Фильтр Калмана - это, наверное, самый популярный алгоритм фильтрации, используемый во многих областях науки и техники. Благодаря своей простоте и эффективности его можно встретить в GPS-приемниках, обработчиках показаний датчиков, при реализации систем управления и т.д.

Про фильтр Калмана в интернете есть очень много статей и книг (в основном на английском), но у этих статей довольно большой порог вхождения, остается много туманных мест, хотя на самом деле это очень ясный и прозрачный алгоритм. Я попробую рассказать о нем простым языком, с постепенным нарастанием сложности.

Для чего он нужен?

Любой измерительный прибор обладает некоторой погрешностью, на него может оказывать влияние большое количество внешних и внутренних воздействий, что приводит к тому, что информация с него оказывается зашумленной. Чем сильнее зашумлены данные тем сложнее обрабатывать такую информацию.

Фильтр - это алгоритм обработки данных, который убирает шумы и лишнюю информацию. В фильтре Калмана есть возможность задать априорную информацию о характере системе, связи переменных и на основании этого строить более точную оценку, но даже в простейшем случае (без ввода априорной информации) он дает отличные результаты.

Рассмотрим простейший пример - предположим нам необходимо контролировать уровень топлива в баке. Для этого в бак устанавливается емкостный датчик, он очень прост в обслуживании, но обладает некоторыми недостатками - например, зависимость от заправляемого топлива (диэлектрическая проницаемость топлива зависит от многих факторов, например, от температуры), большое влияние «болтанки» в баке. В итоге, информация с него представляет типичную «пилу» с приличной амплитудой. Такого рода датчики часто устанавливаются на тяжелой карьерной технике (не смущайтесь объемам бака):

Фильтр Калмана

Немного отвлечемся и познакомимся с самим алгоритмом. Фильтр Калмана использует динамическую модель системы (например, физический закон движения), известные управляющие воздействия и множество последовательных измерений для формирования оптимальной оценки состояния. Алгоритм состоит из двух повторяющихся фаз: предсказание и корректировка. На первом рассчитывается предсказание состояния в следующий момент времени (с учетом неточности их измерения). На втором, новая информация с датчика корректирует предсказанное значение (также с учетом неточности и зашумленности этой информации):

Уравнения представлены в матричной форме, если вы не знаете линейную алгебру - ничего страшного, дальше будет упрощенная версия без матриц для случая с одной переменной. В случае с одной переменной матрицы вырождаются в скалярные значения.

Разберемся сначала в обозначениях: подстрочный индекс обозначает момент времени: k - текущий, (k-1) - предыдущий, знак «минус» в верхнем индексе обозначает, что это предсказанное промежуточное значение.

Описание переменных представлены на следующих изображениях:

Можно долго и нудно описывать, что означают все эти таинственные матрицы переходов, но лучше, на мой взгляд, на реальном примере попробовать применить алгоритм - чтобы абстрактные значения обрели реальный смысл.

Опробуем в деле

Вернемся к примеру с датчиком уровня топлива, так как состояние системы представлено одной переменной (объем топлива в баке), то матрицы вырождаются в обычные уравнения:

Определение модели процесса
Для того, чтобы применить фильтр, необходимо определить матрицы/значения переменных определяющих динамику системы и измерений F, B и H:

F - переменная описывающая динамику системы, в случае с топливом - это может быть коэффициент определяющий расход топлива на холостых оборотах за время дискретизации (время между шагами алгоритма). Однако помимо расхода топлива, существуют ещё и заправки… поэтому для простоты примем эту переменную равную 1 (то есть мы указываем, что предсказываемое значение будет равно предыдущему состоянию).

B - переменная определяющая применение управляющего воздействия. Если бы у нас были дополнительная информация об оборотах двигателя или степени нажатия на педаль акселератора, то этот параметр бы определял как изменится расход топлива за время дискретизации. Так как управляющих воздействий в нашей модели нет (нет информации о них), то принимаем B = 0.

H - матрица определяющая отношение между измерениями и состоянием системы, пока без объяснений примем эту переменную также равную 1.

Определение сглаживающих свойств
R - ошибка измерения может быть определена испытанием измерительных приборов и определением погрешности их измерения.

Q - определение шума процесса является более сложной задачей, так как требуется определить дисперсию процесса, что не всегда возможно. В любом случае, можно подобрать этот параметр для обеспечения требуемого уровня фильтрации.

Реализуем в коде
Чтобы развеять оставшиеся непонятности реализуем упрощенный алгоритм на C# (без матриц и управляющего воздействия):

class KalmanFilterSimple1D
{
public double X0 {get; private set;} // predicted state
public double P0 { get; private set; } // predicted covariance

Public double F { get; private set; } // factor of real value to previous real value
public double Q { get; private set; } // measurement noise
public double H { get; private set; } // factor of measured value to real value
public double R { get; private set; } // environment noise

Public double State { get; private set; }
public double Covariance { get; private set; }

Public KalmanFilterSimple1D(double q, double r, double f = 1, double h = 1)
{
Q = q;
R = r;
F = f;
H = h;
}

Public void SetState(double state, double covariance)
{
State = state;
Covariance = covariance;
}

Public void Correct(double data)
{
//time update - prediction
X0 = F*State;
P0 = F*Covariance*F + Q;

//measurement update - correction
var K = H*P0/(H*P0*H + R);
State = X0 + K*(data - H*X0);
Covariance = (1 - K*H)*F;
}
}

// Применение...

Var fuelData = GetData();
var filtered = new List();

Var kalman = new KalmanFilterSimple1D(f: 1, h: 1, q: 2, r: 15); // задаем F, H, Q и R
kalman.SetState(fuelData, 0.1); // Задаем начальные значение State и Covariance
foreach(var d in fuelData)
{
kalman.Correct(d); // Применяем алгоритм

Filtered.Add(kalman.State); // Сохраняем текущее состояние
}

Результат фильтрации с данными параметрами представлен на рисунке (для настройки степени сглаживания - можно изменять параметры Q и R):

За рамками статьи осталось самое интересное - применение фильтра Калмана для нескольких переменных, задание взаимосвязи между ними и автоматический вывод значений для ненаблюдаемых переменных. Постараюсь продолжить тему как только появится время.

Надеюсь описание получилось не сильно утомительным и сложным, если остались вопросы и уточнения - добро пожаловать в комментарии)

Эти фильтры в литературе также называются фильтрами Калмана - Бьюси . В отличие от задачи Винера, для задания случайного входного полезного сигнала (задающего воздействия) здесь используется формирующий фильтр (рис. 4.2), представляющий собой некоторую динамическую систему, описываемую линейными дифференциальными уравнениями в общем случае с переменными коэффициентами и возбуждаемую многомерным белым шумом и с гауссовским распределением.

Рис. 4.2. Оптимальный фильтр Калмана.

На рис. 4.2 это показано для непрерывного случая.

Формирующий фильтр, возбуждаемый белым шумом, представляет собой модель входного процесса системы управления (систему-аналог). Состояние этой модели в каждый момент времени определяется совокупностью переменных состояния число которых обусловливается видом входного сигнала, т. е. его корреляционной функцией или спектральной плотностью. Определение состояния системы-аналога производится измерительным устройством которое на своем выходе дает совокупность входных сигналов системы управления т. е. многомерный входной сигнал, искаженный аддитивной помехой представляющей собой многомерный белый шум с гауссовым распределением. В дискретном варианте задачи Р. Калмана входные и выходные величины формирующего фильтра рассматриваются в дискретные моменты времени где - целое число, период дискретности. В этом случае

модель входного сигнала описывается системой линейных разностных уравнений.

Требуется построить динамическую систему - фильтр Калмана которая дает наилучшую оценку многомерной величины в виде совокупности выходных величин фильтра Далее из этой совокупности могут формироваться линейным образом выходные величины систем управления .

К оценке предъявляется требование несмещенности, т. е. ее математическое ожидание

Выражение (4.9) записывается также в другом виде. При заданных измерениях величины от момента до момента I оценка в некоторый момент времени должна обладать свойством

Кроме того, накладывается условие минимума дисперсии ошибки оценки, которое записывается в виде

где Г - любая положительно-определенная матрица. Матричное произведение представляет собой квадратичную форму с весовой матрицей Г. Выражение (4.11) означает, что оценка величины удовлетворяет условию минимума дисперсии ошибки каждой из составляющих совокупности величин

При использовании фильтров Калмана возможны следующие случаи.

1. Для непрерывных систем решается задача оптимальной фильтрации, т. е. задача выделения полезного сигнала из аддитивной смеси полезного сигнала и помехи. В этом случае фильтр Калмана дает оценку совокупности переменных начиная с некоторого момента времени в виде первоначального грубого приближения которое тем точнее, чем больше имеется априорных сведений о совокупности Далее с течением времени эта оценка улучшается и постоянно приближается к теоретически достижимому

значению, которое уже не зависит от априорных сведений о значении а определяется свойствами формирующего фильтра и помехами измерительного устройства.

В установившемся состоянии фильтр Калмана совпадает с фильтром Винера и дает то же значение оценки.

2. В дискретных системах возможна постановка задачи оптимального определения оценки для времени по данным измерений входного сигнала в временных точках от до , т. е. задачи оптимального предсказания на один (или несколько) такт вперед. Эта задача имеет смысл и в случае равенства нулю помех измерительного устройства.

3. В дискретных системах возможна также постановка задачи оптимальной фильтрации, т. е. задачи определения оценки по данным предыдущих измерений, включая и момент времени Эта задача может быть решена в случае наличия конфликтной ситуации, даваемой помехами измерений.

Применительно к цифровым системам автоматического управления и регулирования необходимо отметить следующее. В цифровой системе управления, как правило, измерение входного сигнала в момент времени не дает возможности откорректировать ее выходную величину в этот же момент времени, так как реакция непрерывной части системы (ее приведенная весовая функция) на входной сигнал в этот же момент времени равна нулю и она не может быть не равной нулю. Поэтому выходная величина системы в момент времени может быть определена только в результате прогнозирования по результатам предыдущих измерений.

Указанная выше вторая задача, решаемая фильтрами Калмана, имеет очевидное практическое значение для цифровых автоматических систем. Однако следует заметить, что во многих случаях период дискретности цифровой системы управления приходится выбирать по различным соображениям (устойчивости, возможности потери входной информации и др.) сравнительно малым (тысячные и сотые доли секунды). Сама же непрерывная часть системы управления может содержать экстраполяторы, хорошо прогнозирующие требуемый выходной процесс. Такими экстраполяторами могут быть интеграторы различного вида и сами объекты управления. Поэтому задача оптимального прогнозирования на

такт вперед в некоторых случаях теряет свой смысл и может привести к неправильным решениям конкретной технической задачи. Однако прогнозирование на несколько тактов вперед обычно не теряет своего смысла и при малых периодах дискретности. Но в этом случае оно практически совпадает со случаем прогнозирования в непрерывных системах.

Третья задача, решаемая фильтром Калмана, имеет большие возможности, так как предполагает нахождение оптимального решения задачи построения системы управления при одновременном действии полезного сигнала и помехи. Ограничения в использовании фильтров Калмана для построения цифровых систем управления определяются следующими обстоятельствами.

1. Построение фильтра Калмана предполагает полные априорные сведения о структуре формирующего фильтра, т. е. полные априорные сведения о статистических свойствах входного сигнала и полные сведения о действующих помехах. Если эти сведения малодостоверны, то оптимизация теряет здесь смысл либо следует идти по пути значительного усложнения системы за счет использования принципов адаптации.

2. Использование фильтров Калмана предполагает отсутствие ограничений на структуру оптимальной системы. Поэтому переход от требуемой теоретической структуры к реальной структуре системы управления, содержащей те или иные заданные элементы, может значительно ухудшить результаты. Эти ограничения обычно не сказываются в тех случаях, когда вся система выработки оценки многомерной величины строится, например, на ЦВМ и не включает в себя заданных заранее элементов системы управления.

3. При построении фильтра Калмана предполагается, как это будет показано ниже, что для обработки может быть использовано предыдущих значений входных сигналов, где - порядок разностного уравнения, описывающего формирующий фильтр (рис. 4.2). В реальных условиях работы цифровой системы управления можно использовать для обработки большее число предыдущих входных сигналов, что позволяет существенно снизить влияние помех измерения входных сигналов и получить результаты, лучшие по сравнению с фильтром Калмана.

Использование реальных фильтров. В некоторых случаях построения систем управления входной сигнал задан своими

характеристиками, но помехи отсутствуют или они сравнительно малы, в результате чего построение оптимальной системы в смысле Винера или Калмана теряет смысл. Это не означает, однако, что реальная система управления может быть построена со сколь угодно малой дисперсией ошибки. В идеализированном случае винеровского или калмановского фильтра на проектируемую систему не накладывается никаких предварительных ограничений. Увеличение общего коэффициента с целью повышения точности воспроизведения полезного сигнала здесь ограничивается возрастанием ошибки за счет увеличения пропускания помех, действующих на входе. Это и создает конфликтную ситуацию.

В реальных системах помехи во входном сигнале могут и отсутствовать, но увеличение общего коэффициента усиления в этом случае ограничивается приближением к колебательной границе устойчивости, которое вызывает рост ошибки за счет увеличения колебательности системы. Максимальные достижимые коэффициенты усиления в этом случае будут определяться наличием в реальной системе некоторой совокупности звеньев с малыми постоянными времени, влияние которых уже не может быть скомпенсировано.

В этом смысле налнчие совокупности звеньев, характеризуемое суммой их постоянных времени или результирующим временным запаздыванием, эквивалентно по конечному результату действию на входе некоторой помехи. И в том и в другом случаях максимальная точность системы оказывается ограниченной, а дисперсия ошибки не может быть сделана меньше некоторого предельного значения.

Оценка минимальной суммы постоянных времени или суммарного временного запаздывания в проектируемой системе может быть сделана достаточно опытным конструктором при выборе ее элементов. При этом, конечно, конструктор может влиять на эту сумму в сторону ее уменьшения. Однако это может быть связано с переходом к более совершенным и дорогим элементам. Поэтому эта сумма может быть всегда оценена для данной конкретной ситуации и она зависит от уровня развития используемой техники.

Учет влияния малых постоянных времени накладывает на проектируемую систему некоторые ограничения, которых обычно нет при решении задачи оптимального синтеза. Эти ограничения в принципе могут быть учтены в виде

некоторого эквивалентного шума. Поясним это простейшим примером. Пусть полезный сигнал на входе имеет спектральную плотность для производной в виде

где - дисперсия первой производной, а - некоторая постоянная времени, и спектральную плотность помехи на входе соответствующую белому шуму. Пусть отыскивается оптимальное значение общего коэффициента усиления системы, имеющей передаточную функцию в разомкнутом состоянии вида

При отсутствии взаимной корреляции между полезным сигналом и помехой дисперсия ошибки

Дифференцирование (4.14) по коэффициенту усиления и приравнивание производной нулю дает условие минимума дисперсии ошибки

Подстановка (4.15) в (4.14) дает минимальное значение дисперсии ошибки, соответствующее оптимальному значению общего коэффициента усиления:

Пусть теперь решается задача оптимального выбора коэффициента усиления при том же полезном входном сигнале и при отсутствии помехи, но при условии, что передаточная функция разомкнутой системы может иметь вид

где - суммарное временное запаздывание, которое не может быть устранено в системе управления при выбранных

элементах. Такое суммарное временное запаздывание может быть введено, например, при наличии нескольких апериодических звеньев с малыми постоянными времени. Дисперсия ошибки в этом случае

Интеграл (4.18) не берется элементарным образом. Приближенное его вычисление дает

Минимум дисперсии ошибки будет при выполнении условия

Подстановка этого значения коэффициента усиления в (4.19) дает минимальную дисперсию ошибки

Приравнивание (4.16) и (4.21) позволяет определить уровень эквивалентного белого шума

который по своему действию приводит к такому же эффекту, как и влияние неустраняемого временного запаздывания.

Возможны, конечно, более сложные ситуации, когда, кроме наличия в системе некоторых малых параметров, на входе системы действуют реальные помехи. И в этом случае в принципе можно найти эквивалентную помеху, учитывающую наличие двух этих факторов. Однако подобный путь приводит к значительному усложнению расчетов. Поэтому эквивалентность малых постоянных времени по своему конечному действию входному шуму в системе управления имеет лишь некоторый познавательный интерес. Сама же задача синтеза системы управления в этом случае может более просто решаться на основе разработанных в настоящее время инженерных методов, предполагающих

использование типовых передаточных функций, типовых переходных характеристик, типовых логарифмических частотных характеристик и т. п.

Таким образом, при построении реальных фильтров, представляющих собой системы автоматического управления, работающие как при наличии помех на входе, так и при их отсутствии, структура их должна соответствовать изображенной на рис. 4.3. На вход системы поступает аддитивная смесь полезного сигнала и и помехи либо только полезный сигнал. Полезный сигнал может быть регулярной функцией времени, стационарным случайным процессом или нестационарным процессом. Помехи, как правило, представляются в виде случайного стационарного процесса с нулевым средним значением. Кроме того, на систему может действовать Еозмущение или несколько возмущений, приложенных к различным точкам объекта.

Рис. 4.3. Реальный одномерный фильтр.

Линейный оператор формирует из процесса и задающее воздействие которое и должно воспроизводиться на выходе системы управления с передаточной функцией Система управления должна состоять из неизменяемой части в качестве которой может рассматриваться, например, совокупность некоторых звеньев с малыми постоянными времени или звено временного запаздывания, и изменяемой части по отношению к которой имеется свобода выбора в части ее передаточной функции.

Таким образом, здесь приходится иметь дело с полужесткой структурой системы управления. Заметим, что сформулированное выше понятие неизменяемой части системы несколько отличается от обычно используемого в литературе, когда под неизменяемой частью просто понимается объект управления с его передаточной функцией. Дело в том, что применение различных корректирующих средств (последовательного типа, параллельного типа, обратных связей) позволяет активно влиять на передаточнуюфункциюобъекта, меняя ее нужным образом. Однако это может делаться только

до некоторого предела, который характеризуется минимальными значениями «остаточных» постоянных времени или временных запаздываний, которыми располагает конструктор. Поэтому неизменяемая часть системы определяется здесь в этом смысле.

При построении реальных фильтров возможны следующие случаи.

1. При условии задания характеристик полезного сигнала, помехи, возмущений и неизменяемой части системы требуется найти передаточную функцию системы управления при которой обеспечивается выполнение требований по точности, определяемых по среднеквадратичной ошибке, максимальной ошибке, наиболее вероятной ошибке или иным образом, и выполняются другие требования к системе, сформулированные в § 4.1.

Задача может облегчаться, если отсутствуют помехи на входе, либо отсутствуют возмущения, приложенные к объекту управления, либо отсутствует и то и другое. Однако она не становится при этом тривиальной.

2. При условии задания характеристик полезного сигнала, помехи, возмущений и неизменяемой части системы требуется определить передаточную функцию системы управления, при которой выполняется условие минимизации дисперсии ошибки что соответствует построению оптимальной системы.

Следует обратить внимание на то, что построение реальных фильтров представляет значительно более трудную задачу, чем построение, например, фильтра Винера. В этом можно убедиться, сравнив рис. 4.1 и рис. 4.3. Кроме того, выполнение первой сформулированной выше задачи часто оказывается более сложным, чем построение оптимальной системы. Дело заключается в том, что оптимальная система для имеющихся исходных данных всегда может быть построена и трудности нахождения оптимальной передаточной функции относятся к чисто математическим. Использование в настоящее время ЭВМ в значительной степени снимает эти трудности. Поэтому задача оптимизации системы управления, например, по минимуму дисперсии ошибки в некоторых случаях приобретает сейчас тривиальный характер.

В то же время задача построения системы с требуемой точностью при имеющихся исходных данных может и не

иметь решения. Если же решить эту задачу все же необходимо, то возможно, что придется решать попутно целый комплекс сложнейших проблем, связанных с переходом к более совершенным элементам системы управления, получением дополнительной информации о входных сигналах системы, например, по первой, второй и более высоким производным задающего воздействия, переходом к более совершенным средствам переработки информации и т. п.

Поэтому первая сформулированная выше задача не теряет своей актуальности, несмотря на развитие теории оптимальных систем, и, более того, она оказывает сейчас наиболее активное влияние на развитие техники автоматического управления.

Рис. 4.4. Реальный многомерный фильтр.

При переходе к многомерным системам управления задача построения реальных фильтров сохраняет свое значение. Структурная схема для этого случая изображена на рис. 4.4. На схеме показаны матрицы-столбцы полезных входных воздействий и помех задающих воздействий возмущающих воздействий управляемых величин и ошибки , а также матрицы передаточных функций

Все приведенные выше соображения по построению непрерывных систем управления на основе использования реальных фильтров практически сохраняют свое значение и для цифровых систем управления с учетом их особенностей - квантования по времени и квантования по уровню.

Фильтр Калмана широко используется в инженерных и эконометрических приложениях: от радаров и систем технического зрения до оценок параметров макроэкономических моделей . Калмановская фильтрация является важной частью теории управления , играет большую роль в создании систем управления. Совместно с линейно-квадратичным регулятором фильтр Калмана позволяет решить задачу линейно-квадратичного гауссовского управления . Фильтр Калмана и линейно-квадратичный регулятор - возможное решение большинства фундаментальных задач в теории управления.

В большинстве приложений количество параметров, задающих состояние объекта, больше, чем количество наблюдаемых параметров, доступных для измерения. При помощи модели объекта по ряду доступных измерений фильтр Калмана позволяет получить оценку внутреннего состояния.

Фильтр Калмана предназначен для рекурсивного дооценивания вектора состояния априорно известной динамической системы, то есть для расчёта текущего состояния системы необходимо знать текущее измерение, а также предыдущее состояние самого фильтра. Таким образом, фильтр Калмана, как и множество других рекурсивных фильтров, реализован во временно́м, а не в частотном представлении.

Наглядный пример возможностей фильтра - получение точных, непрерывно обновляемых оценок положения и скорости некоторого объекта по результатам временно́го ряда неточных измерений его местоположения. Например, в радиолокации стоит задача сопровождения цели, определения её местоположения, скорости и ускорения, при этом результаты измерений поступают постепенно и сильно зашумлены. Фильтр Калмана использует вероятностную модель динамики цели, задающую тип вероятного движения объекта, что позволяет снизить воздействие шума и получить хорошие оценки положения объекта в настоящий, будущий или прошедший момент времени.

Введение

Фильтр Калмана оперирует понятием вектора состояния системы (набором параметров, описывающих состояние системы на некоторый момент времени) и его статистическим описанием. В общем случае динамика некоторого вектора состояния описывается плотностями вероятности распределения его компонент в каждый момент времени. При наличии определенной математической модели производимых наблюдений за системой, а также модели априорного изменения параметров вектора состояния (а именно - в качестве марковского формирующего процесса) можно записать уравнение для апостериорной плотности вероятности вектора состояния в любой момент времени. Данное дифференциальное уравнение носит название уравнение Стратоновича . Уравнение Стратоновича в общем виде не решается. Аналитическое решение удается получить только в случае ряда ограничений (предположений):

  • гауссовости априорных и апостериорных плотностей вероятности вектора состояния на любой момент времени (в том числе начальный)
  • гауссовости формирующих шумов
  • гауссовости шумов наблюдений
  • белости шумов наблюдений
  • линейности модели наблюдений
  • линейности модели формирующего процесса (который, напомним, должен являться марковским процессом)

Классический фильтр Калмана является уравнениями для расчета первого и второго момента апостериорной плотности вероятности (в смысле вектора математических ожиданий и матрицы дисперсий, в том числе взаимных) при данных ограничениях. Ввиду того, что для нормальной плотности вероятности математическое ожидание и дисперсионная матрица полностью задают плотность вероятности, можно сказать, что фильтр Калмана рассчитывает апостериорную плотность вероятности вектора состояния на каждый момент времени. А значит полностью описывает вектор состояния как случайную векторную величину.

Расчетные значения математических ожиданий при этом являются оптимальными оценками по критерию среднеквадратической ошибки, что и обуславливает его широкое применение.

Существует несколько разновидностей фильтра Калмана, отличающихся приближениями и ухищрениями, которые приходится применять для сведения фильтра к описанному виду и уменьшения его размерности:

  • Расширенный фильтр Калмана (EKF, Extended Kalman filter). Сведение нелинейных моделей наблюдений и формирующего процесса с помощью линеаризации посредством разложения в ряд Тейлора .
  • Unscented Kalman filter (UKF). Используется в задачах, в которых простая линеаризация приводит к уничтожению полезных связей между компонентами вектора состояния. В этом случае «линеаризация» основана на unscented -преобразовании.
  • Ensemble Kalman filter (EnKF). Используется для уменьшения размерности задачи.
  • Возможны варианты с нелинейным дополнительным фильтром, позволяющим привести негауссовские наблюдения к нормальным.
  • Возможны варианты с «обеляющим» фильтром, позволяющим работать с «цветными» шумами
  • и т. д.

Используемая модель динамической системы

Фильтры Калмана базируются на дискретизированных по времени линейных динамических системах . Такие системы моделируются цепями Маркова при помощи линейных операторов и слагаемых с нормальным распределением . Состояние системы описывается вектором конечной размерности - вектором состояния . В каждый такт времени линейный оператор действует на вектор состояния и переводит его в другой вектор состояния (детерминированное изменение состояния), добавляется некоторый вектор нормального шума (случайные факторы) и в общем случае вектор управления, моделирующий воздействие системы управления. Фильтр Калмана можно рассматривать как аналог скрытым моделям Маркова , с тем отличием, что переменные, описывающие состояние системы, являются элементами бесконечного множества действительных чисел (в отличие от конечного множества пространства состояний в скрытых моделях Маркова). Кроме того, скрытые модели Маркова могут использовать произвольные распределения для последующих значений вектора состояния, в отличие от фильтра Калмана, использующего модель нормально распределенного шума. Существует строгая взаимосвязь между уравнениями фильтра Калмана и скрытой модели Маркова. Обзор этих и других моделей дан Roweis и Chahramani (1999) .

При использовании фильтра Калмана для получения оценок вектора состояния процесса по серии зашумленных измерений необходимо представить модель данного процесса в соответствии со структурой фильтра - в виде матричного уравнения определенного типа. Для каждого такта k работы фильтра необходимо в соответствии с приведенным ниже описанием определить матрицы: эволюции процесса F k ; матрицу наблюдений H k ; ковариационную матрицу процесса Q k ; ковариационную матрицу шума измерений R k ; при наличии управляющих воздействий - матрицу их коэффициентов B k .

Многие реальные динамические системы нельзя точно описать данной моделью. На практике неучтённая в модели динамика может серьёзно испортить рабочие характеристики фильтра, особенно при работе с неизвестным стохастическим сигналом на входе. Более того, неучтённая в модели динамика может сделать фильтр неустойчивым . С другой стороны, независимый белый шум в качестве сигнала не будет приводить к расхождению алгоритма. Задача отделения шумов измерений от неучтенной в модели динамики сложна, решается она с помощью теории робастных систем управления .

Фильтр Калмана

Фильтр Калмана является разновидностью рекурсивных фильтров . Для вычисления оценки состояния системы на текущий такт работы ему необходима оценка состояния (в виде оценки состояния системы и оценки погрешности определения этого состояния) на предыдущем такте работы и измерения на текущем такте. Данное свойство отличает его от пакетных фильтров, требующих в текущий такт работы знание истории измерений и/или оценок. Далее под записью будем понимать оценку истинного вектора в момент n с учетом измерений с момента начала работы и по момент m включительно.

Состояние фильтра задается двумя переменными:

Итерации фильтра Калмана делятся на две фазы: экстраполяция и коррекция. Во время экстраполяции фильтр получает предварительную оценку состояния системы (в русскоязычной литературе часто обозначается , где означает «экстраполяция», а k - номер такта, на котором она получена) на текущий шаг по итоговой оценке состояния с предыдущего шага (либо предварительную оценку на следующий такт по итоговой оценке текущего шага, в зависимости от интерпретации). Эту предварительную оценку также называют априорной оценкой состояния, так как для её получения не используются наблюдения соответствующего шага. В фазе коррекции априорная экстраполяция дополняется соответствующими текущими измерениями для коррекции оценки. Скорректированная оценка также называется апостериорной оценкой состояния, либо просто оценкой вектора состояния . Обычно эти две фазы чередуются: экстраполяция производится по результатам коррекции до следующего наблюдения, а коррекция производится совместно с доступными на следующем шаге наблюдениями, и т. д. Однако возможно и другое развитие событий, если по некоторой причине наблюдение оказалось недоступным, то этап коррекции может быть пропущен и выполнена экстраполяция по нескорректированной оценке (априорной экстраполяции). Аналогично, если независимые измерения доступны только в отдельные такты работы, всё равно возможны коррекции (обычно с использованием другой матрицы наблюдений H k ).

Этап экстраполяции

Экстраполяция (предсказание) вектора состояния системы по оценке вектора состояния и примененному вектору управления с шага (k −1 ) на шаг k :
Ковариационная матрица для экстраполированного вектора состояния :

Этап коррекции

Отклонение полученного на шаге k наблюдения от наблюдения, ожидаемого при произведенной экстраполяции:
Ковариационная матрица для вектора отклонения (вектора ошибки):
Оптимальная по Калману матрица коэффициентов усиления, формирующаяся на основании ковариационных матриц имеющейся экстраполяции вектора состояния и полученных измерений (посредством ковариационной матрицы вектора отклонения):
Коррекция ранее полученной экстраполяции вектора состояния - получение оценки вектора состояния системы:
Расчет ковариационной матрицы оценки вектора состояния системы:

Выражение для ковариационной матрицы оценки вектора состояния системы справедливо только при использовании приведенного оптимального вектора коэффициентов. В общем случае это выражение имеет более сложный вид.

Инварианты

Если модель абсолютно точна и абсолютно точно заданы начальные условия и , то следующие величины сохраняются после любого количества итераций работы фильтра - являются инвариантами:

Математические ожидания оценок и экстраполяций вектора состояния системы, матрицы ошибок являются нуль-векторами:

где - математическое ожидание .

Расчетные матрицы ковариаций экстраполяций, оценок состояния системы и вектора ошибок совпадают с истинными матрицами ковариаций:

Пример построения фильтра

Представим себе вагонетку , стоящую на бесконечно длинных рельсах при отсутствующем трении . Изначально она покоится в позиции 0, но под действием случайных факторов на неё действует случайное ускорение . Мы измеряем положение вагонетки каждые ∆t секунд, но измерения неточны. Мы хотим получать оценки положения вагонетки и её скорости. Применим к этой задаче фильтр Калмана, определим все необходимые матрицы.

В данной задаче матрицы F , H , R и Q не зависят от времени, опустим их индексы. Кроме того, мы не управляем вагонеткой, поэтому матрица управления B отсутствует.

Координата и скорость вагонетки описывается вектором в линейном пространстве состояний

где - скорость (первая производная координаты по времени).

Будем считать, что между (k −1 )-ым и k -ым тактами вагонетка движется с постоянным ускорением a k , распределенным по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением σ a . В соответствии с механикой Ньютона можно записать

.

Ковариационная матрица случайных воздействий

(σ a - скаляр).

На каждом такте работы производится измерение положения вагонетки. Предположим, что погрешность измерений v k имеет нормальное распределение с нулевым математическим ожиданием и среднеквадратическим отклонением σ z . Тогда

и ковариационная матрица шума наблюдений имеет вид

.

Начальное положение вагонетки известно точно

, .

Если же положение и скорость вагонетки известна лишь приблизительно, то можно инициализировать матрицу дисперсий достаточно большим числом L , чтобы при этом число превосходило дисперсию измерений координаты

, .

В этом случае на первых тактах работы фильтр будет с бо́льшим весом использовать результаты измерений, чем имеющуюся априорную информацию.

Вывод формул

Ковариационная матрица оценки вектора состояния

По определению ковариационной матрицы P k |k

подставляем выражение для оценки вектора состояния

и расписываем выражение для вектора ошибок

и вектора измерений

выносим вектор погрешности измерений v k

так как вектор погрешности измерений v k не коррелирован с другими аргументами, получаем выражение

в соответствии со свойствами ковариации векторов данное выражение преобразуется к виду

заменяя выражение для ковариационной матрицы экстраполяции вектора состояния на P k |k −1 и определение ковариационной матрицы шумов наблюдений на R k , получаем

Полученное выражение справедливо для произвольной матрицы коэффициентов, но если в качестве неё выступает матрица коэффициентов, оптимальная по Калману, то данное выражение для ковариационной матрицы можно упростить.

Оптимальная матрица коэффициентов усиления

Фильтр Калмана минимизирует сумму квадратов математических ожиданий ошибок оценки вектора состояния.

Вектор ошибки оценки вектора состояния

Стоит задача минимизировать сумму математических ожиданий квадратов компонент данного вектора

Как то так повелось, что очень нравятся мне всякие алгоритмы, имеющие четкое и логичное математическое обоснование) Но зачастую их описание в интернете настолько перегружено формулами и расчетами, что общий смысл алгоритма понять просто невозможно. А ведь понимание сути и принципа работы устройства/механизма/алгоритма намного важнее, чем заучивание огромных формул. Как это ни банально, но запоминание даже сотни формул ничем не поможет, если не знать, как и где их применить 😉 Собственно, к чему все это.. Решил я замутить описание некоторых алгоритмов, с которыми мне приходилось сталкиваться на практике. Постараюсь не перегружать математическими выкладками, чтобы материал был понятным, а чтение легким.

И сегодня мы поговорим о фильтре Калмана , разберемся, что это такое, для чего и как он применяется.

Начнем с небольшого примера. Пусть перед нами стоит задача определять координату летящего самолета. Причем, естественно, координата (обозначим ее ) должна определяться максимально точно.

На самолете мы заранее установили датчик, который и дает нам искомые данные о местоположении, но, как и все в этом мире, наш датчик неидеален. Поэтому вместо значения мы получаем:

где – ошибка датчика, то есть случайная величина. Таким образом, из неточных показаний измерительного оборудования мы должны получить значение координаты (), максимально близкое к реальному положению самолета.

Задача поставлена, перейдем к ее решению.

Пусть мы знаем управляющее воздействие (), благодаря которому летит самолет (пилот сообщил нам, какие рычаги он дергает 😉). Тогда, зная координату на k-ом шаге, мы можем получить значение на (k+1) шаге:

Казалось бы, вот оно, то что надо! И никакой фильтр Калмана тут не нужен. Но не все так просто.. В реальности мы не можем учесть все внешние факторы, влияющие на полет, поэтому формула принимает следующий вид:

где – ошибка, вызванная внешним воздействием, неидеальностью двигателя итп.

Итак, что же получается? На шаге (k+1) мы имеем, во-первых, неточное показание датчика , а во-вторых, неточно рассчитанное значение , полученное из значения на предыдущем шаге.

Идея фильтра Калмана заключается в том, чтобы из двух неточных значений (взяв их с разными весовыми коэффициентами) получить точную оценку искомой координаты (для нашего случая). В общем случае, измеряемая величина можем быть абсолютно любой (температура, скорость..). Вот, что получается:

Путем математических вычислений мы можем получить формулу для расчета коэффициента Калмана на каждом шаге, но, как условились в начале статьи, не будем углубляться в вычисления, тем более, что на практике установлено, что коэффициент Калмана с ростом k всегда стремится к определенному значению. Получаем первое упрощение нашей формулы:

А теперь предположим, что связи с пилотом нет, и мы не знаем управляющее воздействие . Казалось бы, в этом случае фильтр Калмана мы использовать не можем, но это не так 😉 Просто “выкидываем” из формулы то, что мы не знаем, тогда

Получаем максимально упрощенную формулу Калмана, которая тем не менее, несмотря на такие “жесткие” упрощения, прекрасно справляется со своей задачей. Если представить результаты графически, то получится примерно следующее:

Если наш датчик очень точный, то естественно весовой коэффициент K должен быть близок к единице. Если же ситуация обратная, то есть датчик у нас не очень хороший, то K должен быть ближе к нулю.

На этом, пожалуй, все, вот так вот просто мы разобрались с алгоритмом фильтрации Калмана! Надеюсь, что статья оказалась полезной и понятной =)

Винеровские фильтры лучше всего подходят для обработки процессов или отрезков процессов в целом (блочная обработка). Для последовательной обработки требуется текущая оценка сигнала на каждом такте с учетом информации, поступающей на вход фильтра в процессе наблюдения.

При винеровской фильтрации каждый новый отсчет сигнала потребовал бы пересчета всех весовых коэффициентов фильтра. В настоящее время широкое распространение получили адаптивные фильтры, в которых поступающая новая информация используется для непрерывной корректировки ранее сделанной оценки сигнала (сопровождение цели в радиолокации, системы автоматического регулирования в управлении и т.д). Особенный интерес представляют адаптивные фильтры рекурсивного типа, известные как фильтр Калмана.

Эти фильтры широко используются в контурах управления в системах автоматического регулирования и управления. Именно оттуда они и появились, подтверждением чему служит столь специфическая терминология, используемая при описании их работы, как пространство состояний.

Одна из основных задач, требующих своего решения в практике нейронных вычислений, – получение быстрых и надежных алгоритмов обучения НС. В этой связи может оказаться полезным использование в контуре обратной связи обучающего алгоритма линейных фильтров. Так как обучающие алгоритмы имеют итеративную природу, такой фильтр должен представлять собой последовательное рекурсивное устройство оценки.

Задача оценки параметров

Одной из задач теории статистических решений, имеющих большое практическое значение, является задача оценки векторов состояния и параметров систем, которая формулируется следующим образом. Предположим, необходимо оценить значение векторного параметра $X$, недоступного непосредственному измерению. Вместо этого измеряется другой параметр $Z$, зависящий от $X$. Задача оценивания состоит в ответе на вопрос: что можно сказать об $X$, зная $Z$. В общем случае, процедура оптимальной оценки вектора $X$ зависит от принятого критерия качества оценки.

Например, байесовский подход к задаче оценки параметров требует полной априорной информации о вероятностных свойствах оцениваемого параметра, что зачастую невозможно. В этих случаях прибегают к методу наименьших квадратов (МНК), который требует значительно меньше априорной информации.

Рассмотрим применения МНК для случая, когда вектор наблюдения $Z$ связан с вектором оценки параметров $X$ линейной моделью, и в наблюдении присутствует помеха $V$, некоррелированная с оцениваемым параметром:

$Z = HX + V$, (1)

где $H$ – матрица преобразования, описывающая связь наблюдаемых величин с оцениваемыми параметрами.

Оценка $X$, минимизирующая квадрат ошибки, записывается следующим образом:

$X_{оц}=(H^TR_V^{-1}H)^{-1}H^TR_V^{-1}Z$, (2)

Пусть помеха $V$ не коррелирована, в этом случае матрица $R_V$ есть просто единичная матрица, и уравнение для оценки становится проще:

$X_{оц}=(H^TH)^{-1}H^TZ$, (3)

Запись в матричной форме сильно экономит бумагу, но может быть для кого то непривычна. Следующий пример, взятый из монографии Коршунова Ю. М. "Математические основы кибернетики", все это иллюстрирует.
Имеется следующая электрическая цепь:

Наблюдаемые величины в данном случае – показания приборов $A_1 = 1 A, A_2 = 2 A, V = 20 B$.

Кроме того, известно сопротивление $R = 5$ Ом. Требуется оценить наилучшим образом, с точки зрения критерия минимума среднего квадрата ошибки значения токов $I_1$ и $I_2$. Самое важное здесь заключается в том, что между наблюдаемыми величинами (показаниями приборов) и оцениваемыми параметрами существует некоторая связь. И эта информация привносится извне.

В данном случае, это законы Кирхгофа, в случае фильтрации (о чем речь пойдет дальше) – авторегрессионная модель временного ряда, предполагающая зависимость текущего значения от предшествующих.

Итак, знание законов Кирхгофа, никак не связанное с теорией статистических решений, позволяет установить связь между наблюдаемыми значениями и оцениваемыми параметрами (кто изучал электротехнику – могут проверить, остальным придется поверить на слово):

$$z_1 = A_1 = I_1 + \xi_1 = 1$$

$$z_2 = A_2 = I_1 + I_2 + \xi_2 = 2$$

$$z_2 = V/R = I_1 + 2 * I_2 + \xi_3 = 4$$

Это же в векторной форме:

$$\begin{vmatrix} z_1\\ z_2\\ z_3 \end{vmatrix} = \begin{vmatrix} 1 & 0\\ 1 & 1\\ 1 & 2 \end{vmatrix} \begin{vmatrix} I_1\\ I_2 \end{vmatrix} + \begin{vmatrix} \xi_1\\ \xi_2\\ \xi_3 \end{vmatrix}$$

Или $Z = HX + V$, где

$$Z= \begin{vmatrix} z_1\\ z_2\\ z_3 \end{vmatrix} = \begin{vmatrix} 1\\ 2\\ 4 \end{vmatrix} ; H= \begin{vmatrix} 1 & 0\\ 1 & 1\\ 1 & 2 \end{vmatrix} ; X= \begin{vmatrix} I_1\\ I_2 \end{vmatrix} ; V= \begin{vmatrix} \xi_1\\ \xi_2\\ \xi_3 \end{vmatrix}$$

Считая значения помехи некоррелированными между собой, найдем оценку I 1 и I 2 по методу наименьших квадратов в соответствии с формулой 3:

$H^TH= \begin{vmatrix} 1 & 1& 1\\ 0 & 1& 2 \end{vmatrix} \begin{vmatrix} 1 & 0\\ 1 & 1\\ 1 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 3\\ 3 & 5 \end{vmatrix} ; (H^TH)^{-1}= \frac{1}{6} \begin{vmatrix} 5 & -3\\ -3 & 3 \end{vmatrix} $;

$H^TZ= \begin{vmatrix} 1 & 1& 1\\ 0 & 1& 2 \end{vmatrix} \begin{vmatrix} 1 \\ 2\\ 4 \end{vmatrix} = \begin{vmatrix} 7\\ 10 \end{vmatrix} ; X{оц}= \frac{1}{6} \begin{vmatrix} 5 & -3\\ -3 & 3 \end{vmatrix} \begin{vmatrix} 7\\ 10 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 5\\ 9 \end{vmatrix}$;

Итак $I_1 = 5/6 = 0,833 A$; $I_2 = 9/6 = 1,5 A$.

Задача фильтрации

В отличие от задачи оценки параметров, которые имеют фиксированные значения, в задаче фильтрации требуется оценивать процессы, то есть находить текущие оценки изменяющегося во времени сигнала, искаженного помехой, и, в силу этого, недоступного непосредственному измерению. В общем случае вид алгоритмов фильтрации зависит от статистических свойств сигнала и помехи.

Будем предполагать, что полезный сигнал – медленно меняющаяся функция времени, а помеха – некоррелированный шум. Будем использовать метод наименьших квадратов, опять же по причине отсутствия априорных сведений о вероятностных характеристиках сигнала и помехи.

Вначале получим оценку текущего значения $x_n$ по имеющимся $k$ последним значениям временного ряда $z_n, z_{n-1},z_{n-2}\dots z_{n-(k-1)}$. Модель наблюдения та же, что и в задаче оценки параметров:

Понятно, что $Z$ – это вектор–столбец, состоящий из наблюдаемых значений временного ряда $z_n, z_{n-1},z_{n-2}\dots z_{n-(k-1)}$, $V$ – вектор–столбец помехи $\xi _n, \xi _{n-1},\xi_{n-2}\dots \xi_{n-(k-1)}$, искажающий истинный сигнал. А что означают символы $H$ и $X$? О каком, например, векторе–столбце $X$ может идти речь, если все, что необходимо, – это дать оценку текущего значения временного ряда? А что понимать под матрицей преобразований $H$, вообще непонятно.

На все эти вопросы можно ответить только при условии введения в рассмотрение понятия модели генерации сигнала. То есть, необходима некоторая модель исходного сигнала. Это и понятно, при отсутствии априорной информации о вероятностных характеристиках сигнала и помехи остается только строить предположения. Можно назвать это гаданием на кофейной гуще, но специалисты предпочитают другую терминологию. На их "фене" это называется параметрическая модель.

В данном случае оцениваются параметры именно этой модели. При выборе подходящей модели генерации сигнала вспомним о том, что любую аналитическую функцию можно разложить в ряд Тейлора. Поразительное свойство ряда Тейлора заключается в том, что форма функции на любом конечном расстоянии $t$ от некой точки $x=a$ однозначно определяется поведением функции в бесконечно малой окрестности точки $x=a$ (речь идет о ее производных первого и высшего порядков).

Таким образом, существование рядов Тейлора означает, что аналитическая функция обладает внутренней структурой с очень сильной связью. Если, например, ограничиться тремя членами ряда Тейлора, то модель генерации сигнала будет выглядеть так:

$x_{n-i} = F_{-i}x_n$, (4)

$$X_n= \begin{vmatrix} x_n\\ x"_n\\ x""_n \end{vmatrix} ; F_{-i}= \begin{vmatrix} 1 & -i & i^2/2\\ 0 & 1 & -i\\ 0 & 0 & 1 \end{vmatrix} $$

То есть формула 4, при заданном порядке полинома (в примере он равен 2) устанавливает связь между $n$-ым значением сигнала во временной последовательности и $(n-i)$–ым. Таким образом, оцениваемый вектор состояния в данном случае включает в себя, помимо собственно оцениваемого значения, первую и вторую производную сигнала.

В теории автоматического управления такой фильтр назвали бы фильтром с астатизмом 2-го порядка. Матрица преобразования $H$ для данного случая (оценка осуществляется по текущему и $k-1$ предшествующим выборкам) выглядит так:

$$H= \begin{vmatrix} 1 & -k & k^2/2\\ - & - & -\\ 1 & -2 & 2\\ 1 & -1 & 0.5\\ 1 & 0 & 0 \end{vmatrix}$$

Все эти числа получаются из ряда Тейлора в предположении, что временной интервал между соседними наблюдаемыми значениями постоянный и равен 1.

Итак, задача фильтрации при принятых нами предположениях свелась к задаче оценки параметров; в данном случае оцениваются параметры принятой нами модели генерации сигнала. И оценка значений вектора состояния $X$ осуществляется по той же формуле 3:

$$X_{оц}=(H^TH)^{-1}H^TZ$$

По сути, мы реализовали процесс параметрического оценивания, основанный на авторегрессионной модели процесса генерации сигнала.

Формула 3 легко реализуется программно, для этого нужно заполнить матрицу $H$ и вектор столбец наблюдений $Z$. Такие фильтры называются фильтры с конечной памятью , так как для получения текущей оценки $X_{nоц}$ они используют последние $k$ наблюдений. На каждом новом такте наблюдения к текущей совокупности наблюдений прибавляется новое и отбрасывается старое. Такой процесс получения оценок получил название скользящего окна .

Фильтры с растущей памятью

Фильтры с конечной памятью обладают тем основным недостатком, что после каждого нового наблюдения необходимо заново производить полный пересчет по всем хранящимся в памяти данным. Кроме того, вычисление оценок можно начинать только после того, как накоплены результаты первых $k$ наблюдений. То есть эти фильтры обладают большой длительностью переходного процесса.

Чтобы бороться с этим недостатком, необходимо перейти от фильтра с постоянной памятью к фильтру с растущей памятью . В таком фильтре число наблюдаемых значений, по которым производится оценка, должна совпадать с номером n текущего наблюдения. Это позволяет получать оценки, начиная с числа наблюдений, равного числу компонент оцениваемого вектора $X$. А это определяется порядком принятой модели, то есть сколько членов из ряда Тейлора используется в модели.

При этом с ростом n улучшаются сглаживающие свойства фильтра, то есть повышается точность оценок. Однако непосредственная реализация этого подхода связана с возрастанием вычислительных затрат. Поэтому фильтры с растущей памятью реализуются как рекуррентные .

Дело в том, что к моменту n мы уже имеем оценку $X_{(n-1)оц}$, в которой содержится информация обо всех предыдущих наблюдениях $z_n, z_{n-1}, z_{n-2} \dots z_{n-(k-1)}$. Оценку $X_{nоц}$ получаем по очередному наблюдению $z_n$ с использованием информации, хранящейся в оценке $X_{(n-1)}{\mbox {оц}}$. Такая процедура получила название рекуррентной фильтрации и состоит в следующем:

  • по оценке $X_{(n-1)}{\mbox {оц}}$ прогнозируют оценку $X_n$ по формуле 4 при $i = 1$: $X_{\mbox {nоцаприори}} = F_1X_{(n-1)оц}$. Это априорная оценка;
  • по результатам текущего наблюдения $z_n$, эту априорную оценку превращают в истинную, то есть апостериорную;
  • эта процедура повторяется на каждом шаге, начиная с $r+1$, где $r$ – порядок фильтра.

Окончательная формула рекуррентной фильтрации выглядит так:

$X_{(n-1)оц} = X_{\mbox {nоцаприори}} + (H^T_nH_n)^{-1}h^T_0(z_n - h_0 X_{\mbox {nоцаприори}})$, (6)

где для нашего фильтра второго порядка:

Фильтр с растущей памятью, работающий в соответствии с формулой 6 – частный случай алгоритма фильтрации, известного под названием фильтра Калмана.

При практической реализации этой формулы необходимо помнить, что входящая в него априорная оценка определяется по формуле 4, а величина $h_0 X_{\mbox {nоцаприори}}$ представляет собой первую компоненту вектора $X_{\mbox {nоцаприори}}$.

У фильтра с растущей памятью имеется одна важная особенность. Если посмотреть на формулу 6, то окончательная оценка есть сумма прогнозируемого вектора оценки и корректирующего члена. Эта поправка велика при малых $n$ и уменьшается при увеличении $n$, стремясь к нулю при $n \rightarrow \infty$. То есть с ростом n сглаживающие свойства фильтра растут и начинает доминировать модель, заложенная в нем. Но реальный сигнал может соответствовать модели лишь на отдельных участках, поэтому точность прогноза ухудшается.

Чтобы с этим бороться, начиная с некоторого $n$, накладывают запрет на дальнейшее уменьшение поправочного члена. Это эквивалентно изменению полосы фильтра, то есть при малых n фильтр более широкополосен (менее инерционен), при больших – он становится более инерционен.

Сравните рисунок 1 и рисунок 2. На первом рисунке фильтр имеет большую память, при этом он хорошо сглаживает, но в силу узкополосности оцениваемая траектория отстает от реальной. На втором рисунке память фильтра меньше, он хуже сглаживает, но лучше отслеживает реальную траекторию.

Литература

  1. Ю.М.Коршунов "Математические основы кибернетики"
  2. А.В.Балакришнан "Теория фильтрации Калмана"
  3. В.Н.Фомин "Рекуррентное оценивание и адаптивная фильтрация"
  4. К.Ф.Н.Коуэн, П.М. Грант "Адаптивные фильтры"