Вычетом функции f(z) в изолированной особой точке z0 называется число где 7 - достаточно малая окружность нет других особых точек функции f(z). Из формулы для коэффициентов ряда Лорана непосредственно вытекает, что Таким образом, вычет функции /(г) в изолированной особой точке zo равен коэффициенту при (г - zq)~] в лорановском разложении этой функции в точке z0. Отсюда, в частности, вытекает, что вычет в устранимой особой точке равен нулю. Укажем некоторые формулы для вычисления вычета в полюсе функции /(г). 1. zq - полюс первого порядка: 00 Умножим обе части этого равенства на z - zo и, переходя к пределу при z zo, получим, что Если функцию f(z) можно представить в виде дроби где и ф(г) - аналитические функции, причем простой полюс, то из формулы (3) вытекает, что Пример 1. Пусть Особые точки » функции, ЯВЛЯЮТСЯ простыми гюлюсами. Поэтому 2. zo - полюс порядка т: Для устранения отрицательных степеней z - z0 умножим обе части этого равенства на (z-Zo)m, Вычеты Основная теорема о вычетах Применение вычетов к вычислению интегралов Вычет функции относительно бесконечно удаленной точки Приложение вычетов к вычислению определенных интегралов Интегралы от рациональных функций Лемма Жордана Вычисление интегралов Френеля Продифференцируем полученное соотношение m - 1 раз и, переходя к пределу при получим, что Пример 2. Пусть 4 Особыми точками этой функции являются точки г = ±i. Это - полюсы второго порядка. Вычислим, например, res/(i). Имеем Теорема 21i Пусть функция f(z) аналитична всюду в области D за исключением конечного числа изолированных особых точек 7огда для любой замкнутой области G, лежащей в D и содержащей точки zn внутри, справедливо равенство Теорема вытекает из теоремы Коши для многосвязной области. Построим окруж ности столь малого радиуса г, что ограниченные ими круги - содержатся в области G и не пересекаются друг с другом (рис. 29). Обозначим через G* область, которая получается из области G путем удаления кругов Uи..., U„. Функция f(z) анали-тична в области G* и непрерывна в ее замыкании G7. Поэтому по теореме Коши для многосвязной области имеем Из этой формулы, пользуясь определением вычета получаем требуемое равенство (5). 6.1. Вычет функции относительно бесконечно удаленной точки Говорят, чтофункция f(z) является аналитической в бесконечно удаленной точке z = оо, если функция аналитична вточке С =0. Это следует понимать так: функцию g(0= f (f) можно доопределить до аналитической, положив Например, функция аналитична в точке z = оо, поскольку функция аналитична в точке С = 0. Пусть функция /(г) аналитична в некоторой окрестности бесконечно удаленной точки (кроме самой точки z = оо). Точка z = оо называется изолированной особой точкой функции /(г), если в некоторой окрестности этой точки нет других особых точек функции f(z). Функция имеет в бесконечности неизолированную особенность: полюсы zk = к-к этой функции накапливаются в бесконечности, если к оо. Говорят, что z - оо является устранимой особой тонкой, полюсом или существенно особой точкой функции f(z) в зависимости от того, конечен, бесконечен или вовсе не существует lim f(z). Критерии типа бесконечно удаленной точки, связанные с разложением Лорана, изменяюгся по сравнению с критериями для конечных особых точек. Теорема 22. Если z - оо является устранимой особой точкой функции /(z), то лоранов-ское разложение f(z) в окрестности этой точки не содержит полож и тельных степеней z;eaiu z - оо - полюс, то это разложение содержит конечное число положительных степеней z, в случае существенной особенности - бесконечное число положительных степеней z. При этом лорановским разложением функции /(z) в окрестности бесконечно удаленной точки будем называть разложение в ряд Лорана, сходящийся всюду вне круга достаточно большого радиуса R с центром в точке z - 0 (кроме, быть может, самой точки z - оо). Пусть функция f(z) - аналитична в некоторой окрестности точки z = оо (кроме, быть может, самой этой точки). Вычетом функции /(z) в бесконечности называют величину пае 7 - достаточно большая окружность \z\ = р, проходимая по часовой стрелке (так, что окрестность точки z - оо остается слева, как и в случае конечной точки г = го). И з этого определения следует, что вычет функции в бесконечности равен коэффициенту при z~! в лорановском разложении /(z) в окрестности точки z - оо, взятому с противоположным знаком: Пример 3. Для функции f(z) = имеем f(z) = 1 + j. Это выражение можно рассматривать как ее лорановское разложение в окрестности +очки z = оо. Легко видеть, что так что точка z = оо является устранимой особой точкой, и мы полагаем, как обычно, /(оо) = 1. Здесь, следовательно, Из этого примера следует, что вычет аналитической функции относительно бесконечно удаленной устранимой особой точки (в отличие от конечной устранимой особой точки) может оказаться отличным от нуля. Известные тейлоровские разложения функций е1, cosz, sinz, chz, shz можно рассматривать также и как лорановские разложения в окрестности точки z - оо. Так как все эти разложения содержат бесконечное множество положительных степеней z, то перечисленные функции имеюгвточке z = оо существенную особенность. Теорема 23. Если функция f(z) имеет в расширенной комплексной плоскости конечное число особых точек, то сумма всех ее вычетов, включая и вычет в бесконечности, равна нулю. Так что, если - конечные особые точки функции f{z), то Последнее соотношение бывает удобно использовать при вычислении некоторых интегралов. Пример 4. Вычислить интеграл Полюсами (конечными) подынтегральной функции являются корни zt уравнения гя = -1, которые все лежат внутри окружности В окрестности точки г = оо функция /(z) имеет следующее разложение: ИЗ КОТОРОГО ВИДНО, ЧТО В силу теоремы 6.2. Приложение вычетов к вычислению определенных интегралов. Интегралы от рациональных функций Теорема 24. Пусть f(x) - рациональная функция, т. е. где - многочлены степеней пит соответственно. Если функция f(x) непрерывна на всей действительной оси (. степень знаменателя, по крайней мере, на две единицы больше степени числителя, то р.(*) Qm(z) во всех полюсах, расположенных в верхней полуплоскости (существенно особых точек у рациональной функции нет). 4 Рассмотрим замкнутый контур 7, состоящий из отрез ка действительной оси верхней полуокружности. Мохжо считать, что R выбрано большим настолько, что внутренность обла- сти, ограниченной контуром 7, содержит все полюсы функции расположенные в верхней полуплоскости (рис. 30). В силу основной теоремы о вычетах я Оценим J. В силу условия на степени многочленов найдутся положительные числа До и М такие, что при По свойству 6 интегралов от функции комплексного переменного для имеем: при Д оо. Перейдем в равенстве к пределу при R 00. Заметим, что правая часть от R не зависит, а вто рое слагаемое в левой части стремится к нулю. Отсюда следует, что предел первого слагаемого существует и равен где.. ,2/ - все полюсы функции /(2), расположенные в верхней полуплоскости. Пример 5. Вычислить интеграл Так как подынтегральная функция - четная, то Рассмотрим функцию Вычеты Основная теорема о вычетах Применение вычетов к вычислению интегралов Вычет функции относительно бесконечно удаленной точки Приложение вычетов к вычислению определенных интегралов Интегралы от рациональных функций Лемма Жордана Вычисление интегралов Френеля которая на действительной оси, т.е. при г = х, совпадает с /(х). Функция /(z) имеет в верхней полуплоскости одну изолированную особую точку z - ai - полюс второго порядка. Вычет /(г) в точке z = в» равен Пользуясь формулой (10), получаем, что Интеграл вида где Л(м, г) - рациональная функция аргументов и и v. Введем комплексное переменное z = etx. Тогда Ясно, что в данном случае. Таким образом, исходный интеграл переходит в интеграл от функции комплексного переменного по замкнутому контуру: где 7 - окружность единичного радиуса с центром в начале координат: Согласно основной теореме о вычетах, полученный интеграл равен, где - сумма вычетов подынтегральной функции F(z) в полюсах, расположенных внутри окружности 7. Пример 6. Вычислить интеграл Применяя подстановку z = е,г. после простых преобразований (см. формулы (II)) получим, что Внутри единичного круга при условии находится только один полюс (второго порядка) Вычет функции Интегралы вида гдеД(х) - правильная рациональная дробь, а > 0 - вещественное число. При вычислении таких интегралов часто бывает полезной следующая лемма. Лемма Жордана. Пусть функция f(z) аналитична в верхней полуплоскости исключением конечного числа изолированных особых точек, и при \ стремится к нулю равномерно относительно arg z. Тогда для любого положитыьного а где 7л - верхняя полуокружность Условие равномерного стремления /(г) к нулю означает, что на полуокружности 7R Оценим исследуемый интефал. Замечая, что на 7Л В силу известного неравенства (см. рис. 31) справедливого при (для доказательства достаточно заметить, что и, значит, функция ^ убывает на полуинтервале Сопоставляя формулы (13) и (14), заключаем, что 4 Введем вспомогательную функцию Пример 7. Вычислить интеграл Нетрудно видеть, что если г = х, то Jmh(z) совпадает с подынтегральной функцией Рассмотрим контур, указанный на рис.32. При достаточно большом R на дуге 7л Функция вследствие соотношения, удовлетворяет условию при Значит, по лемме Жордана По основной теореме о вычетах для любого имеем Переходя к пределу в равенстве (16) и учитывая соотношение (15). получим, что Разделяя слева и справа вещественные и мнимые части, будем иметь В силу того что подынтегральная функция f(x) - четная, окончательно получим В рассматриваемом примере функция f(z) не имеет особых точек на действительной оси. Однако небольшое изменение описанного метода позволяет применять его и в том случае, когда функция f(z) имеет на действительной оси особые точки (простые полюсы). Покажем, как это делается. Пример 8. Вычислить интеграл 4 функция обладает следующими свойствами: при совпадает с подынтегральной функцией; 2) имеет особенность на действительной оси - простой полюс в точке г = 0. Рассмотрим в верхней полуплоскости Im z ^ 0 замкнутый контур Г, состоящий из отрезков действительной оси [-Я, -г), (г,R) и дуг полуокружностей (рис. 33). Внутри этого контура находится лишь один полюс функции h(z) - точка z = Ы. Согласно основной теореме о вычетах, Преобразуем сначала сумму интегралов по отрезкам (-Я, -г| и |г, Я) действительной оси. Заменяя х на ~х в первом слагаемом правой части равенства (18) и объединяя его с третьим слагаемым, получим Обратимся ко второму слагаемому в формуле (18). Так как где lim g(z) = 0. то подынтегральная функция h(z) представима в следующем виде: Тогда Полагая. получим, что Четвертое слагаемое в равенстве (18) при Я -» оо стремится к нулю согласно лемме Жордана, ибо функция ^ стремится к нулю при |г| оо. Таким образом, при равенство (18) принимает вид 6.3. Вычисление интегралов Френеля Интегралы Френеля: Рассмотрим вспомогательную функцию /(г) = с" и контур Г, указанный на рис. . Внутри контура Г функция f(z) - аналитическая, и по теореме Коши Покажем, что где Гг2 - полуокружность радиуса г2. Функция 0(0 = удовлетворяет условиям леммы Жордана, и, значит, Переходя в формуле (20) к пределу при г -* оо, получим, что На отрезке ВО: Отсюда откуда Упражнения Найдите действительную и мнимую части функдаи: Найдите образы действительной и мнимой осей при отображении: Докажи те, что функция непрерывна на всей комплексной плоскости: Пользуясь условиями Коши-Римана, выясните, является ли функция аналитической хотя бы в одной точке или нет: Восстановите аналитическую в окрестности точки 20 функцию /(г) по известной действительной части и (или по известной мнимой части v(x, у)) и значению f(z0): Покажите, что следующие функци и являются гармоническими: Может ли данная функция быть действительной или мнимой частью аналитической функции Найдите действительную и мнимую части функции: Найдите модуль и главное значение аргумента функции в указанной точке zq: Найдите логарифмы следующих чисел: Решите уравнение: 38. Вычислите интеграл /- линия, соединяющая точки z\ = 0 отрето к прямой, б) дуга параболы ломаная 39. Вычислите интеграл - полуокружность Вычислите интегралы: 43. Вычислите интеграл / где 7 - верхняя половина окру*« ости |z| = 1 (выбирается Вычеты Основная теорема о вычетах Применение вычетов к вычислению интегралов Вычет функции относительно бесконечно удаленной точки Приложение вычетов к вычислению определенных интегралов Интегралы от рациональных функций Лемма Жордана Вычисление интегралов Френеля ветвь функци и л/z, для которой 44. Вычислите интеграл / ^ dz, где 7 - отрезок прямой, идущий из точки zj = 1 в точку Вычислите интегралы: Найдите радиус сходимости ряда: Рашожите функцию в ряд Тейлора и найдите радиус сходимости полученного ряда: постепеням z + I. 55. cosz постепеням 56.--- постепеням z + 2. 57.-^- постепеням z. 58. sh2 z постепеням z. Найдите нули функции и определите их порядки: z Определите область сходимости ряда: Разложите в ряд Лорана в окрестности точки г = 0: Разяожитс в ряд Лорана в уюзан ном кольце: Найдите особые точки и определит е их характер: Найдите вычеты функции в особых точках: Вычислите интегралы: Определите характер бесконечно удаленной точки: Вычислите интегралы: Ответы z переходите ось ы, при изменении z от -оо до +оо и изменяется от до -оо и от +оо до +1 (точка +1 исключается), ось у переходит в окружность Ось х переходит в ось и так же, как и в упр-и 5, ось у переходит в прямую u ~ 1, пробегаемую от точми 1 до 1 + too и от 1 - »оо до точки 1 (сама точка 1 исключается

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Определение . Точки комплексной плоскости, в которых однозначная функция f(z) является аналитической, называют правильными точками этой функции, а точки, в которых f(z) не является аналитиче­ской, называют особыми точками (в частности, точки, в которых f(z) не определена).

Определение . Точка z 0 называется нулем (корнем) порядка (кратности) аналитической функции f(z),если:

б) существует, конечен и не равен нулю.

Если целые положительные числа), то­гда – нули (корни) этого многочлена, которые имеют соответственно порядки (кратности) .

Определение . Пусть f (z ) аналитическая функция в окрестности точки z 0 , за ис­ключением самой точки z 0 . В этом случае точка z 0 называется изолированной особой точкой функции f (z ).

Различают изолированные особые точки одно­значной функции трёх типов :

1) устранимую особую точку – изолированную особую точку z 0 , в которой существует конечный предел:

2) полюс k-го порядка – изолированную особую точку z 0 , в которой существует конечный предел, не равный нулю:

(2.41)

если , то z 0 – полюс первого порядка (простой полюс);

3) сущест­венно особую точку – изолированную особую точку z 0 , которая не является ни уст­ранимой, ни полюсом. То есть не существует, ни конечный, ни бесконечный.

Теорема (о связи между нулем и полюсом) . Если точка z 0 – нуль порядка к функции f(z), то для функции 1/f(z) эта точка является полюсом порядка к.

Пусть f(z) – функция, аналитическая в каждой точке об­ласти D, за исключением конечного числа изолированных осо­бых точек, и L — кусочно-гладкий замкнутый контур, целиком лежащий в области D и не проходящий через особые точки функции f(z).

Если в области, ограниченной контуром L, не содержится особых точек функции f(z), то по основной теореме Коши

.

Если же в области, ограниченной контуром L, имеются особые точки функции f(z), то значение этого интеграла, вообще говоря, отлично от нуля.

Определение . Вычетом аналитической функции f(z) относительно изо­лированной особой точки z 0 (или в точке z 0) называется комплексное число, равное значению интеграла , где L – любой кусочно-гладкий замкнутый контур, лежащий в облас­ти аналитичности функции f(z) и содержащий внутри себя един­ственную особую точку z 0 функции f(z).

Вычет f(z) относительно точки z 0 обозначается симво­лом resf(z 0)(Resf(z 0)) или так, что имеем:

. (2.42)

Вычет функции относительно устранимой особой точки равен нулю:

Вычет f(z) относительно простого полюса можно найти по формуле:

Вычет f(z) относительно полюса порядка к находят по формуле:

Если причем точка является простым нулем и не является нулем для , то:

. (2.46)

Основная теорема Коши о вычетах . Если функция f(z) аналитическая в замкнутой области , ограниченной контуром L, за исключением конечного числа особых точек , лежащих внутри ,то:

Эта теорема имеет большое значение для приложений.


Од­но из них – это вычисление некоторых интегралов от функции комплексной переменной.

Замечание . В предыдущих рассуждениях о вычетах неявно предпола­галось, что рассматриваются конечные изолированные особые точки (это ясно из того, что интеграл по замкнутому контуру по умолчанию брался в положительном направлении, т.е. против часовой стрелки, а особая точка при этом попадает внутрь конту­ра только в случае, когда она конечна). В случае же, когда рас­сматривается бесконечно удаленная точка, ситуация несколько иная. Точнее, сформулируем это так.

Определение .Вычетом функции f(z) относительно бесконечно уда­ленной точки называют интеграл:

где L – замкнутый кусочно-гладкий контур, целиком лежащий в той ок­рестности точки , в которой функция f(z) является анали­тической. Интегрирование по Lсовершается в отрицательном направлении этого контура, т.е. так, чтобы при обходе контура бесконечно удаленная точка оставалась слева. Таким образом:

Пример 1

Найти интеграл от функции комплексного переменного, используя основную теорему Коши о вычетах:

.

Решение

1) Определим изолированные особые точки подинтегральной функции, согласно теореме (2.47):

Особые точки: .

2) Определим точки, лежащие внутри области интегрирования, изобразим область графически (рис. 2.7).

Точку z = 1 не рассматриваем, так как она не лежит внутри области .

3) Определим тип рассматриваемой изолированной особой точки z = 0. Найдем предел по формуле (2.41):

Так как предел существует, то z = 0 – полюс первого порядка (простой полюс).

4) Найдем вычет функции относительно простого полюса z = 0, используя формулу (2.44):

5) Определим значение интеграла по основной теореме Коши о вычетах (2.47):

Ответ

Пример 2

Найти интеграл от функции комплексного переменного, используя основную теорему Коши о вычетах.

Итак, мы установили: модель предназначена для замены оригинала при исследованиях, которым подвергать оригинал нельзя или нецелесообразно. Но замена оригинала моделью возможна, если они в достаточной степени похожи или адекватны.

Адекватность (от лат. adaequatus - приравненный) - соответствие модели моделируемому объекту (оригиналу) или процессу.

Адекватность - в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, иначе это была бы не модель, а сам объект. При моделировании имеется в виду адекватность не вообще, а по тем свойствам модели, которые для исследования считаются существенными.

Говорят, что модель адекватна оригиналу, если при ее интерпретации возникает «портрет», в высокой степени сходный с оригиналом.

До тех пор пока не решен вопрос, правильно ли отображает модель исследуемую систему (т.е. адекватна ли она), ценность модели нулевая!

Термин «адекватность», как видно, носит весьма расплывчатый смысл. Понятно, что результативность моделирования значительно возрастет, если при построении модели и переносе результатов с модели на систему оригинал может воспользоваться некоторой теорией, уточняющей идею подобия, связанную с используемой процедурой моделирования.

К сожалению, теории, позволяющей оценить адекватность математической модели и моделируемой системы, нет, в отличие от хорошо разработанной теории подобия явлений одной и той же физической природы.

Проверку адекватности проводят на всех этапах построения модели начиная с самого первого этапа - концептуального анализа. Если описание системы будет составлено не адекватно реальной системе, то и модель, как бы точно она ни отображала описание системы, не будет адекватной оригиналу. Здесь сказано «как бы точно», так как имеется в виду, что вообще не существует математических моделей, абсолютно точно отображающих процессы, существующие в реальности.

Если изучение системы проведено качественно и концептуальная модель достаточно точно отражает реальное положение дел, то далее перед разработчиками стоит лишь проблема эквивалентного преобразования одного описания в другое.

Итак, можно говорить об адекватности модели в любой ее форме и оригинала, если:

  • описание поведения, созданное на каком-либо этапе, достаточно точно совпадает с поведением моделируемой системы в одинаковых ситуациях;
  • описание убедительно представительно относительно свойств системы, которые должны прогнозироваться с помощью модели.

Предварительно исходный вариант математической модели подвергается следующим проверкам:

  • все ли существенные параметры включены в модель;
  • нет ли в модели несущественных параметров;
  • правильно ли отражены функциональные связи между параметрами;
  • правильно ли определены ограничения на значения параметров;
  • не дает ли модель абсурдные ответы, если ее параметры принимают предельные значения.

Такая предварительная оценка адекватности модели позволяет выявить в ней наиболее грубые ошибки.

Но все эти рекомендации носят неформальный, рекомендательный характер. Формальных методов оценки адекватности не существует! Поэтому в основном качество модели (и в первую очередь степень ее адекватности системе) зависит от опыта, интуиции, эрудиции разработчика модели и других субъективных факторов.

Окончательное суждение об адекватности модели может дать лишь практика (хотя для оценки адекватности используются и экспертные методы), т.е. сравнение модели с оригиналом на основе экспериментов с объектом и моделью. Модель и объект подвергаются одинаковым воздействиям, и сравниваются их реакции. Если реакции одинаковы (в пределах допустимой точности), то делается вывод о том, что модель адекватна оригиналу. Однако надо иметь в виду следующее:

  • воздействия на объект носят ограниченный характер из-за возможного разрушения объекта, недоступности к элементам системы и т.д.;
  • воздействия на объект имеют физическую природу (изменение питающих токов и напряжений, температуры, скорости вращения

зо валов и т.д.), а воздействия на математическую модель - это числовые аналоги физических воздействий.

Для оценки степени подобия структур объектов (физических или математических) существует понятие изоморфизма (от греч. isos - одинаковый, равный + morphe - форма).

Две системы считаются изоморфными, если существует взаимно однозначное соответствие между элементами и отношениями (связями) этих систем.

Изоморфны, например, множество действительных положительных чисел и множество их логарифмов. Каждому элементу одного множества - числу соответствует значение его логарифма в другом, умножению двух чисел в первом множестве - сложение их логарифмов в другом. С точки зрения пассажира план метрополитена, находящийся в каждом вагоне поезда метро, изоморфен реальному географическому расположению рельсовых путей и станций, хотя для рабочего, ремонтирующего рельсовые пути, этот план, естественно, не является изоморфным. Фотография является изоморфным отображением реального лица для полицейского, родителей, знакомых, но не является таковым для скульптора.

При моделировании сложных систем достигнуть такого полного соответствия трудно, да и нецелесообразно. При моделировании абсолютное подобие не имеет места. Стремятся лишь к тому, чтобы модель достаточно хорошо отражала исследуемую сторону функционирования объекта. Модель по сложности может стать аналогичной исследуемой системе, и никакого упрощения исследования не будет.

Для оценки подобия в поведении (функционировании) систем существует понятие изофункционализма.

Две системы произвольной, а подчас неизвестной структуры изофункциональны, если при одинаковых воздействиях они проявляют одинаковые реакции. Такое моделирование называется функциональным, или кибернетическим, и в последние годы получает все большее распространение, например при моделировании человеческого интеллекта (игра в шахматы, доказательство теорем, распознавание образов и т.д.). Функциональные модели не копируют структуры. Но, копируя поведение, исследователи последовательно подбираются к познанию структур объектов (человеческого мозга, Солнца и др.).

Еще говорят, что хорошие модели - это «минитеории», и их создание требует нестандартного творческого подхода.

Рассмотрим некоторые свойства моделей, которые позволяют в той или иной степени либо различать, либо отождествлять модель с оригиналом (объектом, процессом). Многие исследователи выделяют следующие свойства моделей: адекватность, сложность, конечность, наглядность, истинность, приближенность.

Проблема адекватности . Важнейшим требованием к модели является требование адекватности (соответствия) ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств.

Под адекватностью модели понимают правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом.

Математическая модель может быть адекватна относительно одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Модель типа «черный ящик» адекватна, если в рамках выбранной степени точности она функционирует так же, как и реальная система, т.е. определяет тот же оператор преобразования входных сигналов в выходные.

Можно ввести понятие степени (меры) адекватности, которая будет меняться от 0 (отсутствие адекватности) до 1 (полная адекватность). Степень адекватности характеризует долю истинности модели относительно выбранной характеристики (свойства) изучаемого объекта. Введение количественной меры адекватности позволяет в количественном отношении ставить и решать такие задачи, как идентификация, устойчивость, чувствительность, адаптация, обучение модели.

Отметим, что в некоторых простых ситуациях численная оценка степени адекватности не представляет особой трудности. Например, задача аппроксимации заданного множества экспериментальных точек некоторой функцией.

Всякая адекватность относительна и имеет свои границы применения. Например, дифференциальное уравнение

отражает лишь изменение частоты  вращения турбокомпрессора ГТД при изменении расхода топлива G T и не более того. Оно не может отражать таких процессов, как газодинамическая неустойчивость (помпаж) компрессора или колебания лопаток турбины. Если в простых случаях бывает все ясно, то в сложных случаях неадекватность модели бывает не столь ясной. Применение неадекватной модели приводит либо к существенному искажению реального процесса или свойств (характеристик) изучаемого объекта, либо к изучению несуществующих явлений, процессов, свойств и характеристик. В последнем случае проверка адекватности не может осуществляться на чисто дедуктивном (логическом, умозрительном) уровне. Необходимо уточнение модели на основании информации из других источников.

Трудность оценки степени адекватности в общем случае возникает из-за неоднозначности и нечеткости самих критериев адекватности, а также из-за трудности выбора тех признаков, свойств и характеристик, по которым оценивается адекватность. Понятие адекватности является рациональным понятием, поэтому повышение ее степени также осуществляется на рациональном уровне. Следовательно, адекватность модели должна проверяться, контролироваться, уточняться в процессе исследования на частных примерах, аналогиях, экспериментах и т.д. В результате проверки адекватности выясняют, к чему приводят сделанные допущения: то ли к допустимой потере точности, то ли к потере качества. При проверке адекватности также можно обосновать законность применения принятых рабочих гипотез при решении рассматриваемой задачи или проблемы.

Иногда адекватность модели М обладает побочной адекватностью, т.е. она дает правильное количественное и качественное описание не только тех характеристик, для имитации которых она строилась, но и ряда побочных характеристик, потребность в изучении которых может возникнуть в дальнейшем. Эффект побочной адекватности модели возрастает, если в ней нашли отражение хорошо проверенные физические законы, системные принципы, основные положения геометрии, апробированные приемы и способы и т.д. Может, поэтому структурные модели, как правило, обладают более высокой побочной адекватностью, чем функциональные.

Некоторые исследователи в качестве объекта моделирования рассматривают цель. Тогда адекватность модели, с помощью которой достигается поставленная цель, рассматривается либо как мера близости к цели, либо как мера эффективности достижения цели. Например, в адаптивной системе управления по модели модель отражает ту форму движения системы, которая в сложившейся ситуации является наилучшей в смысле принятого критерия. С изменением ситуации модель должна менять свои параметры, чтобы быть более адекватной вновь сложившейся ситуации.

Таким образом, свойство адекватности является важнейшим требованием к модели, но разработка высокоточных и надежных методов проверки адекватности остается по-прежнему трудноразрешимой задачей.

Простота и сложность . Одновременное требование простоты и адекватности модели являются противоречивыми. С точки зрения адекватности сложные модели являются предпочтительнее простых. В сложных моделях можно учесть большее число факторов, влияющих на изучаемые характеристики объектов. Хотя сложные модели и более точно отражают моделируемые свойства оригинала, но они более громоздки, труднообозримы и неудобны в обращении. Поэтому исследователь стремится к упрощению модели, так как с простыми моделями легче оперировать. Например, теория аппроксимации – это теория корректного построения упрощенных математических моделей. При стремлении к построению простой модели должен соблюдаться основной принцип упрощения модели :

упрощать модель можно до тех пор, пока сохраняются основные свойства, характеристики и закономерности, присущие оригиналу.

Этот принцип указывает на предел упрощения.

При этом понятие простоты (или сложности) модели является понятием относительным. Модель считается достаточно простой, если современные средства исследования (математические, информационные, физические) дают возможность провести качественный и количественный анализ с требуемой точностью. А поскольку возможности средств исследований непрерывно растут, то те задачи, которые раньше считались сложными, теперь могут быть отнесены к категории простых. В общем случае в понятие простоты модели входит и психологическое восприятие модели исследователем.

«Адекватность-Простота»

Можно также выделить степень простоты модели, оценив ее количественно, как и степень адекватности, от 0 до 1. При этом значению 0 будут соответствовать недоступные, очень сложные модели, а значению 1 – очень простые. Разобьем степень простоты на три интервала: очень простые, доступные и недоступные (очень сложные). Степень адекватности также разобьем на три интервала: очень высокая, приемлемая, неудовлетворительная. Построим таблицу 1.1, в которой по горизонтали отложены параметры, характеризующие степень адекватности, а по вертикали – степень простоты. В этой таблице области (13), (31), (23), (32) и (33) должны быть исключены из рассмотрения либо из-за неудовлетворительной адекватности, либо из-за очень высокой степени сложности модели и недоступности ее изучения современными средствами исследования. Область (11) также должна быть исключена, так как она дает тривиальные результаты: здесь любая модель является очень простой и высокоточной. Такая ситуация может возникнуть, например, при изучении простых явлений, подчиняемых известным физическим законам (Архимеда, Ньютона, Ома и т.д.).

Формирование моделей в областях (12), (21), (22) необходимо осуществлять в соответствии с некоторыми критериями. Например, в области (12) необходимо стремиться к тому, чтобы была максимальной степень адекватности, в области (21) – степень простоты была минимальной. И только в области (22) необходимо проводить оптимизацию формирования модели по двум противоречивым критериям: минимуму сложности (максимуму простоты) и максимуму точности (степени адекватности). Эта задача оптимизации в общем случае сводится к выбору оптимальных структуры и параметров модели. Более трудной задачей является оптимизация модели как сложной системы, состоящей из отдельных подсистем, соединенных друг с другом в некоторую иерархическую и многосвязную структуру. При этом каждая подсистема и каждый уровень имеют свои локальные критерии сложности и адекватности, отличные от глобальных критериев системы.

Следует отметить, что с целью меньшей потери адекватности упрощение моделей целесообразнее проводить:

а) на физическом уровне с сохранением основных физических соотношений,

б) на структурном уровне с сохранением основных системных свойств.

Упрощение же моделей на математическом (абстрактном) уровне может привести к существенной потере степени адекватности. Например, усечение характеристического уравнения высокого порядка до 2 – 3-го порядка может привести к совершенно неверным выводам о динамических свойствах системы.

Заметим, что более простые (грубые) модели используются при решении задачи синтеза, а более сложные точные модели – при решении задачи анализа.

Конечность моделей . Известно, что мир бесконечен, как любой объект, не только в пространстве и во времени, но и в своей структуре (строении), свойствах, отношениях с другими объектами . Бесконечность проявляется в иерархическом строении систем различной физической природы. Однако при изучении объекта исследователь ограничивается конечным количеством его свойств, связей, используемых ресурсов и т.д. Он как бы «вырезает» из бесконечного мира некоторый конечный кусок в виде конкретного объекта, системы, процесса и т.д. и пытается познать бесконечный мир через конечную модель этого куска. Правомерен ли такой подход к исследованию бесконечного мира? Практика отвечает положительно на этот вопрос, основываясь на свойствах человеческого разума и законах Природы, хотя сам разум конечен, но зато бесконечны генерируемые им способы познания мира. Процесс познания идет через непрерывное расширение наших знаний. Это можно наблюдать на эволюции разума, на эволюции науки и техники, и в частности, на развитии как понятия модели системы, так и видов самих моделей.

Таким образом, конечность моделей систем заключается, во-первых, в том, что они отображают оригинал в конечном числе отношений, т.е. с конечным числом связей с другими объектами, с конечной структурой и конечным количеством свойств на данном уровне изучения, исследования, описания, располагаемых ресурсов. Во-вторых, в том, что ресурсы (информационные, финансовые, энергетические, временные, технические и т.д.) моделирования и наши знания как интеллектуальные ресурсы конечны, а потому объективно ограничивают возможности моделирования и сам процесс познания мира через модели на данном этапе развития человечества. Поэтому исследователь (за редким исключением) имеет дело с конечномерными моделями. Однако выбор размерности модели (ее степени свободы, переменных состояния) тесно связан с классом решаемых задач. Увеличение размерности модели связано с проблемами сложности и адекватности. При этом необходимо знать, какова функциональная зависимость между степенью сложности и размерностью модели. Если эта зависимость степенная, то проблема может быть решена за счет применения высокопроизводительных вычислительных систем. Если же эта зависимость экспоненциальная, то «проклятие размерности» неизбежно и избавиться от него практически не удается. В частности, это относится к созданию универсального метода поиска экстремума функций многих переменных.

Как отмечалось выше, увеличение размерности модели приводит к повышению степени адекватности и одновременно к усложнению модели. При этом степень сложности ограничена возможностью оперирования с моделью, т.е. теми средствами моделирования, которыми располагает исследователь. Необходимость перехода от грубой простой модели к более точной реализуется за счет увеличения размерности модели путем привлечения новых переменных, качественно отличающихся от основных и которыми пренебрегли при построении грубой модели. Эти переменные могут быть отнесены к одному из следующих трех классов:

    быстропротекающие переменные, протяженность которых во времени или в пространстве столь мала, что при грубом рассмотрении они принимались во внимание своими интегральными или осредненными характеристиками;

    медленнопротекающие переменные, протяженность изменения которых столь велика, что в грубых моделях они считались постоянными;

    малые переменные (малые параметры), значения и влияние которых на основные характеристики системы столь малы, что в грубых моделях они игнорировались.

Отметим, что разделение сложного движения системы по скорости на быстропротекающее и медленнопротекающее движение дает возможность изучать их в грубом приближении независимо друг от друга, что упрощает решение исходной задачи. Что касается малых переменных, то ими пренебрегают обычно при решении задачи синтеза, но стараются учесть их влияние на свойства системы при решении задачи анализа.

При моделировании стремятся по возможности выделить небольшое число основных факторов, влияние которых одного порядка и не слишком сложно описывается математически, а влияние других факторов оказывается возможным учесть с помощью осредненных, интегральных или "замороженных" характеристик. При этом одни и те же факторы могут оказывать существенно различное влияние на различные характеристики и свойства системы. Обычно учет влияния вышеперечисленных трех классов переменных на свойства системы оказывается вполне достаточным.

Приближенность моделей . Из вышеизложенного следует, что конечность и простота (упрощенность) модели характеризуют качественное различие (на структурном уровне) между оригиналом и моделью. Тогда приближенность модели будет характеризовать количественную сторону этого различия. Можно ввести количественную меру приближенности путем сравнения, например, грубой модели с более точной эталонной (полной, идеальной) моделью или с реальной моделью. Приближенность модели к оригиналу неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования. Погоня за повышением точности модели приводит к ее чрезмерному усложнению, а следовательно, к снижению ее практической ценности, т.е. возможности ее практического использования. Поэтому при моделировании сложных (человеко-машинных, организационных) систем точность и практический смысл несовместимы и исключают друг друга (принцип Л.А. Заде). Причина противоречивости и несовместимости требований точности и практичности модели кроется в неопределенности и нечеткости знаний о самом оригинале: его поведении, его свойствах и характеристиках, о поведении окружающей среды, о мышлении и поведении человека, о механизмах формирования цели, путей и средствах ее достижения и т.д.

Истинность моделей . В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только практика является критерием истинности.

С одной стороны, в любой модели содержится безусловно истинное, т.е. определенно известное и правильное. С другой стороны, в модели содержится и условно истинное, т.е. верное лишь при определенных условиях. Типовая ошибка при моделировании заключается в том, что исследователи применяют те или иные модели без проверки условий их истинности, границ их применимости. Такой подход приводит заведомо к получению неверных результатов.

Отметим, что в любой модели также содержится предположительно-истинное (правдоподобное), т.е. нечто, могущее быть в условиях неопределенности либо верным, либо ложным. Только на практике устанавливается фактическое соотношение между истинным и ложным в конкретных условиях. Например, в гипотезах как абстрактных познавательных моделях трудно выявить соотношение между истинным и ложным. Только практическая проверка гипотез позволяет выявить это соотношение.

При анализе уровня истинности модели необходимо выяснить знания, содержащиеся в них: 1) точные, достоверные знания; 2) знания, достоверные при определенных условиях; 3) знания, оцениваемые с некоторой степенью неопределенности (с известной вероятностью для стохастических моделей или с известной функцией принадлежности для нечетких моделей); 4) знания, не поддающиеся оценке даже с некоторой степенью неопределенности; 5) незнания, т.е. то, что неизвестно.

Таким образом, оценка истинности модели как формы знаний сводится к выявлению содержания в нем как объективных достоверных знаний, правильно отображающих оригинал, так и знаний, приближенно оценивающих оригинал, а также то, что составляет незнание.

Контроль моделей . При построении математических моделей объектов, систем, процессов целесообразно придерживаться следующих рекомендаций:

    Моделирование надо начинать с построения самых грубых моделей на основе выделения самых существенных факторов. При этом необходимо четко представлять как цель моделирования, так и цель познания с помощью данных моделей.

    Желательно не привлекать к работе искусственные и труднопроверяемые гипотезы.

    Необходимо контролировать размерность переменных, придерживаясь правила: складываться и приравниваться могут только величины одинаковой размерности. Этим правилом необходимо пользоваться на всех этапах вывода тех или иных соотношений.

    Необходимо контролировать порядок складываемых друг с другом величин с тем, чтобы выделить основные слагаемые (переменные, факторы) и отбросить малозначительные. При этом должно сохраняться свойство «грубости» модели: отбрасывание малых величин приводит к малому изменению количественных выводов и к сохранению качественных результатов. Сказанное относится и к контролю порядка поправочных членов при аппроксимации нелинейных характеристик.

    Необходимо контролировать характер функциональных зависимостей, придерживаясь правила: проверять сохранность зависимости изменения направления и скорости одних переменных от изменения других. Это правило позволяет глубже понять физический смысл и правильность выведенных соотношений.

    Необходимо контролировать поведение переменных или некоторых соотношений при приближении параметров модели или их комбинаций к крайне допустимым (особым) точкам. Обычно в экстремальной точке модель упрощается или вырождается, а соотношения приобретают более наглядный смысл и могут быть проще проверены, а окончательные выводы могут быть продублированы каким-либо другим методом. Исследования экстремальных случаев могут служить для асимптотических представлений поведения системы (решений) в условиях, близких к экстремальным.

    Необходимо контролировать поведение модели в известных условиях: удовлетворение функции как модели поставленным граничным условиям; поведение системы как модели при действии на нее типовых входных сигналов.

    Необходимо контролировать получение побочных эффектов и результатов, анализ которых может дать новые направления в исследованиях или потребовать перестройки самой модели.

Таким образом, постоянный контроль за правильностью функционирования моделей в процессе исследования позволяет избежать грубых ошибок в конечном результате. При этом выявленные недостатки модели исправляются в ходе моделирования, а не вычисляются заранее.