, т. е. МДНФ имеет вид.

Минимизация логических функций является одной из типовых задач в процессе обучения схемотехнике. Посему считаю, что такая статья имеет место быть, надеюсь Вам понравится.

Зачем это нужно?

Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок.

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например, метод Квайна, метод карт Карно, метод испытания импликант, метод импликантных матриц, метод Квайна-Мак-Класки и др. Эти методы наиболее пригодны для обычной практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В тех случаях, когда число аргументов больше шести, обычно используют метод Квайна-Мак-Класки.

В процессе минимизации той или иной логической функции, обычно учитывается, в каком базисе эффективнее будет реализовать ее минимальную форму при помощи электронных схем.

Минимизация логических функций при помощи карт Карно

Карта Карно - графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке. Например:

Возможность поглощения следует из очевидных равенств

Таким образом, главной задачей при минимизации СДНФ и СКНФ является поиск термов, пригодных к склейке с последующим поглощением, что для больших форм может оказаться достаточно сложной задачей. Карты Карно предоставляют наглядный способ отыскания таких термов.

Как известно, булевы функции N переменных, представленные в виде СДНФ или СКНФ могут иметь в своём составе 2N различных термов. Все эти члены составляют некоторую структуру, топологически эквивалентную N–мерному кубу, причём любые два терма, соединённые ребром, пригодны для склейки и поглощения.

На рисунке изображена простая таблица истинности для функции из двух переменных, соответствующий этой таблице 2-мерный куб (квадрат), а также 2-мерный куб с обозначением членов СДНФ и эквивалентная таблица для группировки термов:

В случае функции трёх переменных приходится иметь дело с трёхмерным кубом. Это сложнее и менее наглядно, но технически возможно. На рисунке в качестве примера показана таблица истинности для булевой функции трёх переменных и соответствующий ей куб.

Как видно из рисунка, для трёхмерного случая возможны более сложные конфигурации термов. Например, четыре терма, принадлежащие одной грани куба, объединяются в один терм с поглощением двух переменных:

В общем случае можно сказать, что 2K термов, принадлежащие одной K–мерной грани гиперкуба, склеиваются в один терм, при этом поглощаются K переменных.

Для упрощения работы с булевыми функциями большого числа переменных был предложен следующий удобный приём. Куб, представляющий собой структуру термов, разворачивается на плоскость как показано на рисунке. Таким образом появляется возможность представлять булевы функции с числом переменных больше двух в виде плоской таблицы. При этом следует помнить, что порядок кодов термов в таблице (00 01 11 10) не соответствует порядку следования двоичных чисел, а клетки, находящиеся в крайних столбцах таблицы, соседствуют между собой.

Аналогичным образом можно работать с функциями четырёх, пяти и более переменных. Примеры таблиц для N=4 и N=5 приведены на рисунке. Для этих таблиц следует помнить, что соседними являются клетки, находящиеся в соответственных клетках крайних столбцов и соответственных клетках верхней и нижней строки. Для таблиц 5 и более переменных нужно учитывать также, что квадраты 4х4 виртуально находятся друг над другом в третьем измерении, поэтому соответственные клетки двух соседних квадратов 4х4 являются сосоедними, и соответствующие им термы можно склеивать.

Карта Карно может быть составлена для любого количества переменных, однако удобно работать при количестве переменных не более пяти. По сути Карта Карно - это таблица истинности составленная в 2-х мерном виде. Благодаря использованию кода Грея в ней верхняя строка является соседней с нижней, а правый столбец соседний с левым, т.о. вся Карта Карно сворачивается в фигуру тор (бублик). На пересечении строки и столбца проставляется соответствующее значение из таблицы истинности. После того как Карта заполнена, можно приступать к минимизации.

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки которые содержат единицы, если нужна КНФ, то рассматриваем те клетки которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

Далее берём первую область и смотрим какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных, если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.
Например(для Карт на 2-ве переменные):


Для КНФ всё то же самое, только рассматриваем клетки с нулями, не меняющиеся переменные в пределах одной области объединяем в дизъюнкции (инверсии проставляем над единичными переменными), а дизъюнкции областей объединяем в конъюнкцию. На этом минимизация считается законченной. Так для Карты Карно на рис.1 выражение в формате ДНФ будет иметь вид:

В формате КНФ: