На этом уроке будем знакомиться с графическим методом решения задач линейного программирования , то есть, таких задач, в которых требуется найти такое решения системы линейных уравнений и (или) неравенств (системы ограничений), при котором функция цели - линейная функция - принимает оптимальное значение.

Ввиду того, что наглядность графического решения достигается лишь на плоскости, мы можем познакомиться с графическим представлением задачи только в двумерном пространстве. Это представление пригодно для системы ограничений-неравенств с двумя переменными или для систем уравнений, в которых число переменных на 2 превышает число уравнений, то есть число свободных переменных равно двум.

Поэтому графический метод имеет такие узкие рамки применения, что о нём как об особом методе решения задач линейного программирования говорить нельзя.

Однако для выработки наглядных представлений о решениях задач линейного программирования графический метод представляет определённый интерес. Кроме того, он позволяет геометрически подтвердить справедливость теорем линейного программирования .

Теоретические основы графического метода

Итак, задача линейного программирования. Требуется найти неотрицательные значения переменных и , удовлетворяющих системе неравенств

при которых линейная форма принимает оптимальное значение.

Пример 3.

Пример 4. Решить графическим методом задачу линейного программирования, в которой требуется найти минимум функции при ограничениях

Продолжаем решать задачи графическим методом вместе

До сих пор полученные выводы были основаны на том, что множество решений задачи линейного программирования сконфигурировано так, что оптимальное решение конечно и единственно. Теперь рассмотрим примеры, когда это условие нарушается. В этих примерах многоугольник решений строится так, как показано в предыдущих примерах, остановимся же на признаках, которые отличают эти исключительные примеры.

Пример 5. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях

Решение. На рисунке изображены: неограниченная многогранная область решений данной системы ограничений, исходная линия уровня (чёрного цвета), вектор (бордового цвета), указывающий направление движения исходной линии уровня для нахождения максимума целевой функции.

Легко заметить, что функция F может неограниченно возрастать при заданной системе ограничений, поэтому можно условно записать, что .

Пример 6. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях

Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.

Каждое из неравенств задачи линейного программирования (1.2) определяет на координатной плоскости некоторую полуплоскость (рис.2.1), а система неравенств в целом - пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений (ОДР). ОДР всегда представляет собой выпуклую фигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлена выпуклым многоугольником, неограниченной выпуклой многоугольной областью, отрезком, лучом, одной точкой. В случае несовместности системы ограничений задачи (1.2) ОДР является пустым множеством.

Все вышесказанное относится и к случаю, когда система ограничений (1.2) включает равенства, поскольку любое равенство

можно представить в виде системы двух неравенств (см. рис.2.1)

ЦФ при фиксированном значении определяет на плоскости прямую линию. Изменяя значения L, мы получим семейство параллельных прямых, называемых линиями уровня .

Это связано с тем, что изменение значения L повлечет изменение лишь длины отрезка, отсекаемого линией уровня на оси (начальная ордината), а угловой коэффициент прямой останется постоянным (см.рис.2.1). Поэтому для решения будет достаточно построить одну из линий уровня, произвольно выбрав значение L.

Вектор с координатами из коэффициентов ЦФ при и перпендикулярен к каждой из линий уровня (см. рис.2.1). Направление вектора совпадает с направлением возрастания ЦФ, что является важным моментом для решения задач. Направление убывания ЦФ противоположно направлению вектора.

Суть графического метода заключается в следующем. По направлению (против направления) вектора в ОДР производится поиск оптимальной точки. Оптимальной считается точка, через которую проходит линия уровня, соответствующая наибольшему (наименьшему) значению функции. Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.

При поиске оптимального решения задач линейного программирования возможны следующие ситуации: существует единственное решение задачи; существует бесконечное множество решений (альтернативный оптиум); ЦФ не ограничена; область допустимых решений - единственная точка; задача не имеет решений.

Рисунок 2.1 Геометрическая интерпретация ограничений и ЦФ задачи.

Методика решения задач ЛП графическим методом.

I. В ограничениях задачи (1.2) заменить знаки неравенств знаками точных равенств и построить соответствующие прямые.

II. Найти и заштриховать полуплоскости, разрешенные каждым из ограничений-неравенств задачи (1.2). Для этого нужно подставить в конкретное неравенство координаты какой-либо точки [например, (0;0)], и проверить истинность полученного неравенства.

Если неравенство истинное,

то надо заштриховать полуплоскость, содержащую данную точку;

иначе (неравенство ложное) надо заштриховать полуплоскость, не содержащую данную точку.

Поскольку и должны быть неотрицательными, то их допустимые значения всегда будут находиться выше оси и правее оси, т.е. в I-м квадранте.

Ограничения-равенства разрешают только те точки, которые лежат на соответствующей прямой. Поэтому необходимо выделить на графике такие прямые.

III. Определить ОДР как часть плоскости, принадлежащую одновременно всем разрешенным областям, и выделить ее. При отсутствии ОДР задача не имеет решений.

IV. Если ОДР - не пустое множество, то нужно построить целевую прямую, т.е. любую из линий уровня (где L - произвольное число, например, кратное и, т.е. удобное для проведения расчетов). Способ построения аналогичен построению прямых ограничений.

V. Построить вектор, который начинается в точке (0;0) и заканчивается в точке. Если целевая прямая и вектор построены верно, то они будут перпендикулярны .

VI. При поиске максимума ЦФ необходимо передвигать целевую прямую в направлении вектора, при поиске минимума ЦФ - против направления вектора. Последняя по ходу движения вершина ОДР будет точкой максимума или минимума ЦФ. Если такой точки (точек) не существует, то можно сделать вывод о неограниченности ЦФ на множестве планов сверху (при поиске максимума) или снизу (при поиске минимум).

VII. Определить координаты точки max (min) ЦФ и вычислить значение ЦФ. Для вычисления координат оптимальной точки необходимо решить систему уравнений прямых, на пересечении которых находится.

Решение задачи линейного программирования (ЗЛП) графическим методом

Общая постановка злп

Найти значения n переменных x 1 , x 2 , …,x n , доставляющих экстремум (минимум или максимум) линейной функции Z=C 1 x 1 ,+ C 2 x 2+…+ C n x n

и одновременно удовлетворяющих m ограничениям вида

a 1,1 x 1 +a 1,2 x 2 +…+a 1,n x n £ =≥b 1 ,

a 2,1 x 1 +a 2,2 x 2 +…+a 2,n x n £ = ≥b 2 ,

. . . . . . . . . . . . . . . . . . . . . . .,

a m,1 x 1 +a m,2 x 2 +…+a m,n x n £ = ≥b m ,

при заданных a i,j , b i, C j (i=1,2,…,m; j=1,2,…,n). Знак отношения может принимать любое из трех приведенных значений.

Пример задачи линейного программирования

Рассмотрим следующую задачу. Менеджер предприятия, изготавливающего два вида красок, описал исследователю операций ситуацию, сложившуюся на производстве и рынке сбыта красок. Оказалось, что фабрика изготавливает два вида красок: для внутренних и внешних работ. Обе краски поступают в оптовую продажу. Для производства красок используются два исходных продукта – А и В. Максимально возможные суточные запасы этих продуктов 6 и 8 тонн соответственно. Опыт показал, что суточный спрос на внешнюю краску никогда не превышает спрос на внутреннюю более чем на 1 тонну. Кроме того, установлено, что спрос на внешнюю краску никогда не превышает 2 тонны в сутки. Оптовые цены одной тонны красок сложились следующим образом: 3 тысячи рублей на внешнюю краску и 2 тысячи рублей – на внутреннюю. Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации был максимальным?

Чтобы решить поставленную перед исследователем задачу, сначала необходимо разработать математическую модель описанной ситуации.

При построении математической модели специалист по исследованию операций ставит перед собой три вопроса.

  • Для каких величин должна быть построена модель? Иначе говоря, нужно идентифицировать переменные задачи.
  • Какие ограничения должны быть наложены на переменные, чтобы выполнялись условия, характерные для моделируемой системы?
  • В чем состоит цель, для достижения которой из всех возможных (допустимых) значений переменных нужно выбрать те, которые будут соответствовать оптимальному (наилучшему) решению задачи?

Введем переменные:

x 1 – суточный объем производства внешней краски (в тоннах),

x 2 – суточный объем производства внутренней краски (в тоннах).

Учитывая оптовые цены на тонну каждого вида краски, суточный доход от продажи произведенной продукции задается линейной целевой функцией Z = 3x 1 + 2x 2 .

Целью производства является получение максимальной прибыли, значит, необходимо найти значения x 1 и x 2 , которые максимизируют целевую функцию Z.

Поскольку производитель красок не может распорядиться значениями переменных произвольным образом, постольку необходимо выделить множество возможных значений этих переменных, которое определяется конкретными условиями производства и сбыта. Это множество называется областью допустимых значений.

Первый тип ограничений определяется запасами продуктов А и В, из которых производятся краски. Из технологии производства известно, что на производство тонны внешней краски идут две части продукта А, а на тонну внутренней – одна часть. Для продукта В соотношение обратное. Эти технологические условия описываются неравенствами

2x 1 + x 2 £ 6 (на складе 6 тонн продукта А),

x 1 + 2x 2 £ 8 (на складе 8 тонн продукта В).

Последние два ограничения означают очевидное обстоятельство: нельзя использовать для производства красок больше продуктов А и В, чем их имеется фактически на складе.

Ситуация с реализацией красок на рынке приводит к следующим ограничениям: x 1 – x 2 £ 1 (внешней краски реализуется не более, чем на одну тонну больше внутренней), x 1 £ 2 (внешней краски продается не более двух тонн в день).

Суммируя все сказанное, можно математическую модель, описывающую сложившуюся производственную ситуацию, задать в следующей форме:

найти ® max{ Z=2× x 1 + 3× x 2 } при следующих ограничениях на значения переменных x 1 и x 2

2 × x 1 + x 2 £ 6 ограничение (1),

X 1 + 2 × x 2 £ 8 ограничение (2),

X 1 - x 2 £ 1 ограничение (3),

X 1 £ 2 ограничение (4)

и требование неотрицательности переменных x 1 ³ 0 (5), x 2 ³ 0 (6).

Полученная математическая модель представляет собой задачу линейного программирования.

Графический метод решения злп

Графический метод решения злп может быть реализован только в двумерном случае.

Математическая модель, полученная для сформулированной типовой задачи, требует исследования, так как заранее не известно, имеет ли она (как математическая задача) решение. Исследование проведем с использованием графических построений. Одновременно с таким исследованием найдем (если оно есть) и решение.

1 этап. Построение области допустимых решений

Цель – построить область, каждая точка которой удовлетворяет всем ограничениям.

Каждое из шести ограничений геометрически задает полуплоскость. Для того, чтобы ее построить, нужно:

  • · заменить в ограничении знак неравенства на равенство (получим уравнение прямой);
  • · построить прямую по двум точкам;
  • · определить, какую полуплоскость задает знак неравенства. Для этого подставить в неравенство какую-нибудь точку (например, начало координат). Если она удовлетворяет неравенству – закрашиваем полуплоскость, ее содержащую.

Такие действия выполняем для всех ограничений. Каждую из прямых обозначим номерами, принятыми при нумерации ограничений (см. рис).

Областью допустимых решений (удовлетворяющей всем ограничениям) является множество точек первого квадранта координатной плоскости (x 1 , x 2), представляющее собой пересечение всех полуплоскостей, определяемых неравенствами ограничений.

Множество точек, удовлетворяющих всем шести ограничениям задачи – многоугольник AFEDCB.

2 этап Построение линий уровня целевой функции и определение точки максимума

Цель - найти в построенном многоугольнике A FEDCB точку, в которой функция цели Z=2x 1 + 3x 2 принимает максимальное значение.

Проведем прямую 2x 1 + 3x 2 = Сonst (линию уровня) так, чтобы она пересекала многоугольник AFEDCB (например, Const=10). Эта линия уровня на рисунке изображена пунктирной линией.

Если рассматривать значения линейной целевой функции Z на множестве точек (x 1 ,x 2), принадлежащих отрезку пунктирной прямой, расположенному внутри шестиугольника, то все они равны одному и тому же значению (Const=10).

Определим направление возрастания функции. Для этого построим линию уровня с бОльшим значением. Это будет прямая, параллельная с построенной, но расположенная правее. Значит, в заданном направлении значение целевой функции возрастает, и в наших интересах сдвинуть ее как можно дальше в этом направлении.

Сдвиг можно продолжать до тех пор, пока перемещаемая прямая пересекает многоугольник допустимых решений. Последнее положение прямой, когда она имеет одну общую точку с многоугольником AFEDCB (точка С), соответствует максимальному значению целевой функции Z и достигается в точке С с координатами x 1 = 4/3 (» 1.333), x 2 =10/3 (» 3.333). При этом Z = 38/3 (» 12.667).

Поставленная задача полностью решена. Из проведенных геометрических рассуждений видно, что решение единственное. Сделаем некоторые обобщения, вытекающие из геометрической интерпретации задачи.

Первое . Область допустимых решений – выпуклый многоугольник (Почему выпуклый? Может ли область допустимых решений представлять собой пустое множество? Точку? Отрезок? Луч? Прямую? Если да, приведите пример системы ограничений ).

Второе . Максимум целевой функции достигается в вершине многоугольника допустимых решений (а может ли быть не единственное решение? Может ли решения не быть? )

Задание 1 (выполнить на занятии, показать преподавателю)

Решить графическим методом

А) F =2 x 1 +3 x 2 è max

При ограничениях

x 1 +3 x 2 ≤ 18

2 x 1 + x 2 ≤ 16

x 2 ≤ 5

3 x 1 ≤ 21

x 1 ≥ 0 x 2 ≥ 0

B ) F =4 x 1 +6 x 2 è min

При ограничениях

3 x 1 + x 2 ≥ 9

x 1 +2 x 2 ≥ 8

x 1 +6x 2 ≥ 12

x 1 ≥ 0 x 2 ≥ 0

C ) F =3 x 1 +3 x 2 è max

При ограничениях

x 1 +x 2 ≤ 8

2x 1 -x 2 ≥ 1

x 1 -2x 2 ≤ 2

x 1 ≥ 0 x 2 ≥ 0

D ) F =2 x 1 -3 x 2 è min

При ограничениях

x 1 +x 2 ≥ 4

2x 1 -x 2 ≥ 1

x 1 -2x 2 ≤ 1

x 1 ≥ 0 x 2 ≥ 0

A) x1=6 x2=4 F=24

B) x1=2 x2=3 F=26

C) x1Î x2=8-x1 F=24

Задание 2 (выполнить на занятии, показать преподавателю)

Ответить на вопросы, выделенные курсивом.

Задание 3 (домашнее)

Написать программу.

Дан текстовый файл вида

2 3 (коэффициенты целевой функции)

4 (количество ограничений)

2 2 12 (ограничения)

1 2 8

4 0 16

0 4 12

Построить прямые так, чтобы многоугольник допустимых решений был целиком на экране (определение масштаба см. в кн. Онегова). Прямые могут быть параллельны осям!

Построить несколько линий уровня целевой функции (нажимаем клавишу – прямая перемещается, отображается значение целевой функции). Отобразить масштаб.

Важным методом научного анализа статистического материала выступают графические изображения. Первые попытки использования графических методов в экономических исследованиях начались еще в 1780-х годах. Однако более широкого применения графический метод получил позже - в середине XVIII в., Особенно после впервые в истории сделанной статистики докладе представителя Берлинского статистического бюро Швабе "Теория графических изображений" на 8-м Международном статистическом конгрессе (Петербург, 1872 г.). По известному выражению немецкого физика Ф. Ауэрбаха, XX в. ознаменовалось "триумфальной поступью графического метода в науке".

Что же такое график? График - это форма наглядного представления статистических данных о социально-экономические явления и процессы через геометрические образы, рисунки или схематические географические карты и пояснения к ним.

График имеет пять основных элементов общей конструкции: поле, координатную сетку, графические знаки и их размещения в поле графика, масштаб и экспликация (рис. 10.3).

Рис. 10.3. Основные элементы графика

Каждый из этих элементов имеет свое назначение и выполняет соответствующую роль в построении и интерпретации. Поле графика - это пространство, на котором размещаются геометрические и другие знаки, составляющие графическое изображение.

Графический образ - это совокупность различных символических знаков, с помощью которых отражаются статистические данные. Эти знаки могут изображаться в формах: линий, точек, геометрических, графических, а иногда негеометричних фигур.

Координатная сетка - это прямоугольная система координат, в которой на оси абсцисс откладывается время, а на оси ординат - количественные показатели по масштабу.

Масштаб - условная мера перевода числовой величины статистического явления в графическую и наоборот. Он служит для установки числовых значений явлений, выраженных на графике.

Экспликация графика - словесное объяснение его конкретного содержания, которое обычно включает:

1) заголовок с необходимыми дополнительными пояснениями;

2) точное объяснение сущности, условно предоставляется в данном графике его графическим знакам (геометрическим, изобразительным, фоновым, чисто условным)

3) другие объяснения, примечания и т.

Кроме того, на поле графика можно наносить некоторые дополнительные сведения, например числовые данные, которые сказываются у некоторых графических знаков и повторяют в цифровой форме их точные значения, выраженные графически.

Графики играют особенно важную роль в изучении сложных взаимосвязей социально-экономических явлений и процессов, выявлении тенденций, закономерностей и изменения показателей динамики, а также в текущем анализе. Основными отличиями и преимуществами графического метода по сравнению с другими является: лучшая наглядность; возможность в целом охватить данные изучаемых; возможность выражения некоторых аналитических зависимостей, которые не очень четкие и тяжелые для выявления при других способах представления данных.

С помощью графиков можно осуществлять оперативный контроль за производством, реализацией продукции, выполнением договорных обязательств и поставленных задач. Таким образом, графики назначены:

Для обобщения и анализа данных;

Изображение распределения данных;

Выявление закономерностей развития исследуемых явлений и процессов в динамике;

Отражение взаимосвязей показателей;

Осуществление контроля за производством, выполнением договоров по сбыту продукции и тому подобное.

Есть различные классификации графиков - по форме графических образов, по содержанию, характеру поставленных задач.

По форме графических образов различают следующие типы графиков:

1) точечные;

2) линейные;

3) плоскостные;

4) объемные;

5) художественные (изобразительные, условные).

В точечных графиках объем совокупности выражается или одной точкой, или накоплением точек. Одна точка может означать один случай или несколько (например, один завод, 500 работников).

Линейные графики состоят из одних линий: отрезков прямой, ломаных, ступенчатых, плавных кривых (в основном для передачи динамики совокупности). Часто отрезки прямой заменяют полосками одинаковой ширины, которые выступают также как графические знаки но одним измерением (длиной). В таких случаях графики называют столбиковой, если полоски размещены вертикально, или ленточными, когда полоски лежат горизонтально.

В свою очередь колонке графики делятся на колонке диаграммы: простые и сплошные, из групп столбиков и т.д., а ленточные - на ленточные диаграммы: простые и ступенчатые, компонентнипарни, скользящие, двусторонне направлены (например, "возрастная пирамида" состава населения).

К специальным видам линейных графиков относятся спиральные (для явлений, которые неограниченно развиваются во времени и по нарастающей величине), радиальные диаграммы (для отображения закономерностей периодически повторяющихся явлений, их ритмичности, сезонности).

Плоскостные графики - это графики двух измерений в виде плоскостей разных геометрических форм. В зависимости от этого они могут быть квадратными, круговыми, секторными. Эти графики целесообразно использовать для сравнения явлений, представленных абсолютными и относительными величинами.

Важными особенностями плоскостных графиков является двухмерный "знак Варзара", ленточная или текущая диаграмма и балансовая диаграмма.

Двухмерный "знак Варзара" (по имени его изобретателя русского статистика В.Е. Варзара) - это прямоугольник с основанием а высотой Ь и площадью Sab, который является полезным для графического выражения довольно частых подобных соотношений трех величин a, by S.

Ленточная, или текущая, диаграмма применяется для схематического выражения объема и состава грузопотоков между двумя пунктами в одном и втором направлениях.

Балансовая диаграмма - это двусторонняя ленточная диаграмма, ленты которой разветвляются в две стороны на более узкие полоски, своей шириной выражают соответствующие величины статей доходов и расходов, статей актива и пассива и тому подобное.

Объемные - трехмерные графики, которые используются редко, поскольку они менее выразительные по сравнению с линейными и плоскостными.

Художественные (изобразительные, условные) - графики с условными графическими знаками, которые отражают совокупности или ее отдельные значения в виде фигур людей, контуров животных, схематических рисунков предметов и т.

Большое значение имеет классификация графиков по их содержанию. Учитывая это графики делятся на два класса - диаграммы и статистические карты.

Диаграмма - это графическое выражение объемов и особенностей одной или нескольких совокупностей с помощью количественных графических знаков (геометрических, художественных, фоновых, чисто условных).

Однако диаграмма не дает графического представления о территориальное размещение изображаемых совокупностей или территориальную изменение их признаков. Для этого используются статистические карты, предназначенные для изображения территориального размещения совокупностей или территориальной изменения их признаков. Они делятся на два класса - картограммы и картодиаграммы.

Картограммы - контурные географические карты, на которых с помощью графических знаков представлена количественная территориальная характеристика совокупности.

Картодиаграммы - контурные географические карты, где отдельные районы (области, пункты) территории нанесены одинакового вида диаграммы (одна или несколько), изображающие объем и территориальные особенности однотипных совокупностей в этих районах. Так, например, изображаются потоки грузов, перевозимых пассажиров, население, мигрирует и тому подобное.

Диаграммы и статистические карты выполняют такие важные задачи по исследованию совокупности:

Общее их сравнения;

Изучение структуры;

Изучение динамики;

Изучение взаимосвязей их признаков;

Измерение степени выполнения хозяйственных планов, договорных обязательств в планово-экономической практике.

В свою очередь и диаграммы, и картограммы в зависимости от их назначения делятся на подклассы, группы и формы (табл. 10.27).

При построении графиков следует соблюдать следующие требования:

1) опираться на достоверные числовые данные;

2) графики должны быть значимыми по замыслу и интересными по содержанию;

3) должны быть построенными в соответствии с поставленными задачами и их практического назначения;

4) быть предельно экономными - содержать максимум сведений, идей при минимуме средств их графического выражения, простыми, четкими, понятными;

5) технически хорошо выполненными.

Рассмотрим подробнее основные виды и формы диаграмм и статистических карт, которые чаще всего используются в практике аналитической работы.

Линейная диаграмма - один из самых распространенных видов графиков, который служит для изображения динамики исследуемых явлений. Для его построения используется прямоугольная система координат. На оси абсцисс откладывают равные отрезки - периоды времени (дни, месяцы, годы и т. П.), А на оси ординат - принят масштаб, характеризующий единицы измерения. На координатном поле наносят точки, равны величине показателя на определенный период. Затем все точки соединяются прямыми линиями, в результате чего получают ломаную линию, которая характеризует изменение изучаемого явления за определенный период времени (табл. 10.28, рис. 10.4).

Подкласс

Разновидности и графическая форма, чаще всего встречается

Диаграммы

И. Диаграммы общего сравнения совокупностей

1. однородных совокупностей

Колонке, ленточные, художественные

2. Разнородных совокупностей

Колонке, ленточные, плоскостные

II. Диаграммы структуры

1. Диаграммы распределения численности

Полигон, гистограмма, кумулята, огива, кривая распределения, график Лоренца, корреляционное поле

2. Диаграммы группам

Диаграммы из столбиков, лент, разделенных на абсолютные или процентные части, секторные, балансовые диаграммы, "возрастная пирамида» и др.

III. Диаграммы динамики

1. Диаграммы динамики объемов

Колонке, линейные, кумулятивные, спиральные, художественные диаграммы

2. Диаграммы динамики структуры

Диаграммы из столбиков с процентным делением, по кругам с разделением на сектора и др.

3. Диаграммы сезонных колебаний

Линейные, столбиковые, радиальные диаграммы

IV. Диаграммы

взаимосвязей

признаков

1. Диаграммы конфигурации совокупности

Точечные, фоновые

2. Диаграммы формы связи

Диаграммы с ломаных или с плавных кривых

3. Диаграммы степени тесноты связи

Замкнутые контуры корреляционного поля в виде ступенчатых ломаных или эллипсообразных кривых и т.д.

V. Диаграммы выполнения планов

1. Диаграммы текущего выполнения

Линейные диаграммы, графики Ганта

2. Диаграммы выполнения от начала периода

Кумуляты, кумулятивные графики Ганта, графики Лоренца

Статистические карты

VI. Картограммы

1. Картограммы размещения единиц совокупности

Точечные картограммы

2. Картограммы размещения совокупного объема признаки

Точечные картограммы

3. Картограммы изменения сводных признаков

Точечные, фоновые картограммы

4. Изолинийни картограммы

Линейные картограммы

5. Центрограмы

Точечные картограммы

Таблица 10.28. Инвестиции в основной капитал в жилищное строительство Украины в 2000-2005 pp., В фактических ценах, млн грн

Данные графика свидетельствуют, что объемы инвестиций в основной капитал в жилищное строительство Украины в фактических ценах росли с 2000 в 2005

Рис. 10.4. Динамика объема инвестиций в основной капитал в жилищное строительство Украины в 2000-2005 гг., В фактических ценах, млн грн

Планово-линейные графики строят на специально разработанной сетке, где по горизонтали откладывают единицы времени, а по вертикали размещают объекты исследования. Причем, каждый отрезок по горизонтали соответствует 100% -му выполнению планового задания. Эти отрезки делятся на 5 равных частей, каждая из которых соответствует 20% планового задания.

Степень выполнения плана на графике изображается двумя линиями: тонкой прерывистой - за единицу времени (день, декаду) и сплошной жирной - за отчетный период в целом.

Рассмотрим порядок построения планово-линейного графика на примере.

Пример. Построить линейный график выполнения планового задания бригадой рабочих из строительно-монтажных работ, используя данные табл. 10.29.

Таблица 10.29. Выполнение планового задания бригадой рабочих из строительно-монтажных работ

График выполнения планового задания бригадой строителей по строительно-монтажных работ представлен на рис. 10.5.

Тонкая непрерывный линия первого дня соответствует 90% выполнения плана и занимает четыре с половиной ячейки, а линия второго дня - 80% и занимает четыре клетки, линия третий день протянулась ровно на пять, а четвертого - на пять ячеек (100%) плюс еще дополнительный отрезок ниже, который занимает 20% и т.п.

Изображение уровня выполнения плана нарастающим итогом требует некоторых дополнительных расчетов. Так, за первый день сплошная жирная линия будет такой длины, как и тонкая непрерывный - 90% и займет четыре с половиной клетки. Далее следует сделать следующие расчеты: за два дня фактически выполнено 513 м 2 (225 + 288). Из этой суммы 250 м 2 относят в счет выполнения плана за первый день. Тогда в счет второго дня останется 263 м 2, что согласно плану в этот день составляет 91% (263 288).

Согласно жирная линия занимает пять ячеек первого дня и 91% второго. За три дня фактически было выполнено 923 м 2 (225 + 288 + 410). В счет выполнения плана первых двух дней записывается 610 м 2, а в счет третьего дня - 313 м 2, что согласно плану на этот день составляет 76% (313: 410). Жирная линия займет по 5 ячеек первого и второго дней и 76% третьему. Аналогично проводятся все дальнейшие расчеты. Степень выполнения плана за каждый день на жирной линии сказывается точками.

Колонке диаграммы - очень распространенный вид графиков в одном измерении благодаря их наглядности и простоте. Статистические данные в них изображаются в виде прямоугольников одинаковой ширины, расположенных вертикально по горизонтальной прямой (рис. 10.6).

Высота столбиков должна соответствовать величине изображенных явлений. Если же столбики размещают горизонтально, то такой график называется ленточным (рис. 10.7).

Колонке и ленточные диаграммы позволяют сравнивать величины разного значения, характеризовать одно и то же явление в динамике; характеризовать совокупность.

Секторные диаграммы (или круговые) - диаграммы, предназначенные для отображения структуры исследуемых явлений и процессов. Они изображаются в виде круга, разделенного на сектора, величины которых соответствуют размерам изображаемых явлений (рис. 10.8).

Как свидетельствуют данные графика (рис. 10.8), основным источником финансирования лизинговых операций в Украине выступают банковские кредиты (80,9%), затем - собственные средства (16,1%). Заемные средства юридических лиц составляют лишь 3,6%.

Рис. 10.6. Динамика объема инвестиций в основной капитал в жилищное строительство Украины в 2000-2005 pp., В фактических ценах, млн грн

Рис. 10.7. Динамика объема инвестиций в основной капитал в жилищное строительство Украины в 2000-2005 pp., В фактических ценах, млн грн

В современных условиях развития информационно-компьютерных систем появилась возможность строить графики с помощью пакетов компьютерных программ, в том числе электронных таблиц EXCEL, "Statistica-6" и др. Они удобны в использовании и значительно упрощают эту работу.

Рис. 10.8. Структура источников финансирования лизинговых операций в Украине на начало 2005 p.,%

Краткая теория

Линейное программирование - раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные. По типу решаемых задач его методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений. Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений.

Графический метод решения задач линейного программирования дает возможность наглядно представить их структуру, выявить особенности и открывает пути исследования более сложных свойств. Задачу линейного программирования с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в пространствах, размерность которых больше трех, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практического значения, однако его рассмотрение проясняет свойства ограничений ЗЛП, приводит к идее ее решения, делает геометрически наглядными способы решения и пути их практической реализации.

Если ограничения и целевая функция содержит более двух переменных, тогда необходимо (или методом последовательного улучшения решения) - он универсален и им можно решить любую ЗЛП. Для некоторых прикладных задач линейного программирования, таких как , разработаны специальные методы решения.

Пример решения задачи

Условие задачи

Предприятие выпускает два вида продукции: Изделие 1 и Изделие 2. На изготовление единицы Изделия 1 требуется затратить кг сырья первого типа, кг сырья второго типа, кг сырья третьего типа. На изготовление единицы Изделия 2 требуется затратить кг первого типа, сырья второго типа, сырья третьего типа. Производство обеспечено сырьем каждого типа в количестве кг, кг, кг соответственно. Рыночная цена единицы Изделия 1 составляет тыс руб., а единицы Изделия 2 - тыс. руб.

Требуется:

  • Построить математическую модель задачи.
  • Составить план производства изделий, обеспечивающий максимальную выручку от их реализации при помощи графического метода решения задачи линейного программирования.

Чтобы решение задачи по линейному программированию было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по линейному программированию...

Решение задачи

Построение модели

Через и обозначим количество выпускаемых изделий 1-го и 2-го типа.

Тогда ограничения на ресурсы:

Кроме того, по смыслу задачи

Целевая функция экономико-математической модели, выражающая получаемую от реализации выручку:

Получаем следующую экономико-математическую модель:

Построение области допустимых решений

Решим полученную задачу линейного программирования графическим способом:

Для построения области допустимых решений строим в системе координат соответствующие данным ограничениям-неравенствам граничные прямые:

Найдем точки, через которые проходят прямые:

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Для определения полуплоскости возьмём любую точку, например , не принадлежащую прямой (1), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 1-го неравенства соответствует левая полуплоскость

Возьмём любую точку, например , не принадлежащую прямой (2), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Возьмём любую точку, например , не принадлежащую прямой (3), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 2-го неравенства соответствует левая полуплоскость

Областью допустимых решений является фигура .

Нахождение решения задачи ЛП

Строим вектор , координаты которого пропорциональны коэффициентам целевой функции. Здесь - коэффициент пропорциональности.

Перпендикулярно к построенному вектору проводим линию уровня .

Перемещаем линию уровня в направлении вектора так, чтобы она касалась области допустимых решений в крайней точке. Решением на максимум является точка , координаты которой находим как точку пересечения прямых (2) и (1).

Ответ

Таким образом необходимо выпускать 56 изделий 1-го вида и 64 изделия 2-го вида. При этом выручка от реализации изделий будет максимальна и составит 5104 ден.ед.

Метод графического решения, если задача с двумя переменными имеет линейные ограничения, а целевая функция - квадратичная, подробно рассмотрен здесь
На странице подробно разобрано решение задачи линейного программирования симплексным методом, кроме того, показано построение двойственной задачи линейного программирования и нахождение ее решения по решению прямой задачи.

Транспортная задача и метод потенциалов
Подробно рассмотрена транспортная задача, ее математическая модель и методы решения - нахождение опорного плана методом минимального элемента и поиск оптимального решения методом потенциалов.

Выпуклое программирование - графический метод
Приведен образец решения задачи квадратичного выпуклого программирования графическим методом.