Выполнение регулировочных работ связано с большой ответ­ственностью, так как ими завершается изготовление изделия. По­этому важно, чтобы регулировщик заранее продумывал свои дей­ствия перед выполнением любых операций, необходимость кото­рых возникает в процессе регулировки. К таким операциям отно­сится, в частности, замена отдельных сборочных единиц и деталей. Объем демонтажных, сборочных и монтажных работ обычно невелик, однако обеспечение высокого качества их выполнения является непреложным законом. Особое внимание следует обра­щать на демонтажные работы, в процессе которых производится освобождение паяных выводов элементов, имеющих дополнитель­ные механические крепления. Эти операции требуют особого вни­мания и тщательного выполнения, в противном случае могут происходить отслаивание печатных проводников, выход из строя мик­росхем, поджигание изоляции навесных проводников, обламыва­ние выводов.

Работы, связанные непосредственно с регулировкой изделия, в условиях серийного и массового производства определяются тех­нической документацией - технологическими картами или инст­рукциями по регулировке. На этапах разработки опытных образ­цов и опытных серий регулировщик должен производить отбра­ковку технической документации на регулировку, определять наи­более производительные способы последовательности регулиров­ки, а также пределы номинальных значений подбираемых при этом элементов, выявлять дефекты конструкции и технологичес­кого процесса производства.

Перед началом регулировки измерительной аппаратуры регулировщик должен тщательно изучить технические данные приборов, правила их эксплуатации и уметь использовать их на практике.

Прежде чем начать соединение регулируемого изделия с ис­точниками питания и измерительными приборами, необходимо убедиться в их исправности и наличии нормальных напряжений питания. Проверка наличия нормальных питающих напряжений, а иногда и уровня их пульсаций осуществляется непосредственно на входе цепей питания регулируемого изделия.

Одной из причин появления ошибок при регулировке может быть неправильный выбор кабеля из комплекта к измерительному прибору. Один из этих кабелей может быть на конце открытым, другой - нагружен на сопротивление 50 или 75 Ом, третий - иметь встроенную детекторную головку, а четвертый - встроенный фильтр или последовательное сопротивление. Неправильный выбор кабеля неизбежно ведет к грубым ошибкам, а иногда и к нарушению фун­кционирования регулируемого изделия.

Другой причиной появления ошибок может быть обрыв цепи в кабеле или соединительных проводах, а также нарушение кон­тактов в разъемах, соединяющих кабели с одной стороны с изме­рительными приборами или источниками питания, а с другой - с регулируемым прибором. Существуют различные способы про­верки исправности соединительных устройств, простейшим из ко­торых является замена вызывающего сомнение кабеля исправным. Плохой контакт в разъемах обнаруживается при легком покачивании или небольшом перемещении подвижной части разъема.

1) настройку одного или нескольких контуров на какую-либо фиксированную частоту (в каскадах промежуточной частоты, контурах заграждающих фильтров и в радиоприемниках с фиксированной настройкой);

2) согласование резонанса между одновременно настраивающимися несколькими контурами (в радиоприемниках прямого усиления и высокочастотной части супергетеродина);

3) сопряжение кривой настройки с градуировкой шкалы;

4) регулировку избирательности приемника.

Выбор необходимых операций зависит только от типа приемника и его состояния.

(Л1. Стр. 186-191)

Регулировка радиоэлектронной аппаратуры осуществляется с целью доведения параметров изделий до значений, соответствующих требованиям технических условий, ГОСТов или образцам, принятым за эталон.

Основными задачами регулировки являются компенсация допустимых отклонений параметров элементов устройства, а также выявление ошибок монтажа и других неисправностей.

Регулировка производится двумя методами: по измерительным приборам и сравнением настраиваемого устройства с образцом, которое называется электрическим копированием.

Прежде чем приступить к выполнению регулировочных работ, необходимо изучить устройство, которое подлежит регулировке, ознакомиться с техническими условиями на него, с основными выходными и промежуточными значениями параметров, чертежами общего вида и электрическими схемами. Регулировщик должен знать, в каких условиях будет эксплуатироваться аппаратура и характеристики измерительной техники.

Правильная организация рабочего места регулировщика существенно влияет на сокращение трудовых затрат и повышает качество выполнения регулировочных работ. Для правильной организации технологического процесса регулировки необходимы соответствующая контрольно-измерительная аппаратура и инструмент. Точность применяемой измерительной аппаратуры должна превышать примерно в 3 раза заданную точность настройки. Регулировку аппаратуры осуществляют при помощи универсальных стандартных измерительных и специальных заводских приборов, которые представляют собой различного рода имитаторы, эквиваленты нагрузок, пульты управления. Специальные приборы для регулировочных работ, так называемые нестандартные приборы, имеют целью максимально уменьшить трудоемкости регулировки и сокращение подготовительно-заключительного времени. Поэтому они изготавливаются конкретно для каждого типа радиоэлектронного аппарата.

Особенностью оборудования рабочего места регулировщика является то, что сложность стандартной и нестандартной контрольно-измерительной аппаратуры зачастую превышает сложность регулируемого прибора.

В рабочее место регулировщика при единичном и мелкосерийном производствах входят верстак, стул, стеллаж.

Верстак должен быть удобным и обладать достаточной прочностью и устойчивостью, исключающей дрожание и смещение его во время работы. Верстаки должны устанавливаться на расстоянии, обеспечивающем естественные условия работы и отсутствие взаимного влияния приборов, установленных на них. При расположении в помещении большогоколичества измерительных приборов должны быть приняты меры для отвода от рабочих мест избыточного количества тепла и обеспечение нормальной температуры.



Состав рабочего места определяется сложностью и особенностями конструкции регулируемого прибора. Количество контрольно-измерительных приборов на рабочем месте должно быть минимально необходимым для обеспечения бесперебойной работы в течение смены. Аппаратура на рабочем месте должна быть размещена таким образом, чтобы было удобно пользоваться органами регулировки. Периодически употребляемые приборы должны находиться в поле зрения регулировщика на одном и том же месте.

Освещение рабочего места должно быть правильным и достаточным, требуемая освещенность определяется действующими санитарными нормами и характером выполняемой работы. При естественном и искусственном освещении рабочие места и источники света рекомендуется размещать так, чтобы свет падал слева или спереди. В случае местного освещения свет должен падать равномерно, он не должен слепить глаза, создавать блики на шкалах приборов, не затруднять наблюдение за световыми индикаторами; тень не должна падать на места и органы регулировки. Мерцающий свет недопустим, так как он утомителен для глаз, спектральный состав света должен соответствовать рекомендациям врачей и светотехников. При недостаточном общем освещении необходимо предусмотреть дополнительное местное освещение.

Минимальные размеры верстака 1200X900 мм, по высоте он должен быть рассчитан на регулировщика высокого роста. При работе стоя для регулировщика более низкого роста должны быть предусмотрены подставки соответствующей конструкции. Для работы сидя должны применяться стулья с вращающимся вокруг вертикальной оси сидением, высота которого регулируется при помощи винтового устройства.



Рабочее место должно удовлетворять требованиям техники электробезопасности. В частности, то место верстака, на котором производится регулировка, должно быть выполнено из электроизоляционного материала. К минимуму должна быть сведена вероятность касания регулировщиком заземленных частей верстака в процессе регулировки. При работе с аппаратурой, находящейся под высоким напряжением, на пол под верстак должен быть положен резиновый коврик. На рабочем месте должна быть предусмотрена возможность обесточивания аппаратуры. Корпуса измерительных приборов должны быть надежно заземлены проводами соответствующих марок и сечения. Заземляющие провода следует располагать таким образом, чтобы регулировщику был виден весь провод от корпуса прибора до места его заземления. Сетевые шланги приборов должны быть без оголенных участков провода и разлохмаченной изоляции и должны иметь вилки, предохраняющие регулировщика от поражения электрическим током при их вставлении или вынимании из розетки.

На Рис. 2.1 показана одна из возможных конструкций рабочего места. Конструкция сборно-разборная, состоит из типовых элементов. Угловая форма верстака и соответствующеерасположение приборов расширяют угол обзора до 180° и позволяют регулировщику работать в более удобной позе, чем при расположении приборов в линию. В левой тумбочке стола расположен блок питания с автоматическим регулятором напряжения, а в правой - ящики для хранения инструментов и деталей.

Рис. 2.1. Рабочее место регулировщика радиоэлектронной аппаратуры.

Наличие верхней полки, установленной на кронштейнах, дает возможность разместить на рабочем месте большее количество измерительных приборов.

Выбранная форма верстака позволяет рационально использовать производственные площади, при этом возможно расположение рабочих мест «крестами» по четыре или в линию.

Комплексное рабочее место регулировщика (Рис. 2.2) состоит из верстака-1, стеллажа-2 и стола-тележки 4. Из указанных элементов можно выполнить ряд различных компоновок рабочих мест регулировщика. Вариант компоновки подбирается в зависимости от габаритов регулируемого изделия, количества примененных измерительных приборов и общей планировки размещения рабочих мест.

Рис. 2.2. Компоновка рабочего места регулировщика из отдельных

функциональных элементов.

Рабочий стол (1200X^50X1200 мм) имеет подвесную тумбу с четырьмя выдвижными ящиками и подвесной блок питания, которые взаимозаменяемы. В столе имеются две выдвижные полки, расположенные слева и справа под столешницей. Для дополнительного размещения измерительной аппаратуры на столе имеется откидная полка 3, укрепленная на вертикальных стойках.

В нерабочем положении на полке может крепиться рабочая документация.

Стол-тележка (750X300X780 мм), равный по высоте рабочему столу, позволяет при необходимости увеличить площадь рабочего стола и может быть использован для доставки и перемещения приборов и -аппаратуры.

Стеллаж предназначен для размещения приборов и устанавливается сзади или сбоку стола. Средняя полка стеллажа регулируемая и может быть установлена на высоте рабочего стола или в другом требуемом положении.

Рабочий стол и стеллаж имеют регулируемые опоры с резиновыми подпятниками. Все элементы выполнены с применением деталей системы универсально-сборных каркасных конструкций (УСКК) - прямоугольного трубчатого профиля и соединительных угольников. При необходимости каркасы рабочих элементов могут быть разобраны и использованы в других компоновках.

С.р.Тема1 Испытания радиоэлектронной аппаратуры

(Г. В. Ярочкина. Радиоэлектронная аппаратура и приборы. Монтаж и регулировка, стр. 191-194)

Тема 2 Условия эксплуатации радиоэлектронной аппаратуры и приборов и влияние различных факторов на работоспособность радиоаппаратуры.

(Г. В. Ярочкина. Радиоэлектронная аппаратура и приборы. Монтаж и регулировка. Стр. 194-197)


К атегория:

Производство радиоаппаратуры

Регулировка и выходной контроль радиоаппаратуры

Для нормальной работы радиоаппаратуры необходимо, чтобы параметры всех ее блоков, изготовленных в отдельности, соответствовали заданным техническим требованиям. Для этого каждый блок перед включением его в совместную работу с другими блоками должен пройти регулировку.

Регулировка состоит в том, чтобы, не изменяя схемы и конструкции, получить заданные параметры; ее ведут при помощи регулировочных элементов (переменных резисторов, конденсаторов переменной емкости, сердечников катушек индуктивности и т. д.).

Для правильной организации процесса регулировки необходима соответствующая измерительная аппаратура и инструмент. Точность применяемой измерительной аппаратуры должна превышать примерно на порядок заданную точность настройки.

Регулировку аппаратуры осуществляют при помощи универсальной измерительной аппаратуры и специальной заводской оснастки, которая представляет собой различного рода имитаторы, эквиваленты нагрузок, пульты управления.

При работе с блоками высокой частоты в ряде случаев регулировку производят в экранированной камере, которая способствует устранению индустриальных помех и помех от электромагнитных полей мощных радиостанций. Каркас экранированной камеры из сухого дерева установлен на изоляторы и обтянут с внутренней и наружной сторон двумя изолированными друг от друга металлическими (из красной меди или латуни) лужеными сетками. Сетки лудят для получения надежного электрического контакта в местах переплетения отдельных проволок. Внутри камеры настилают деревянный пол. Двери для входа в камеру также обтягивают с двух сторон сеткой и по периметру обивают пружинящей латунной сеткой, создающей электрическую неразрывность при закрывании дверей.

Внутри экранированной камеры оборудуют рабочий стол с комплектом необходимой измерительной аппаратуры и штепселями для включения питания. Стол покрывают листом белой жести или алюминия толщиной 0,8-1 мм и присоединяют к общей точке заземления камеры.

Особо ответственной является разработка рабочего места регулировщиков аппаратуры на заводах серийного производства. Например, применение индивидуальных генераторов стандартных сигналов на каждом рабочем месте регулировщика при поточно-массовом производстве вызывает ряд неудобств, связанных с затратой лишнего времени на перестройку генератора. Помимо этого, частые перестройки индивидуальных генераторов стандартных сигналов в процессе настройки увеличивают погрешности установки частоты. Чтобы избежать указанных недостатков, применяют централизованную подачу стандартных частот от кварцевого генератора по высокочастотным линиям на рабочие места регулировщиков, расположенные вдоль конвейера.

Основные рабочие инструменты регулировщика - специальная отвертка из прочного электроизоляционного материала с металлической вставкой и пробная палочка.

Отвертку из электроизоляционного материала применяют, чтобы в процессе регулировки не вносить в схему устройства дополнительной емкости и не изменять характеристики контуров внесением металла внутрь катушки индуктивности. Кроме того, отвертка исключает возможность случайных замыканий внутри схемы и попадания регулировщика под высокое напряжение.

Пробная палочка представляет собой фибровый или эбонитовый брусок, у которого один конец снабжен стержнем из магнитоди-электрика, а второй имеет латунный или алюминиевый пустотелый цилиндр. Палочка служит для определения относительной точности настройки контуров в резонанс.

При регулировке радиоэлектронной аппаратуры следует выполнять следующие основные правила техники безопасности:
— помнить, что напряжение выше 30 в опасно для жизни; твердо знать все элементы, находящиеся под высоким напряжением;
— обязательно подкладывать под ноги резиновый коврик при работе с аппаратурой, находящейся под напряжением;
— не соединять искусственными замыкателями блокировочные контакты приборов;
— не попадать в зону облучения при работе с мощными СВЧ генераторами.

Среднюю долю дефектности q’ в принятых партиях называют средним выходным качеством.

Наибольшую возможную при заданном контроле среднюю долю дефектности в принятой партии называют предельным средним выходным качеством.

Выходной контроль бывает сплошным или выборочным.

При сплошном контроле проверке подвергается каждая единица партии, а при выборочном - часть продукции, и по полученным результатам судят о годности всей предъявляемой партии.

Выбор метода выходного контроля определяется, главным образом, характером причин, приводящих к браку, тщательностью мер по профилактике брака и др.

Основные этапы простейшего выборочного выходного контроля: извлечение выборки из партии; проверка изделий, входящих в выборку; принятие решения о качестве партии.

После проведения выборочного контроля возможны три вида решений: принять партию, продолжить контроль (извлечь одну или еще несколько выборок), забраковать партию.

Если партия изделий забракована, она может быть подвергнута либо сплошной проверке, либо полностью изъята или возвращена исполнителю для разбраковки и исправления.

Важным обстоятельством при выборочном контроле является установление числа изделий, подлежащих контролю, а также правил, на основе которых принимается решение о годности партии. При принятом решении сопоставляют число обнаруженных в выборке или же нескольких выборках изделий с некоторым предельным числом, установленным на основе предварительного расчета, которое называется браковочным числом С, т. е. партия считается годной, если в выборке обнаружено С или менее дефектных изделий. Когда количество дефектных изделий равно С -f 1 или более, партию бракуют.


Регулировки в радиоприемных устройствах .

В радиоприемных устройствах с помощью регулировок устанавливаются и поддерживаются требуемые режимы работы отдельных элементов схемы, обеспечивающие как наилучшие условия приема полезного сигнала, так и преобразование его в информацию.

Все виды регулировок можно разделить на две основные группы:

    Регулировки, изменяющие параметры семы, формирующие частотные и фазовые характеристики приемника;

    Регулировки, обеспечивающие требуемые режимы работы элементов приемника.

К первой группе относится настройка на заданную частоту или подстройка на рабочую частоту в определенных пределах. Регулировка избирательных свойств приемника и его полосы пропускания, установка определенных фазовых соотношений.

Вторая группа включает в себя установку заданных электрических режимов активных приборов (транзисторов и ламп), установку режимов отдельных узлов, регулировку усиления приемного тракта, согласование отдельных элементов схемы. В зависимости от целевого назначения перечисленные регулировки делятся на производственно-технологические и эксплуатационные. Первые осуществляются в процессе производства или в процессе ремонта. К ним можно отнести подстройку контуров подстроичными конденсаторами или сердечниками катушек, настройка фильтров, установка требуемых напряжений на электродах, согласование фидерных линий и т.д.

Эксплуатационные регулировки могут быть как ручными, так и автоматическими.

Основными из них являются:

    Регулировка частоты настройки приемника;

    Регулировка избирательности;

    Регулировка усиления.

Регулировка частоты.

Регулировка частоты включает в себя предварительную настройку на номинальную частоту принимаемого сигнала и подстройку во время работы.

Настройка приемника может осуществляться как по эталонному генератору, так и по принимаемому полезному сигналу. Число перестраиваемых элементов определяется схемой приемника и диапазоном частот. Настройка на заданную частоту может быть либо плавной в диапазоне работы приемника, либо фиксированной, обеспечивающей установку конечного числа частот.

Перестройка может осуществляться как вручную, так и с помощью электромеханического привода, с фиксацией заранее установленных рабочих частот. В супергетеродинных приемниках сантиметровых и миллиметровых диапазонов преселектор в большинстве случаев широкополосен и настройка приемника осуществляется путем установки частоты гетеродина. В клистронном гетеродине это может осуществляться за счет механической настройки резонатора, или изменением напряжения на отражателе.

При использовании в приемниках кварцевой стабилизации частоты гетеродина перестройка осуществляется либо путем смены кварцев, либо за счет использования нескольких кварцованных генераторов, обеспечивающих сетку стабильных частот в заданном диапазоне.

В супергетеродинных приемниках с перестраиваемым преселектором осуществляется сопряжение настройки контуров УВЧ и гетеродина. Изменение частот при настройке должно обеспечивать постоянство промежуточной частоты.

В большинстве случаев настройка контуров осуществляется с помощью конденсаторов переменной емкости, конструктивно объединенных в один блок. В зависимости от типа приемника и его назначения конденсаторы могут быть с воздушным или с пленочным диэлектриком, дискретные конденсаторы или варикапы.

Конденсаторы переменной емкости обладают достаточным коэффициентом перекрытия диапазона емкостей, высокой добротностью и линейностью изменения емкости. Недостатками являются достаточно большие габариты узла настройки, сложность конструкции при большом числе одновременно перестраиваемых контуров, большое время настройки.

При использовании блока конденсаторов переменной емкости параметры отдельных элементов блока примерно одинаковы, примерно одинаковы, будут и коэффициенты перекрытия емкости и, следовательно, диапазона частоты. Однако эти конденсаторы не позволяют обеспечить постоянную разность частот в преобразователях супергетеродинных приемников.

При промежуточной частоте f пр =f г -f с коэффициенты перекрытия диапазона должны быть различными.

При одинаковом же коэффициенте перекрытия разность между частотами настройки контуров УВЧ и гетеродина будет по диапазону, так как контура УВЧ будут расстраиваться относительно частоты сигнала. Это приведет к уменьшению коэффициента усиления, который снижается тем больше, чем шире полоса пропускания усилителя.

Для устранения этого недостатка осуществляется сопряжение настройки контуров. Один из вариантов сопряжения является введение дополнительных конденсаторов в контур гетеродина.

Индуктивность L г L выбирается такой, чтобы в середине диапазона оба контура имели разницу в настройке равную f пр . Конденсаторы же выбираются следующим образом C в » C мин , а C а « C макс . В этом случае на низких частотах рабочего диапазона, когда C = C макс емкость конденсатора C А роли не играет, а емкость конденсатора C в уменьшая результирующую емкость колебательного контура увеличивает его резонансную частоту и, следовательно, частоту гетеродина, приближая разность частот к значению промежуточной частоты.

Дискретный конденсатор представляет собой магазин конденсаторов постоянной емкости с последовательно-параллельным включением групп. Применение этих конденсаторов сокращает время перестройки, которое в первую очередь определяется быстродействием схемы управления и самим коммутатором. Возможны смещенные варианты, когда для перестройки колебательных систем используются одновременно дискретные конденсаторы и дискретные катушки индуктивности.

Основной недостаток перестройки с помощью дискретных конденсаторов это ограниченность числа настроек и сложность коммутирующих цепей.

В относительно маломощных каскадах в качестве элемента перестройки частоты используется варикап, который практически безинерционен в изменении емкости и требует маломощный источник управляющего напряжения. Применение варикапов позволяет автоматизировать процесс настройки.

Существенным недостатком варикапа является значительная нелинейность его характеристики, что улучшает селективные свойства приемника. Один из вариантов уменьшения влияния нелинейности характеристики является увеличение напряжения смещения, приложенного к диоду. Возможно включение в емкостную часть контура дополнительного линейного конденсатора, однако при этом снижается коэффициент перекрытия диапазона частот.

Лучший результат компенсации нелинейности характеристики дает всречно-последовательное включение варикапов.

В этом случае благодаря компенсации четных гармоник тока снижают влияние нелинейности характеристик. При этом необходимо обеспечить симметрию плеч за счет подбора варикапов по параметрам.

Настройка за счет изменения индуктивности осуществляется с помощью вариометров или дискретных катушек индуктивности. В первом случае используется механическое перемещение сердечника катушки внутри ее каркаса или замыкание части витков с помощью токосъемника. В этом случае коэффициент перекрытия порядка 4÷5. Однако необходимо учитывать, что одновременно с изменением индуктивности катушки изменяется и ее добротность, а сам механизм перестройки достаточно сложен и громоздок, что ограничивает число одновременно перестраиваемых контуров. Использование дискретной катушки индуктивности позволяет применять электронную перестройку, которая аналогично настройке дискретным конденсатором, но еще более громоздка.

В профессиональных приемниках СВЧ диапазона находит применение неперестраиваемый вход и коммутируемые фильтры. При неперестраиваемом широкополосном приселекторе антенна, УВЧ и преобразователь частоты согласуются с помощью широкополосных трансформаторов, а настройка обеспечивается с помощью перестройки гетеродина.

На практике широкое применение находит фильтровой способ настройки приемника, при котором весь диапазон рабочих частот перекрывается рядом неперестраиваемых фильтров, полоса пропускания которых выбирается с запасом по взаимному перекрытию. Число фильтров определяется требованием к селективности приемника и ограничивается сложностью цепи управления.

Таким образом, для приема сигналов в диапазоне частот необходимо выполнение ряда операций, в том числе коммутацию соответствующих цепей, переключение антенн и т. д.

Важным этапом в работе любого приемного устройства является точная настройка на рабочую частоту, который включает в себя установку необходимых частот гетеродина (в профессиональных приемниках их может быть несколько) и настройку резонансных цепей преселектора на частоту сигнала. При работе с использованием в гетеродине синтезаторов частоты имеется возможность сравнительно легко перестраиваться в течение малого промежутка времени. Однако труднее осуществлять быструю перестройку преселектора с включением нужного поддиапазона и перестройкой резонансных цепей. В этом случае используются различные коммутационные цепи, от элементов которых требуется наличие высокого сопротивления контакта для коммутируемого тока в разомкнутом состоянии и минимального в замкнутом. Они так же должны обладать малой проходной емкостью между контактами на рабочей частоте. В селективных цепях коммутация осуществляется механическими или электрическими элементами.

Геркон – это герметизированные и магнитоуправляемые контакты из магнитомягкого сплава. Капсула заполняется инертным газом или вакуумированна. При внесении капсулы в магнитное поле лепестки замыкаются, а при ослаблении напряженности поля размыкаются за счет собственной упругости. Магнитное поле создается специальной катушкой управления.

Коммутационные диоды с электронным управлением имеют большое сопротивление при напряжении обратного смещения и обладают малым дифференциальным сопротивлением при токе прямого смещения.

Регулировка полосы пропускания приемника.

Избирательные свойства приемника как правило обеспечиваются при его проектировании, но в ряде случаев появляется такая необходимость в процессе эксплуатации. Так в приемниках связных радиолиний это позволяет ослабить воздействие соседних по частоте мешающих станций.

Регулировка может осуществляться дискретно или плавно и, как правило, вручную. Регулируемыми элементами могут быть избирательные системы линейной части приемного тракта, главным образом в УПЧ, а также в каскадах низких частот.

Для плавной регулировки полосы пропускания в тракте УПЧ используются регулируемые фильтры, представляющие собой систему двух перестраиваемых контуров, связанных между собой с помощью кварцевого резонатора и являющихся нагрузкой одного из каскадов УПЧ. Таким образом при изменении расстройки контуров можно регулировать полосу пропускания, так как при настройке их на промежуточную частоту полоса пропускания максимальна, а при расстройке она сужается. Пределы регулировки полосы пропускания определяются допустимыми потерями в усилении.

В приемниках, имеющих в тракте УПЧ фильтры сосредоточенной селекции, регулировка избирательности осуществляется путем переключения элементов фильтра при сохранении в определенных пределах прямоугольности резонансной характеристики.

В последетекторной части приемника регулировка полосы пропускания осуществляется за счет изменения АЧХ в области верхних и нижних частот (регулировки тембра). Пассивные регуляторы тембра включаются во входную цепь усилителя. Регулятор, снижающий усиление в области высоких частот включается параллельно входной цепи усилителя и представляется в следующем виде.

Значения R p и C выбираются намного больше аналогичных входных параметров усилителя. При R p =0 спад АЧХ практически определяется постоянной времени τ = c R у. Если R p ≠0 спад будет только до частоты f 1 , после которой сопротивление Χ c =1/ωc становится существенно меньше R p и не влияет на результирующее сопротивление цепи с R p . АЧХ не изменяется до частоты, после которой она спадает за счет емкости C у. Пассивный регулятор тембра, повышающий усиление в области НЧ имеет следующий вид и работает аналогично цепи R ф C ф.

Регулировки усиления в РПУ.

Для данной схемы каскада усиления K 0 =p 1 p 2 SR э, где p 1 и p 2 – соответствующие коэффициенты включения, S – крутизна коллекторной характеристики транзистора, R э – эквивалентное сопротивление нагрузки с учетом шунтирования контура транзистором и нагрузкой. Регулировка коэффициента усиления может осуществляться изменением любой входящей в это выражение величины. При выборе способов регулировки требуется получение существенного изменения K 0 от напряжения регулировки, малый ток регулировки, малая зависимость других параметров усилителя при изменении коэффициента усиления.

    Регулировка усиления изменением крутизны характеристики.

Данная регулировка осуществляется за счет изменения режима работы активного элемента, поэтому ее можно считать режимной. В этом случае необходимо менять напряжение смещения на управляющем электроде, что и приведет к изменению крутизны в рабочей точке (в биполярном транзисторе кроме S меняются q вх и q вых). Регулирующее напряжение может подаваться как в цепь базы, так и в цепь эмиттера.

В данной схеме напряжение смещения на переходе Э-Б будет U эб =U 0 -E ρ . По мере увеличения E ρ U эб уменьшается, что приведет к уменьшению тока коллектора I к0 и S к, а как следствие уменьшение K 0 . Цепь регулировки усиления должна обеспечить ток в данной цепи примерно равный I 0э, а это значит, что I ρ должен быть относительно большим. Предпочтительнее подавать E ρ в цепь базы, когда U эб =U 0 -E ρ . Ток регулировки I ρ =I g , составляет I g ≈(5÷10)I 0б и невелик.

Данная схема обеспечивает меньшую стабильность работы из–за отсутствия резистора в цепи эмиттера, т.к. его наличие приведет к уменьшению эффекта регулировки. В противном случае надо увеличивать E ρ .

    Регулировка изменением R э может осуществляться различными способами.

Включением в контур диода.

    При E ρ >U к диод закрыт и не шунтирует контур. R э и K 0 велики.

    При E ρ

    Регулировка изменением коэффициентов включения.

Напряжение с контура подается на делитель Z 1 Z 2 . Изменяя одно из сопротивлений можно менять p 1 .Аналогична схема регулировки p 2 . В качестве сопротивлений можно использовать катушки с переменной индуктивностью или конденсаторы с переменной емкостью. Однако при этом не избежать расстройки контура. Лучшие результаты дает использование аттенюатора с переменным коэффициентом передачи, включенным между каскадами. В качестве аттенюатора применяют регулируемые делители, емкостные делители на варикапах, мостовые схемы.

При |E ρ |<|U 0 | диоды Д 1 и Д 2 открыты, а Д 3 закрыт. Коэффициент передачи максимален. По мере увеличения E ρ динамическое сопротивление диодов Д 1 и Д 2 увеличивается, а Д 3 – уменьшается, уменьшая коэффициент передачи аттенюатора.

Возможно, в качестве управляемого сопротивления использовать полевой транзистор, когда под действием E ρ изменяется сопротивление его канала.

Широкое применение находят аттенюаторы на pin – диодах, обладающие большим диапазоном изменения сопротивления и малой емкостью.

Работа pin – диодов управляется за счет изменения смещения в цепи базы транзистора. При нулевых напряжениях регулировки Д 1 и Д 2 закрыты, а Д 3 открыт (затухание минимально). При E ρ максимальном Д 1 и Д 2 открыты Д 3 закрыт (затухание максимально).

Регулировка K 0 с помощью регулируемой цепи ООС.

ООС вводится в цепь эмиттера транзистора. Глубина обратной связи регулируется за счет изменения емкости варикапа. При увеличении E рег диод сильнее закрывается, при этом уменьшается его емкость, а напряжение ОС увеличивается, уменьшая при этом K 0 .

В последетекторной части приемника способы регулировки K 0 подобны резонансным усилителям. Чаще применяют плавную потенциометрическую регулировку усиления, причем в широкополосных усилителях ее используют обычно в низкоомных цепях. В широкополосных каскадах чаще применяют регулировку усиления с помощью регулируемой ООС.


С помощью регулируемого делителя напряжения осуществляется изменение постоянного напряжения на базе.

Регулировка усиления осуществляется за счет изменения сопротивления переменному току в цепи эмиттера, в результате чего изменяется глубина ООС и усиление каскада.

Напряжение на другой каскад подается через управляемый делитель. Z 2 включает в себя входное сопротивление последующего каскада.

Автоматическая регулировка усиления (АРУ).

АРУ предназначена для поддерживания уровня выходного сигнала приемного устройства или усилителя вблизи некоторого номинального значения при изменении уровня входного сигнала. Использование АРУ необходимо потому, что уровень входного сигнала может меняться достаточно быстро и хаотически, на что невозможно отреагировать с помощью ручной регулировки.

Причин изменения уровня входного сигнала достаточно много:

    Изменение расстояния между источником излучения и приемником;

    Изменение условий распространения радиоволн;

    Перестройка приемника с одной станции на другую;

    Изменение взаимонаправленности приемной и передающей антенн; и т.д.

В радиолокационных приемниках к перечисленным причинам можно добавить флюктуации эффективной отражающей поверхности цели, смена целей с различными эффективными поверхностями, случайные изменения поляризации принимаемых волн.

В идеале выходное напряжение приемника должно оставаться постоянным после достижения некоторого значения выходного напряжения, обеспечивающего нормальную работу оконечного устройства. При этом коэффициент усиления должен изменяться по закону

K=U вых мин /U вх при U вх ≥ U вх мин

Схемы АРУ строятся по двум принципам с регулировкой «назад» и с регулировкой «вперед». Иначе их еще называют обратными и прямыми. Обратные системы АРУ (системы с обратной связью) в них точка съема напряжения, формирующего регулирующее воздействие, расположена дальше от входа приемника, чем точка приложения регулирующего воздействия.

В прямых системах АРУ точка съема напряжения запуска АРУ расположена ближе ко входу приемника, чем точка приложения регулирующего напряжения.

Обратные системы АРУ не могут обеспечить полного постоянства U вых, так как оно является входным для системы АРУ и должно содержать информацию для соответствующего изменения регулирующего воздействия. Кроме того, эта система не может обеспечить одновременно большую глубину регулировки при U вых ≈const и высокое быстродействие по соображениям устойчивости. В тоже время эта система защищает от перегрузки все каскады, расположенные от входа дальше, чем точка приложения регулирующего воздействия.

Прямые системы АРУ принципиально могут обеспечить идеальное регулирование, когда U вых ≈const при U вх ≥ U вх мин и сколь угодно высокое быстродействие. Реально же это не выполнимо, так как степень постоянства выходного напряжения обусловлена конкретными данными элементов цепи АРУ и цепей приемника, подверженных технологическим разбросам параметров, временным и режимным изменениям. При использовании данной системы АРУ от перегрузок защищаются каскады расположенные дальше точки приложения регулирующего воздействия.

Сама система АРУ находится под воздействием сигнала с широким динамическим диапазоном, подвержена перегрузке и должна содержать свои обратные связи. Т акая система сама превращается в отдельный канал приемника с достаточно сложной схемой.

На практике большее применение находят обратные системы АРУ, при этом возможно использовать комбинированные системы АРУ.

Структурная схема обратной АРУ может быть представлена в следующем виде

Напряжение регулировки подается на усилитель со стороны выхода. Детектор АРУ обеспечивает пропорциональность E ρ выходному напряжению, т.е. E ρ =K д U вых. Фильтр АРУ отфильтровывает составляющие частот модуляции. Такую схему называют простой АРУ. До или после детектора в цепях АРУ может включаться усилитель и тогда АРУ считается усиленной.

Структурная схема прямой простой АРУ включает те же элементы.


Функциональная схема комбинированной АРУ включает следующие элементы.

Обратная система АРУ образована детектором Д АРУ1 , фильтром Ф 1 и всеми каскадами основного тракта, расположенными между точкой ввода регулирующего напряжения U ρ1 и выходом блока высокой частоты (БВЧ).

В прямую схему АРУ входят детектор Д АРУ2 , фильтр Ф 2 и усилитель постоянного напряжения У АРУ2 . Регулирующее напряжение U ρ2 вводится в БВЧ и УНЧ, который может и отсутствовать. Фильтры Ф 1 и Ф 2 придают цепям АРУ необходимую инерционность, обусловленную как устойчивость АРУ 1 , так и отсутствием демодуляции амплитудно модулированных сигналов в АРУ 1 и АРУ 2 .

Нет необходимости снижать усиление слабых сигналов (U вх < U вх мин), не обеспечивающих номинального выходного напряжения при максимальном усилении всех каскадов. Для придания цепям АРУ пороговых свойств они запираются принудительным смещением и отпираются тогда, когда напряжение входного сигнала превысит напряжение запирания. Как правило напряжения запирания (задержки) подаются на детекторы или усилители (На схеме E 31 и E 32).

Задержка может вводиться по среднему значению сигнала или по максимальному. В цепи АРУ 1 нет специального усилителя и она является не усиленной системой. АРУ 2 система усиленная, она обладает большей глубиной регулирования и способна обеспечивать меньший динамический диапазон выходного сигнала.

При слабом сигнале на входе приемника и максимальном коэффициенте усиления на его выходе прослушиваются шумы, создаваемые внешними помехами и собственными шумами приемника. Для устранения этого дефекта используются бесшумные системы АРУ.

Лекция 5

1. НАЗНАЧЕНИЕ И ВИДЫ РЕГУЛИРОВОК

В процессе изготовления и эксплуатации радиоэлектронной аппаратуры (РЭА) для получения наилучшего качества приема и передачи сигнала приходится регулировать ряд его показа­телей: частоту настройки, коэффициент усиления, полосу пропускания и др. Для осуществления этих регулировок в РПУ используют регуляторы. В зависимости от вида регулируемого параметра разли­чают: регулировку усиления, которая может осуществляться в трактах радиочастоты и промежуточной частоты, а также в последетекторной части приемника; регулировку частоты настройки, обеспечивающую прием сигналов в широком диапазоне частот; регулировку полосы пропускания, которая может производиться в трактах радиочастоты и промежуточной частоты, а также в последетекторной части приемного устройства. Каскады с электрическим управлением коэффициентом передачи используются в приемных блоках всех эхоимпульсных ультразвуковых и гидроакустических систем. В ультразвуковых системах эти каскады используются.

Регулировка бывает ручной и автоматической. Ручная регулировка служит для установки исходных показателей РЭА. Автоматическая регулировка усиления (АРУ), ВАРУ (временная автоматическая регулировка усиления), БАРУ (быстродействующая АРУ) поддерживают выбранные показатели РЭА на требуемом уровне. Некоторые виды регулировок можно отнести к смешанным. В современных РЭА для регулировок, управления и контроля широко используют микропроцессоры.

2. РЕГУЛИРОВКА УСИЛЕНИЯ

Способы регулировки усиления резонансного усилителя. Резонансный коэффициент усиления усилителя по схеме рис. 13.1 определяется по формуле:

Ко = S· Кэ · m 1 · m 2 (5.26),

где m 1 и m 2 - коэффициенты включения; S - крутизна транзистора в рабочей точке; Кэ - эквивалентное сопротивление контура при резонансе с учетом шунтирующего действия выхода транзистора и входа последующего каскада. Регулировка Ко может осуществляться изменением любой величины, входящей в формулу (5.26). При синтезе устройств регулировки требуются существенное изме­нение Ко от напряжения регулировки Eper, малый ток регулировки, малая зависимость изменения других параметров усилителя при из­менении Ко. Рассматриваемые способы изменения усиления применимы как для ручных, так и для автоматических регулировок. Регулировка изменением крутизны. Такая регулировка осуществляется изменением режима электронного прибора, соответ­ственно такая регулировка Ко называется режимной. Для изменения крутизны S необходимо менять напряжение смещения на управляющем электроде электронного прибора: напряжение Uбэо в биполярном или напряжение Uзио в полевом транзисторах. Изменение напряжения Uбэо на транзисторе вызывает существенное изменение напряжения смещения.



При изменении смещения в полевом транзисторе меняется практически только крутизна S, а в биполярном транзисторе еще и такие его параметры, как h 11 , h 22 и т.д. Регулирующее напряжение Eper подается в цепь эмиттера либо в цепь базы транзистора. Схема регулировки первого вида показана на рис. 13.1, а, напряжение смещения на транзисторе UБэо = U0 - U peг. По мере увеличения U per напряжение Uбэо уменьшается, что влечет за собой уменьшение тока Iко и крутизны S, в результате чего коэффициент усиления Ко снижается. Цепь регулировки должна обеспечить ток, примерно равный Iэо. Если регулируется п каскадов, то ток регулиров­ки Iper равен сумме Iper n, поэтому цепь регулировки должна вырабатывать срав­нительно большой ток Iper, что является недостатком схемы рис. 13.1, а. От этого недостатка свободны цепи регулировки второго типа, в которых напряжение Uрег вводится в цепь базы (рис. 13.1,6). Согласно рис. 13.1,6 IБЭО = Io - Ipeг, поэтому принцип регулировки в обоих случаях одинаков. Достоинство регулировки по схеме рис. 13.1,6 состоит в том, что ток I per, равный току делителя Iдл = (5 - 10)IБО > во много раз меньше тока Iper при регулировке по схеме рис. 13.1, я. Однако схема рис. 13.1,6 менее стабильна в работе, поскольку в ней отсутствует резистор в цепи эмиттера Ry Включение резистора Ry приводит к уменьшению эффективности регулировки, гак как он обеспечивает стабилизацию режима не только при изменении температуры, но и при изменении Еper. При включении резистора РЭ для обеспечения той же глубины регулировки необходимо подавать, большее значение напряжения Еper.

Регулировка изменением Rэкв.

Такая регулировка может осуществляться различными способами. На рис. 13.2 показана схема югулировки с подключенным параллельно контуру диодом Д. При Eрег > Us диод закрыт и контур практически не шунтирует; при этом Rэкв и Ко наибольшие. При Eper < US диод открывается и его входное cсопротивление шунтирует контур. В этом случае Ry, а следовательно, Ко уменьшаются. Основной недостаток такого способа регулировки остоит в том, что при изменении Rэкв, меняется не только Ко, но и квивалентное затухание контура, а это вызывает изменение полосы пропускания усилителя.

Рис. 13.2 Рис. 13.3

Тем не менее при сильном сигнале допустимо некоторое ухудшение селективности. Регулировка изменением m1и Z. Идея данного способа регулировки поясняется рис. 13.3. Напряжение с контура подается на делитель Z1Z2, изменяя одно из сопротивлений которого можно менять коэффициент включения. Аналогична и схема для изменения mi. В качестве сопротивлений Z1 и Z2 можно использовать катушки с переменной индуктивностью либо конденсаторы с переменной ем­костью. Однако этот способ регулировки не используется, так как связан с трудно предотвратимой расстройкой контура, возникающей при изменении сопротивлений Z1 и Z2.

Аттенюаторная регулировка.

При таком способе регули­ровки между усилительными каскадами включают аттенюатор с переменным коэффициентом передачи. Используются регулируемые дели­тели, емкостные делители на варикапах, мостовые схемы. Так, на рис. 13.4, и показана схема регулируемого аттенюатора на диодах Д1 – Д3. При | Eper I < V/o Диоды Д1 и Д2 открыты, а диод Д3 закрыт; при этом коэффициент передачи максимален. По мере уве­личения Ерег динамические сопротивления диодов Д1 и Д2 увеличи­ваются, а динамическое сопротивление диода Д3 уменьшается, а следо­вательно, уменьшается коэффициент передачи аттенюатора. На рис. 13.4,6 представлена схема делителя, в которой в качестве управляемого сопротивления применяют полевой транзистор; под действием Ерег меняется сопротивление канала транзистора. Широко используются аттенюаторы на pin-диодах, обладающих большим диапазоном изменения сопротивления и малой емкостью. На рис. 13.4, в показана схема аттенюатора на pin-диодах, работой которых управляют путем изменения смещения на базе транзистора Ti с помощью резистора Rper. При нулевом напряжении регулировки диоды Д1 и Д, закрыты, а Дз открыт и затухание аттенюатора минимально. При максимальном напряжении регулировки диоды Д1 и Дд открыты, а Дз закрыт и затухание аттенюатора максимально.

Регулировка Ко с помощью регулируемой ООС. Этот способ регулировки Ко, как и аттенюаторная регулировка, не вытекает из формулы (5.26). Типовая схема изменения Ко регулируемой ООС показана на рис. 13.5, ООС в этом случае вводится в цепь эмиттера транзистора. В усилительных каскадах параллельно R, обычно включают конденсатор С, большой емкости для устранения ООС. В схеме рис. 13.5 глубину ООС можно регулировать изменением емкости конденсатора Срег; блокировочный конденсатор Cбл, служит для разделения по постоянному току цепей регулировки и пита­ния транзистора. В качестве Срег обычно используется варикап Д. С увеличением Ерег диод Д закрывается сильнее, его емкость Срег уменьшается, напряжение ООС увеличивается, коэффициент усиления Ко уменьшается.