Все случаи поражения человека током в результате электрического удара - следствие прикосновения не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов. Опасность такого прикосновения во многом зависит от особенностей электрической сети и схемы включения в нее человека. Определив силу тока /ч, проходящего через человека с учетом этих факторов, можно выбрать соответствующие защитные меры для снижения опасности поражения.

Двухфазное включение человека в цепь тока (рис. 8.1, а). Оно происходит довольно редко, но более опасно по сравнению с однофазным, так как к телу прикладывается наибольшее в данной сети напряжение - линейное, а сила тока, А, проходящего через человека, не зависит от схемы сети, режима ее нейтрали и других факторов, т. е.

I = Uл/Rч = √ 3Uф/Rч,

где Uл и Uф -линейное и фазное напряжение, В; Rч - сопротивление тела человека, Ом (согласно Правилам устройства электроустановок в расчетах Rч принимают равным 1000 Ом).

Случаи двухфазного прикосновения могут произойти при работе с электрооборудованием без снятия напряжения, например, при замене сгоревшего предохранителя на вводе в здание, применении диэлектрических перчаток с разрывами резины, присоединении кабеля к незащищенным зажимам сварочного трансформатора и т. п.

Однофазное включение. На ток, проходящий через человека, влияют различные факторы, что снижает опасность поражения по сравнению с двухфазным прикосновением.

Рис. 8.1. Схемы возможного включения человека в сеть трехфазного тока:

а - двухфазное прикосновение; б- однофазное прикосновение в сети с заземленной нейтралью; в - однофазное прикосновение в сети с изолированной нейтралью

В однофазной двухпроводной сети, изолированной от земли, силу тока, А, проходящего через человека, при равенстве сопротивления изоляции проводов относительно земли r1 = r2 = r, определяют по формуле

Iч = U/(2Rч + r),

где U- напряжение сети, В; r - сопротивление изоляции, Ом.

В трехпроводной сети с изолированной нейтралью при r1 = r2 = r3 = rток пойдет от места контакта через тело человека, обувь, пол и несовершенную изоляцию к другим фазам (рис. 8.1, б). Тогда

Iч = Uф/(Ro + r/3),

где Rо - общее сопротивление, Ом; RO = Rч + Rоп + Rп; Rоб - сопротивление обуви, см: для резиновой обуви Rоб ≥ 50 000 Ом; Rn - сопротивление пола, Ом: для сухого деревянного пола, Rп = 60 000 Ом; г - сопротивление изоляции проводов, Ом (согласно ПУЭ должно быть не менее 0,5 МОм на фазу участка сети напряжением до 1000 В).

В трехфазных четырехпроводных сетях ток пойдет через человека, его обувь, пол, заземление нейтрали источника и нулевой провод (рис. 8.1, в). Сила тока, А, проходящего через человека,

Iч=Uф(Rо + Rн),

где RH - сопротивление заземления нейтрали, Ом. Пренебрегая сопротивлением RH, получим:

На предприятиях сельского хозяйства в основном применяют четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В. Их преимущество состоит в том, что посредством их можно получить два рабочих напряжения: линейное Uл = 380 В и фазное Uф = 220 В. К таким сетям не предъявляют высоких требований к качеству изоляции проводов и их применяют при большой разветвленности сети. Несколько реже используют трехпроводную сеть с изолированной нейтралью при напряжении до 1000В -более безопасную, если сопротивление изоляции проводов поддерживается на высоком уровне.

Напряжение прикосновения. Оно возникает в результате касания находящихся под напряжением электроустановок или металлических частей оборудования.

Шаговое напряжение. Это напряжение Uш на теле человека при положении ног в точках поля растекания тока с заземлителя или от упавшего на землю провода, где находятся ступни, когда человек идет в направлении заземлителя (провода) или от него (рис. 8.2).

Если одна нога находится на расстоянии х от центра заземлителя, то другая - на расстоянии х + а, где а - длина шага. Обычно в расчетах принимают а = 0,8 м.

Максимальное напряжение в этом случае возникает в точке замыкания тока на землю, а по мере удаления от нее оно снижается по закону гиперболы. Считают, что на расстоянии 20 м от места замыкания потенциал земли равен нулю.

Шаговое напряжение, В,

Рис. 8.2. Схема возникновения шагового напряжения

Даже при небольшом шаговом напряжении (50...80 В) может возникнуть непроизвольное судорожное сокращение мышц ног и, как следствие этого - падение человека на землю. При этом он одновременно касается земли руками и ногами, расстояние между которыми больше, чем длина шага, поэтому действующее напряжение увеличивается. Кроме того, в таком положении человека образуется новый путь прохождения тока, затрагивающий жизненно важные органы. При этом создается реальная угроза смертельного поражения. При уменьшении длины шага шаговое напряжение снижается. Поэтому, для того чтобы выбраться из зоны действия шагового напряжения, следует передвигаться прыжками на одной ноге или на двух сомкнутых ногах или как можно более короткими шагами (в последнем случае допустимым считают напряжение не более 40 В).

ЭЛЕКТРОБЕЗОПАСНОСТЬ - ОСОЗНАННАЯ НЕОБХОДИМОСТЬ

Евгений Иванов, сопредседатель проблемного комитета "Электробезопасность" Международной академии наук экологии и безопасности жизнедеятельности, д. т. н., профессор кафедры безопасности жизнедеятельности СПГЭТУ "ЛЭТИ"

В прошлом номере нашего журнала мы начали разговор об основах электробезопасности в свете современных требований. Были рассмотрены виды действия электрического тока на организм человека и первые две возможные схемы включения человека в цепь тока: двухполюсное и однополюсное прикосновение. Сейчас речь пойдет о следующих типовых схемах поражения электрическим током.

ОСТАТОЧНЫЙ ЗАРЯД

Под остаточным понимается заряд на конденсаторе, сохраняющийся некоторое время после отключения источника питания. Схема включения человека в электрическую цепь формируется при прикосновении его к одной из обмоток конденсатора.

Условия формирования цепи
Всякая сеть или устройство обладают емкостью относительно земли (корпуса) и между полюсами (фазами).
Если сопротивление изоляции велико, то после снятия рабочего напряжения либо после измерений мегомметром потенциал на токо-ведущих частях, обусловленный остаточным зарядом емкости, может сохраняться длительное время. В случае прикосновения человека к токоведущей части при этом возникает переходный процесс разряда емкостей через его тело.
Процессы, аналогичные указанным, происходят также при работе в цепях с индуктивностями. Так, согласно Правилам эксплуатации электроустановок, необходимо ежегодно отключать силовые трансформаторы и контролировать омическое сопротивление их обмоток.
В переносных омметрах обычно применяют источники постоянного напряжения 4-6 В. При отключении омметра, например, от обмотки низкого напряжения в процессе разряда ее индуктивности импульс тока трансформируется в обмотку высокого напряжения. Если в этот момент человек касается полюса последней, то вторичная травма неизбежна.

Возможные последствия действия остаточного заряда
Рассмотрим эту схему травмирования током на примере однофазной сети.

Обозначения на схеме: Rh - сопротивление тела человека, R, и R2, С, и С2 - эквивалентные сопротивления изоляции и емкости полюсов относительно земли, С12 -эквивалентная емкость между полюсами (в том числе конденсаторов фильтров выпрямителей), U0 -остаточное напряжение.
Принимаем (R,R2) > Rh, что правомерно, так как при низких значениях сопротивления изоляции остаточный заряд быстро исчезает и сеть, с точки зрения возможности поражения человека током, становится безопасной.
Упрощаем расчетную схему путем разделения емкости С12 на две последовательно включенные емкости значением 2 С12 каждая (рис.б). Окончательная расчетная схема (рис.в) позволяет определить ток разряда емкости С, + 2 С12 через сопротивление Rh при начальном напряжении 11^2 по известной формуле:
lh = U0exP(-t/Rh(Cl + 2C12))/2Rh.
Таким образом, максимальное значение тока lh определяется величиной остаточного напряжения U0 и сопротивления тела человека, а длительность переходного процесса зависит от величины емкостей относительно земли и между полюсами сети.
Обычный результат действия остаточного заряда - вторичные травмы.

Защитные мероприятия
Из формулы для lh следует одно из основных правил техники безопасности: после снятия рабочего напряжения не берись за токоведущие части, предварительно не разрядив емкости.
Для разряда емкостей следует присоединить провод разрядника(щупа) к заземленной конструкции (детали) и затем коснуться щупом токоведущей части.
Изменять указанную последовательность операций нельзя, так как в этом случае ток разряда пройдет через тело человека.

ЗАРЯД СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА
Схема включения человека в цепь
В этом режиме человек прикасается к металлическому предмету, изолированному от земли, или к конструкции из изоляционного материала, несущим заряд статического электричества. Возможен также режим прикосновения к заземленной металлической конструкции, когда человек находится на полу из изоляционного материала и сам несет заряд статического электричества.
Условия формирования цепи
Заряды статического электричества образуются при перемещении (трении) твердых, жидких или газообразных диэлектриков относительно других проводящих или непроводящих ток материалов.
Возможные последствия действия статического электричества
Возможность формирования зарядов статического электричества существенно увеличилась с массовым применением пластических материалов (трубопроводы, покрытие полов и пр.), обладающих высоким сопротивлением.
Заряды статического электричества генерируют высокие потенциалы. Так, при перекачке топлива, например, при заливке бензина в бак автомобиля, заряд Qст получает латунный наконечник резинового шланга. Потенциал его относительно земли (или бака) будет Uст = Qст/С =1,5 ё 14кВ зависимости от скорости прокачки (здесь С - емкость наконечника относительно земли или бака - величина бесконечно малая). При прикосновении человека к такому заряженному предмету возможны вторичные травмы или ожог искрой.
Тело человека относительно земли имеет емкость около 200 пФ. Если он находится на изолирующем полу (линолеум), то в результате трения одежды о кожу на нем может накопиться заряд с энергией до 0,43 мДж. Отсюда из известного выражения для энергии заряженного конденсатора получаем, что значение потенциала тела относительно земли превышает 500 В; в случае прикосновения к заземленному металлическому предмету (батарея отопления, шкафчик с рабочей одеждой и пр.) человек почувствует удар током (ток разряда собственной емкости).
Такие заряды наибольшую опасность представляют для элементов микросхемотехники при монтаже печатных плат. Обычно во избежание выхода их из строя жало паяльника заземляют либо на руку монтажницы надевают заземленный браслет; наиболее эффективная мера - обязательная замена одежды на хлопчатобумажную, исключающую возможность генерирования электростатического заряда.
Основные виды разрядов статического электричества:
а) разряды между проводящими телами – формируются в результате электризации и накопления заряда на изолированных проводящих телах (человек, металлическая тара для жидкостей и сыпучих материалов, транспортные средства на резиновых шинах, гребные валы на судах и пр.);
б) разряды с заряженного ди-электрика на проводящие конструкции (резиновые либо пластмассовые резервуары; бочки и канистры для хранения и транспортировки нефтепродуктов и сыпучих материалов; диэлектрические трубы, по которым перемещаются эти материалы, и т.п.);
в) коронирование диэлектриков - разряд, обусловленный разностью потенциалов между внутренней и наружной поверхностями конструкции (трубы для транспортировки жидких и сыпучих материалов, пневмотранспортные трубопроводы);
г) разряды в следе скольжения - возникают в процессе электризации твердых поверхностей путем трения.
Защитные мероприятия
Защита обеспечивается путем формирования цепей для снятия зарядов статического электричества (заземление металлоконструкций, снижение омического сопротивления изоляционных материалов путем введения в них проводящих примесей, периодического обливания изоляционных конструкций проводящими жидкостями и т.п.).
Пример: При обезжиривании металлических деталей случай загорания от электрического разряда произошел в условиях, когда, казалось бы, все меры защиты от статического электричества были соблюдены. Ванна с бензином заземлена. Полы в помещении и обувь рабочих обладали электропроводностью, соответствующей нормативным требованиям. Но тем не менее, при погружении металлических деталей в ванну произошло загорание. Причиной его был разряд с одежды, так как шерстяная одежда сочеталась с одеждой из вискозного шелка, что недопустимо.

НАПРЯЖЕНИЕ ШАГА
Схема включения человека в цепь
Действию напряжения шага человек подвергается в зоне растекания тока, то есть на поверхности земли вблизи места замыкания на землю. Условия формирования цепи
В зоне растекания тока, в соответствии с выражением j(х) = k/x, различны потенциалы всех точек на поверхности земли.

Напряжением шага называется разность потенциалов двух точек поверхности земли, на которых находится человек, при этом в расчетах ширина шага принимается равной а = 0,8 м.
Возможные последствия действия напряжения шага
Напряжение шага зависит от двух основных факторов - максимального потенциала в зоне растекания тока j зами удаления человека от места замыкания (х).

В наиболее удаленных точках зоны растекания тока напряжение шага невелико, а ток через тело человека Ih = Uш/Rh протекает по пути «нога-нога». По мере возрастания напряжения Uш при приближении человека к месту замыкания ток возрастает и может в итоге достичь значения порогового неотпускающего тока; в результате судорожной реакции человек падает, при этом размер «шага» увеличивается (расстояние стало «руки-ноги») с соответствующим возрастанием значения Uш, а в путь тока включается область сердца. Так без видимых внешних причин может наступить летальный исход.
Пример: «Сильнее огня» («Правда», 23 августа 1987 г.).
Обстоятельства таковы: комбайн «Колос» коснулся выхлопной трубой провисшего провода ЛЭП и оборвал его. От искр загорелись валки скошенной пшеницы, огонь грозил и комбайну. Николай бросился тушить его. «Он бросился, как солдат в атаку, и упал, как подкошенный пулей». На могильном памятнике надпись: «Николай Васильевич Барсуков. 1953-1987. Погиб в борьбе за хлеб».

ЭЛЕКТРИЧЕСКИЙ ПРОБОЙ ВОЗДУШНОГО ПРОМЕЖУТКА
Схема включения человека в цепь
Эта схема поражения током характерна для высоковольтных цепей.
В равномерном электрическом поле (например, между обкладками плоского конденсатора) электрическая прочность воздушного промежутка равна 3-4 кВ/мм в зависимости от влажности воздуха.
То есть электрический пробой воздушного промежутка размером 1 мм происходит при напряжении 3-4 кВ между обкладками конденсатора.
Когда человек той или иной частью тела приближается к высоковольтной токоведущей части, в воздушном зазоре также формируется электрическое поле, но это поле неравномерное, типа игла-плоскость либо игла-линия. Электрическая прочность воздушного промежутка в неравномерном поле существенно ниже, она может уменьшаться до значения 4 кВ/см.
Условия формирования цепи Пусть человек проник в трансформаторную будку 6/0,38 кВ и приблизил палец к токоведущей части, находящейся под потенциалом 6 кВ.
Потенциал тела человека равен потенциалу земли (ноль), поэтому разность потенциалов в воздушном зазоре «палец - токоведущая часть» составляет 6 кВ. При таком напряжении происходит электрический пробой воздушного промежутка и формируется дуговой разряд. При неблагоприятных условиях, когда цепь тока не прерывается, термическую травму завершает биологическое поражение током.
Возможные последствия электрического пробоя воздушного промежутка
При дуговом разряде (ожоге дугой) разрушаются кожные покровы, мышечная и костная ткани.
Защитные мероприятия
Защита людей от опасности рассматриваемого режима достигается путем обеспечения недоступности токоведущих частей оборудования.

В процессе эксплуатации электроустановок не исключена возможность прикосновения человека к токоведущим частям, находящимся под напряжением. В большинстве случаев опасно прикосновение к токоведущим частям случается, когда человек стоит на земле, а обувь П имеет некоторую электропроводность.

В условиях туристского комплекса Наиболее типичные две схемы включения тела человека в электрической цепи: Между двумя проводами 1 между проводом и землей. В трехфазных сетях переменного тока первая схема называется - двухфазным включением, а вторая - однофазным. В гостиничном хозяйстве, кроме трехфазных сетей переменного тока, широко применяются однофазные для питания различных бытовых приборов (пылесосов, холодильников, утюгов).

Схема включения человека в однофазную двухпроводной сеть, изолированную от земли, приведена на рис. 4.1.

Рис. 4.1. Прикосновение человека к проводу однофазной двухпроводной сети при режиме ее работы: а - нормальному; б - аварийном; А, N - обозначение проводов.

Подобные сети получаются с помощью разделительных трансформаторов. При нормальном режиме работы и качественной изоляции проводов прикосновение к одному из них уменьшает опасность поражения электрическим током.

При аварийном режиме (рис.4.1, б), когда один из проводов заперт на землю, изоляция его оказывается шунтируемой сопротивлением замыкания провода на землю, которое как всегда настолько мала, что может быть принято равным нулю. Для создания однофазных двухпроводных сетей заземленным проводом применяют однофазные трансформаторы, а для получения напряжения 220 Внутрьохфазний сети присоединяются к фазного и нулевого проводов. В обоих случаях возникает электрическая цепь, одной из участков которого является тело человека. Путь тока через тело человека в первом случае может быть "рука - нога", а во втором - "рука - рука". Возможны и другие случаи включения человека в электрическую цепь, например, касания токоведущих частей лицом, головой, шеей или включения на пути тока "нога - нога".

Трехфазные четырехпроводной сети с заземленной нейтралью. При двухфазном (двухполюсный) соприкосновения человек оказывается под полным рабочим напряжением установки. При однополюсном соприкосновения, который бывает чаще, ток зависит не только от напряжения установки и сопротивления тела человека, но и от режима нейтрали, состояния изоляции сети, полы, обувь человека.

Рассмотрим особенности различных электрических сетей. В туристском комплексе распространены четыре ведущие сети с наглухо заземленной нейтралью напряжением до 1000 В, например 380/220 В. Источником питания служит трехфазный понижающий трансформатор, вторичные обмотки которого соединены "звездой". Наглухо заземлена нейтраль вторичной обмотки понижающего трансформатора (например, 1000/400 В) обусловливает режим, при котором напряжение любой фазы вторичной сети относительно земли не превышает фазного напряжения, то есть для трансформатора с вторичным напряжением 400 В оно будет не более 230 В (в потребителя 220 В). Кроме того, в случае нарушения изоляции между первичной и вторичной обмотками при рабочем заземлении нейтрали самая высокая напряжение, переходит к вторичной сети по отношению к земле, значительно снижается благодаря небольшому сопротивления заземления нейтрали (2,4,8 Ом и более для напряжения 660, 380 и 220 В трехфазной сети (Госстандарт 12.1.030-81)).

Упрощенная схема, которая объясняет однополюсный прикосновение человека к четырехпроводной сети с глухим заземлением нейтрали источника питания (трансформатора или генератора), представлена на рис. 4.2.

Рис. 4.2. Однофазное включение человека в сети с наглухо заземленной нейтралью источников питания (трансформатора).

Через малое сопротивление растекания тока рабочего заземления нейтрали по сравнению с сопротивлением тела человека оно равно нулю. Прикосновение человека, который стоит на земле (или на заземленной конструкции, полу), обусловливает замкнутый электрическую цепь: обмотка источника питания - провод линии - тело человека - земля - провод - рабочее заземление - обмотка источники. На участке цепи "тело человека" на него действует фазное напряжение сети 220 В. Если при этом обувь человека электропроводящее, то пол или конструкция, на которой она стоит, также будут электропроводящими, и практически вся и напряжение будет приложено к человеку по пути "рука - ноги ". Если в неблагоприятных условиях сопротивление тела человека будет 1000 Ом, то через нее пройдет ток, равный 220 мА, что смертельно опасно для нее. Если же сопротивление обуви и пола в сумме окажутся сопоставимыми с сопротивлением тела человека, то ток через него будет меньше. Например, при большом сопротивлении участка "обувь - пол" (10000 Ом) ток через человека будет 20 мА. то есть значительно менее опасным, но вызывает боль, судороги, а в некоторых случаях невозможность потерпевшего самостоятельно освободиться от действия тока. Это доказывает, что однофазный прикосновение человека к сети с наглухо заземленной нейтралью всегда опасен.

На практике эксплуатации электроустановок возможны случаи замыкания на землю токоведущих частей, например через корпус электроприёмника или металлическую конструкцию электропроводки. Если такое замыкание окажется глухим, то есть малый переходное сопротивление, то установка через однофазное короткое замыкание отключается максимальным ручьевая защитой (перегорает плавкая вставка предохранителя или отключается автоматический выключатель). После этого нормальный режим работы другой электросети восстанавливается.

Предельно допустимые уровни напряжения прикосновения и тока при аварийном режиме работы производственных и бытовых электроустановок в туркомплексах напряжением до 1000 В и частотой 50 Гц не должны превышать значений, указанных в табл. 4.1 (Госстандарт 12.1.038-82).

Таблица 4.1.

Предельно допустимые уровни напряжения прикосновения и тока

Нормированная величина

Продолжительность действия тока, с

Нормированная величина

Трехфазные сети с изолированной от земли нейтралью.

Размещение электрической энергии на вторую ступень электроснабжения производственных предприятий, городов и поселка осуществляется с помощью кабельных (в городах), или воздушных (в поселках) линий при номинальном напряжении электроприемников (понижающих трансформаторов предприятий, жилых массивов) при 6. 10 или 35 кВ. Эти электрические сети делают с изолированными от земли нейтралями I фазами источников питания (трансформаторов районных подстанций энергосистемы) или нейтралями, заземленными через значительные индуктивные сопротивления, включаются для уменьшения емкости составляющего тока однофазного замыкания на землю.

При однофазном замыкании на землю в сети с изолированной от земли нейтралью в месте замыкания на землю будет протекать ток, вызванный рабочим напряжением установки и проводимостью фаз относительно земли.

Сетях с изолированной нейтралью достаточно эффективны при сравнительно небольшой их протяженности. В этом случае емкость проводов относительно земли мы можем принять равной нулю, а сопротивление проводов достаточно большим.

На рис. 4.3 показано включение человека в трехфазное сетях с изолированной нейтралью.

Рис. 4.3. Прикосновение человека к проводу трехфазной 3-проводной сети с изолированной нейтралью при нормальном режиме работы А. В, С - обозначение проводов.

В сетях с изолированной нейтралью при нормальной работе опасность поражения электрическим током человека, прикоснулась к одной из фаз. зависит от сопротивления проводника относительно земли, то есть с увеличением сопротивления опасность уменьшается.

Защитное заземление - один из защитных мер против поражения человека электрическим током при прикосновении к металлическим НЕ токопроводящих частей с поврежденной изоляцией (например, замыкание на корпус). Цель такого заземления заключается в преднамеренном электрическом соединении с землей или ТЕ эквивалентом металлических НЕ токопроводящих частей, которые могут оказаться под напряжением, с помощью заземленных устройств (совокупность заземлителя и заземляющих проводников). Как заземлитель служит один или несколько металлических электродов (например, стальных стержней, труб), которые находятся в земле, обеспечивая достаточно малый переходное сопротивление. Сопротивление заземленного устройства называют суммарным сопротивлением, состоящий из сопротивления растекания тока заземления и сопротивления заземленных проводников.

Рассмотрим действие защитного заземления. Если корпус электродвигателя (аппарата оболочки кабеля) не имеет надежного соединения с землей и в результате повреждения изоляции имеет контакт с токопроводящей частью, то произойдет однофазное включение человека в цепь тока.

В сети при замыкании на корпус возникает однофазное замыкание на землю.

Вследствие относительно небольшого тока, протекающего на землю, установленные защитой не отключится и в дальнейшем будет работать в аварийном режиме. Но через корпус машины или аппарата с поврежденной изоляцией протекать ток, и между корпусом 1 землей появится напряжение относительно земли (рис. 4.4).

Рис. 4.4. Замыкание на корпус электродвигателя, подключенного к сети с изолированной нейтралью.

Человек, который окажется под напряжением прикосновения, что может быть значительным и зависит от того, где находятся ноги человека, а также от электрической проводимости (сопротивления) обувь. Как всегда напряжение прикосновения меньше напряжения относительно земли.

Таким образом, размер величины напряжения заземленного корпуса относительно земли, а следовательно, и напряжение прикосновения зависят от сопротивления земли, и напряжение прикосновения зависит от сопротивления заземленного устройства. Для того чтобы напряжение прикосновения была по возможности малой, нужно иметь малое сопротивление заземленного устройства. Электроустановок не заземляют при напряжении 42 В и ниже переменного тока 1 110 В и ниже постоянного тока во всех помещениях и условиях работы без повышенной опасности.

Части электрооборудования, подлежащих заземлению. Заземлению подлежат: корпуса электрических машин, трансформаторов, аппаратов; приводы электрических аппаратов и вторичные обмотки сварочных трансформаторов; каркасы распределенных щитов, щиты управления, осветительных и силовых шкафов; металлических конструкций распределенных устройств кабельных линий. Заземлению не подлежат: арматура подвесных и опорных изоляторов; кронштейны и осветительная арматура при установке их на деревянных опорах и конструкциях; электрооборудования, установлено на металлических заземленных конструкциях, если в местах контакта с ними металлических НЕ токоведущих частей электрооборудования обеспечен надежный электрический контакт. Не подлежат заземлению также корпуса электроизмерительных приборов и реле, установленных на щитах, в шкафах 1 стенках камер распределительных устройств; корпуса электроприемников с двойной или усиленной изоляцией, например, электродрель, стиральных машин, электробритв.

Заилением в электроустановках и сетях напряжением до 1000 В называется преднамеренное электрическое соединение металлических нетоковедущих элементов установки, нормально изолированных от токоведущих частей, которые не находятся под напряжением (корпуса электрооборудования, кабельных конструкций), с нулевым защитным проводником.

Нулевым защитным проводником в электроустановках напряжением до 1000 В является проводник, соединяющий зануленные части (корпуса электрооборудования) с наглухо заземленной нейтралью точкой обмотки источника тока (генератора или трансформатора) или ее эквивалентом (Госстандарт 12.1.030-811 Госстандарт 12.1.009- 76).

В электроустановках с наглухо заземлен нулевым проводом при замыкании на зануленные металлические конструкционные неструмо-проводящие части должно быть обеспечено автоматическое отключение оборудования с поврежденной изоляцией, так как при этом возникает однофазное короткое замыкание.

Нулевые защитные провода заземляющих непосредственно в источниках питания, то есть на подстанциях или электростанциях. Кроме основного рабочего заземления нейтрали, следует выполнять повторные заземления нулевого провода в сети, снижает общее сопротивление заземления нейтрали и служит резервным заземлением при обрыве нулевого заземления провода (рис. 4.5).

Рис. 4.5. Принципиальная схема защитного заиления: 1 - электроустановка; 2 - максимальный струйный защиту

Повторные заземления на воздушных линиях делают через каждые 250 м их длины, на их концах, у разветвлений и ответвлений от магистралей высоковольтных линий при длине ответвлений 200 м 1 больше, а также в вводов воздушных магистралей в дом.

При электроснабжении по кабельным линиям напряжением 380/220 В повторное заземление нулевого провода выполняется в введении в помещения, в которых предусматривается устройство зануление электроприборов. Внутри этих помещений должна быть магистраль повторного заземления нулевого провода, к которой присоединяется надлежащие занулению объекты.

Для повторного заземления нулевого провода следует по возможности использовать естественные заземлители, исключая сетей постоянного тока, где повторные заземления должны быть с использованием только искусственных заземлителей. Сопротивление заземляющего устройства каждого из повторных заземлений не должно более 10 Ом.

Учитывая, что по нулевому провода даже при неравномерной нагрузке проходит ток, значительно меньше, чем в фазных проводах, сечение нулевого рабочего провода для четырех ведущих магистралей выбирается равным примерно Половине пересечения фазных проводов. В однофазных ответвлениях от магистралей фаза - ноль пересечения нулевого провода должно быть таким же, как и фазного, поскольку по нему проходит ток, который равен току фазного провода.

Сопротивление зануленных проводов должно быть настолько малым, чтобы при замыкании фазы на корпус ток однофазного короткого замыкания был достаточен для мгновенного срабатывания максимальной токовой защиты. Согласно ПУЭ. тока цепи фаза - ноль при замыкании на корпус должен не менее чем в 3 раза превышать номинальный ток соответствующего плавкого предохранителя.

При защите электроустановки автоматическим выключателем зануляющих провод выбирают с таким расчетом, чтобы в петле фаза - ноль обеспечить ток короткого замыкания, который не превышает вставку тока срабатывания выключателя в 1,4 раза.

Вдвоем ведущих ответвлениях фаза - ноль, которые питают однофазные электроприемники, защитный аппарат (предохранитель, однополюсные выключатели) устанавливают только на фазном проводе, если в этом ответвлении есть части, которые подлежат занулению. С целью электробезопасности при монтаже ламповых патронов фазный провод присоединяется к центральному контакту патрона (пятки), а нулевой - к резьбовой части патрона. Это предостережет от несчастного случая при случайном прикосновении к цоколю лампы (например, во время П замены) без отключения от сети. При занулении к освещенной арматуры следует присоединить отдельные ответвления от нулевого провода, а не пользоваться с этой целью токопроводящей нулевым проводом.

Так как от сопротивления электрической цепи R существенно зависит величина электрического тока, проходящего через человека, то тяжесть поражения во многом определяется схемой включения человека в цепь. Схемы образующихся при контакте человека с проводником цепей зависят от вида применяемой системы электроснабжения.

Наиболее распространены электрические сети, в которых нулевой провод заземлен, т. е. накоротко соединен проводником с землей. Прикосновение к нулевому проводу практически не представляет опасности для человека, опасен только фазный провод. Однако разобраться, какой из двух проводов нулевой, сложно - по виду они одинаковы. Разобраться можно используя специальный прибор - определитель фазы.

На конкретных примерах рассмотрим возможные схемы включения человека в электрическую цепь при прикосновении к проводникам.

Двухфазное включение в электрическую цепь

Наиболее редким, но и наиболее опасным, является прикосновение человека к двум фазным проводам или проводникам тока, соединенным с ними (рис. 1).

В этом случае человек окажется под действием линейного напряжения. Через человека потечет ток по пути «рука-рука», г. е. сопротивление цепи будет включать только сопротивление тела ()


Если принять сопротивление тела в 1 кОм, а электрическую сеть напряжением 380-220 В, то сила тока, проходящего через человека, будет равна

Это смертельно опасный ток Тяжесть электротравмы или даже жизнь человека будет зависить прежде всего от того, как быстро он освободится от контакта с проводником тока (разорвет электрическую цепь), ибо время воздействия в этом случае является определяющим.

Значительно чаще встречаются случаи, когда человек одной рукой соприкасается с фазным проводом или частью прибора: аппарата, который случайно или преднамеренно электрически соединен с ним. Опасность поражения электрическим током в этом случае зависит от вида электрической сети (с заземленной или изолированной нейтралью).

Случаи поражения человека током возможны лишь при замыкании электрической цепи через тело человека или, иначе говоря, при прикосновении человека не менее чем к двум точкам цепи, между которыми существует некоторое напряжение.

Опасность такого прикосновения, оцениваемая значением тока, проходящего через тело человека, или же напряжением прикосновения, зависит от ряда факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, качества изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т. п.

Схемы включения человека в электрическую цепь могут быть различными. Однако наиболее характерными являются две схемы включения: между двумя проводами и между одним проводом и землей (рисунок 13.5). Разумеется, во втором случае предполагается наличие электрической связи между сетью и землей.

Применительно к сетям переменного тока первую схему обычно называют двухфазным включением, а вторую - однофазным.

Двухфазное включение, т. е. прикосновение человека одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение - линейное, поэтому через тело человека пойдет больший ток (А):

I h = 1,73U ф /R h = U л /R h , 7)

где U л - линейное напряжение, т. е. напряжение между фазными проводами сети, равное , В; U ф - фазное напряжение, т. е. напряжение между началом и концом одной обмотки источника тока (трансформатора, генератора) или между фазным и нулевым проводами, В.

Нетрудно представить, что двухфазное включение является одинаково опасным в сети как с изолированной, так и с заземленной нейтралями. При двухфазном включении опасность поражения не уменьшится и в том случае, если человек надежно изолирован от земли, т. е. если он имеет на ногах диэлектрические галоши или боты, либо стоит на изолирующем полу или на диэлектрическом коврике.

Однофазное включение происходит значительно чаще, но является менее опасным, чем двухфазное, поскольку напряжение, под которым оказывается человек, не превышает фазного. Соответственно меньше оказывается ток, проходящий через тело человека. Кроме того, на значение этого тока влияют также режим нейтрали источника тока, сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви и другие факторы.

Втрехфазной трехпроводной сети с изолированнойнейтралью силу тока (А), проходящего через тело человека, при прикосновении к одной из фаз сети в период ее нормальной работы (рисунок 6) определяют следующим выражением:

где Z - комплекс полного сопротивления одной фазы относительно земли, Ом, Z = r/(l + jwCr), r и С - соответственно сопротивление изоляции провода (Ом) и емкость провода (Ф) относительно земли (приняты для упрощения одинаковыми для всех проводов сети).

Ток в действительной форме составит, А:

. (9)

Если емкость проводов относительно земли мала, т. е. С » 0, что обычно имеет место в воздушных сетях небольшой протяженности,то уравнение (15) примет вид

Если же емкость велика, а проводимость изоляции незначительна, т. е. r » ¥, что обычно имеет место в кабельных сетях, то согласно выражению (5) сила тока (А), проходящего через тело человека, будет равна

, (11)

где х с - емкостное сопротивление, равное 1/wС, Ом; w - угловая частота, рад/с.

Из выражения (6) следует, что в сетях с изолированной нейтралью, обладающих незначительной емкостью между проводами и землей, опасность для человека, прикоснувшегося к одной из фаз в период нормальной работы сети, зависит от сопротивления проводов относительно земли: с увеличением сопротивления опасность уменьшается, поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние для своевременного выявления и устранения возникших неисправностей. Однако в сетях с большой емкостью относительно земли роль изоляции проводов в обеспечении безопасности прикосновения утрачивается, что видно из уравнений (5) и (7).

Втрехфазной четырехпроводной сети с заземленной нейтралью проводимость изоляции и ёмкостная проводимость проводов относительно земли малы по сравнению с проводимостью заземления нейтрали, поэтому при определении силы тока, проходящего через тело человека, касающегося фазы сети, ими можно пренебречь.

При нормальном режиме работы ее r и сила тока I h , проходящего через тело человека, будет (рисунок 7) равна:

I h = U ф /(R h + r 0), (12)

где r 0 - сопротивление заземления нейтрали, Ом.

Как правило, r 0 £ 10 Ом, сопротивление же тела человека R h не опускается ниже нескольких сотен Ом×м. Следовательно, без большой ошибки в уравнении (8) можно пренебречь значением r 0 и считать, что при прикосновении к одной из фаз трехфазной четырехпроводной сети с заземленной нейтралью человек оказывается практически под фазным напряжением U ф, а ток, проходящий через него, равен частному от деления U ф на R h . Отсюда следует, что прикосновение к фазе трехфазной сети с заземленной нейтралью в период нормальной ее работы более опасно, чем прикосновение к фазе нормально работающей сети с изолированной нейтралью (см. уравнения (6) и (8)).