Канал проводимости тока МДП-транзистора с индуцированным каналом п- типа (рис. 5.8, а ) спе­циально не создается, а образуется (индуцируется) благодаря при­току электронов из полупроводниковой пластины в случае прило­жения к затвору напряжения положительной полярности отно­сительно истока.

За счет притока электронов в приповерхностном слое происходит изменение электропроводности полупроводника, т.е. индуцируется токопроводящий канал n -типа, соединяющий области стока и истока. Проводимость канала возрастает с повыше­нием приложенного к затвору напряжения положительной поляр­ности. Таким образом, транзистор с индуцированным каналом ра­ботает только в режиме обогащения.

Выходные (стоковые) характеристики по­левого транзистора с индуцированным ка­налом n — типа (рис. 5.8, б ) близки по виду аналогичным характеристикам транзистора со встроенным каналом и имеют тот же характер зависимости: .

Отличие заклю­чается в том, что управление током транзистора осуществляется нап­ряжением одной полярности, совпадающей с полярностью напряже­ния . Ток равен нулю при = 0, в то время как в транзис­торе со встроенным каналом для этого необходимо изменить поляр­ность напряжения на затворе относительно истока. Вид сто­ко-затворной характеристики транзистора с индуцированным каналом показан на рис. 5.8, в .

МДП-транзисторы обоих типов выпускаются на тот же диапазон токов и напряжений, что и транзисторы с p n -переходом, примерно такие же значения имеют крутизна S и внутреннее сопро­тивление . Что касается входного сопротивления и межэлектродных емкостей, то МДП-транзисторы имеют лучшие показатели, чем тран­зисторы с p n -переходом. Как указывалось, входное сопротивление у них составляет 10 12 – 10 14 Ом. Значение межэлектродных емкостей не превышает:

для , 10 пФ,

Схема замеще­ния МДП-транзисторов аналогична схеме замещения полевых тран­зисторов с p n -переходом (см. рис. 5.4).

Ввиду отсутствия диффузионной емкости усилители на полевых транзисторах принципиально более высокочастотные, чем на биполярных. Импульсные свойства по

левых транзисторов существенно лучше биполярных. Например, ключ на мощном полевом транзисторе позволяет получить импульс тока амплитудой несколько ампер при времени включения и выключения порядка наносекунд.

Поскольку изолирующий затвор слой оксида кремния является идеальным диэлектриком и имеет толщину примерно 0,1 мкм, МДП-транзисторы боятся статического электричества из-за опасности теплового пробоя этого слоя. Необходимо предпринимать специальные меры при хранении и монтаже таких транзисторов и микросхем на их основе: закорачивать ножки при хранении, заземлять паяльник и использовать заземляющий браслет при их установке.

МДП-транзисторы широко применяются в интегральном испол­нении. Микросхемы на МДП-транзисторах обладают хорошей техно­логичностью, низкой стоимостью, способностью работы при более высоком напряжении питания, чем микросхемы на биполярных тран­зисторах.

Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвует только один вид носителей.

Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Все они имеют три электрода: исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители).

Транзистор с управляющим p — n -переходом. Его схематическое изображение приведено на рис. 1.21, а условное графическое обозначение этого транзистора – на рис. 1.22, а , б (p — и n -типов соответственно). Стрелка указывает направление от слоя р к слою п (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть существенно меньше 1 мкм.

Рис. 1.22 Устройство транзистора

Рис. 1.23 Графическое изображение: а – канал р-типа; б – канал n -типа

Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя р (канала), поэтому область р- n -перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р.

Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим
р- n -переходом и каналом n -типа. Если подать положительное напряжение между затвором и истоком транзистора с каналом р-типа: и зи > 0, то оно сместит p n -переход в обратном направлении.

При увеличении обратного напряжения на переходе он расширяется в основном за счет канала (в силу указанного выше различия в удельных сопротивлениях). Увеличение ширины перехода уменьшает толщину канала и, следовательно, увеличивает его сопротивление. Это приводит к уменьшению тока между истоком и стоком. Именно это явление позволяет управлять током с помощью напряжения и соответствующего ему электрического поля. Если напряжение и зи достаточно велико, то канал полностью перекрывается областью p n -перехода (напряжение отсечки).

В рабочем режиме р n -переход должен находиться под обратным или нулевым напряжением. Поэтому в рабочем режиме ток затвора примерно равен нулю (i з ? 0 ), а ток стока практически равен току истока.

На ширину р n -перехода и толщину канала прямое влияние также оказывает напряжение между истоком и стоком. Пусть u зи = 0 и подано положительное напряжение u ис (рис. 1.24). Это напряжение окажется поданным и на промежуток затвор – сток, т.е. окажется, что u зс = u ис и р n -переход находится под обратным напряжением.

Обратное напряжение в различных областях р n -перехода различно. В областях вблизи истока это напряжение практически равно нулю, а в областях вблизи стока это напряжение примерно равно величине u ис . Поэтому p n -переход будет шире в тех областях, которые ближе к стоку. Можно считать, что напряжение в канале от истока к стоку увеличивается линейно.

При u ис = U зи отс канал полностью перекроется вблизи стока (рис. 1.25). При дальнейшем увеличении напряжения u ис эта область канала, в которой он перекрыт, будет расширяться.

Схемы включения транзистора. Для полевого транзистора, как и для биполярного, существуют три схемы включения: схемы с общим затвором (03), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком (рис. 1.26).

Так как в рабочем режиме i c ? 0, то входные характеристики обычно не рассматриваются.

Выходные (стоковые) характеристики. Выходной характеристикой называют зависимость вида

где f – некоторая функция.

Выходные характеристики для транзистора с р n -переходом и каналом n -типа приведены на рис. 1.27.

Обратимся к хар актеристике, соответствующей условию u зи = 0. В линейной области (u ис < 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления.

При u ис > 4 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока, так как с увеличением напряжения область, в которой канал перекрыт, расширяется. При этом сопротивление промежутка исток-сток увеличивается, а ток i c практически не изменяется. Это область насыщения. Ток стока в области насыщения u зи = 0 и при заданном напряжении и си называют начальным током стока и обозначают через i c нач . Для рассматриваемых характеристик i c нач = 5 мА при и си = 10 В.

Параметрами, характеризующими свойства транзистора усиливать напряжение, являются:

1) Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора):

2) Внутреннее дифференциальное сопротивление Rис диф

3) Коэффициент усиления

Можно заметить, что

Транзисторы с изолированным затвором. Полевой транзистор с изолированным затвором – это транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Физической основой работы таких транзисторов является эффект поля, который состоит в изменении концентрации свободных носителей заряда в приповерхностной области полупроводника под действием внешнего электрического поля. В соответствии с их структурой такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами (металл-оксид-полупроводник). Существуют две разновидности МДП-транзисторов: с индуцированным и со встроенным каналами.

На рис. 1.28 показан принцип устройства транзистора со встроенным каналом.

Основанием (подложкой) служит кремниевая пластинка с электропроводностью p -типа. В ней созданы две области с электропроводностью n + -типа с повышенной проводимостью. Эти области являются истоком и стоком и от них сделаны выводы. Между стоком и истоком имеется приповерхностый канал с электропроводностью n-типа. Заштрихованная область – диэлектрический слой из диоксида кремния (его толщина обычно составляет 0,1 – 0,2 мкм). Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл такого транзистора обычно соединен с истоком, и его потенциал принимается за нулевой. Иногда от кристалла бывает сделан отдельный вывод.

Если к затвору приложено нулевое напряжение, то при подаче между стоком и истоком напряжения через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, так как один из p n -переходов находится под обратным напряжением. При подаче на затвор напряжения отрицательной полярности относительно истока (следовательно, и кристалла) в канале образуется поперечное электрическое поле, которое выталкивает электроны из канала в области истока, стока и кристалла. Канал обедняется электронами, его сопротивление увеличивается, ток уменьшается. Чем больше напряжение на затворе, тем меньше ток. Такой режим называется режимом обеднения . Если подать положительное напряжение на затвор, то под действием поля из областей стока, истока и кристалла в канал будут приходить электроны. Сопротивление канала падает, ток увеличивается. Такой режим называется режимом обогащения . Если кристалл n -типа, то канал должен быть p-типа и полярность напряжения меняется на противоположную.

Другим типом является транзистор с индуцированным (инверсным) каналом (рис. 1.29). От предыдущего он отличается тем, что канал возникает только при подаче на затвор напряжения определенной полярности.

При отсутствии напряжения на затворе канала нет, между истоком и стоком
n + -типа расположен только кристалл p -типа и на одном из p-n + -переходов получается обратное напряжение. В этом состоянии сопротивление между стоком и истоком велико и транзистор закрыт. При подаче на затвор напряжения положительной полярности под влиянием поля затвора электроны проводимости будут перемещаться из областей стока и истока и p -области по направлению к затвору. Когда напряжение на затворе достигает своего отпирающего (порогового) значения (еденицы вольт), в приповерхностном слое концентрация электронов настолько увеличивается, что превышает концентрацию дырок, и в этом слое произойдет так называемая инверсия типа электропроводности, т.е. образуется тонкий канал n -типа, и транзистор начнет проводить ток. Чем больше напряжение на затворе, тем больше ток стока. Очевидно, что такой транзистор может работать только в режиме обогащения. Если подложка n -типа, то получится индуцированный канал p -типа. Транзисторы с индуцированным каналом часто встречаются в устройствах переключения. Схемы включения полевых транзисторов подобны схемам включения биполярных. Следует отметить, что полевой транзистор позволяет получить намного больший коэффициент усиления, нежели биполярный. Обладая высоким входным сопротивлением (и низким выходным) полевые транзисторы постепенно вытесняют биполярные.

По электропроводности канала различают p -канальные и n- канальные МДП-транзисторы. Условное обозначение этих приборов на электрических схемах показано на рис. 1.30. Существует классификация МДП-транзисторов по конструктивно-технологическим признакам (чаще по виду материала затвора).

Рис. 1.30 Условные графические обозначения полевых транзисторов
с изолированным затвором: а – со встроенным р-каналом; б – со встроенным
n-каналом; в – с индуцированным p-каналом; г – с индуцированным n-каналом

Интегральные микросхемы, содержащие одновременно p канальные и n -канальные МДП-транзисторы, называют комплементарными (сокращенно КМДП-ИМС). КМДП-ИМС отличаются высокой помехоустойчивостью, малой потребляемой мощностью, высоким быстродействием.

Частотные свойства полевых транзисторов определяются постоянной времени RC -цепи затвора. Поскольку входная емкость С зи у транзисторов с р n -переходом велика (десятки пикофарад), их применение в усилительных каскадах с большим входным сопротивлением возможно в диапазоне частот, не превышающих сотен килогерц – единиц мегагерц.

При работе в переключающих схемах скорость переключения полностью определяется постоянной времени RC-цепи затвора. У полевых транзисторов с изолированным затвором входная емкость значительно меньше, поэтому их частотные свойства намного лучше, чем у полевых транзисторов с р-n -переходом.

В отличие от полевых транзисторов с p-n-переходом, в которых затвор имеет непосредственный электрический контакт с близлежащей областью токопроводящего канала, в МДП-транзисторах затвор изолирован от указанной области слоем диэлектрика.

По этой причине МДП-транзисторы относят к классу полевых транзисторов с изолированным затвором.

МДП-транзисторы (структура металл - диэлектрик - полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. Отсюда другое название этих транзисторов - МОП-транзисторы (структура металл - окисел - полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012-1014 Ом).

Рис. 5.6. Условные обозначения МДП-транзисторов со встроенным каналом n-типа (а), р-типа (б) и выводом от подложки (в); с индуцированным каналом n-типа (г), р-типа (д) и выводом от подложки (е)

Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов - со встроенным и с индуцированным каналом.

МДП-транзисторы представляют собой в общем случае четырех- электродный прибор. Четвертым электродом (подложкой), выполняющим вспомогательную функцию, является вывод от подложки исходной полупроводниковой пластины. МДП-траизисторы могут быть как с каналом п- или р-типа. Условные обозначения МДП-транзистров показаны на рис. 5.6 а-е.

Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом п-типа показана на рис. 5.7, а. В исходной пластине кремния р-типа с помощью диффузионной технологии созданы области истока, стока и канала п-типа. Слой окисла SiO2 выполняет функции защиты поверхности, близлежащей к истоку и стоку, а также изоляции затвора от канала. Вывод подложки (если он имеется) иногда присоединяют к истоку.

Стоковые (выходные) характеристики полевого транзистора со встроенным каналом п-типа для случая соединения подложки с истоком показаны на рис. 5.7, б. По виду эти характеристики близки к характеристикам полевого транзистора с p-n-переходом. Рассмотрим характеристику при Uзи = 0, что соответствует соединению затвора с истоком. Внешнее напряжение приложено к участку исток - сток положительным полюсом к стоку. Поскольку Uзи = 0, через прибор протекает ток, определяемый исходной проводимостью канала. На начальном участке 0-а, когда падение напряжения в канале мало, зависимость Ic(Ucи) близка к линейной. По мере приближения к точке б падение напряжения в канале приводит ко все более существенному влиянию его сужения (пунктир на рис. 5.7, а) на проводимость канала, что уменьшает крутизну нарастания тока на участке а-б. После точки б токопроводящий канал сужается до минимума, что вызывает ограничение нарастания тока и появление на характеристике пологого участка II.

Рис. 5.7. Конструкция МДП-транзистора со встроенным каналом п-типа (а); стоко-затворная характеристика (б); стоко-затворная характеристика (в)

Покажем влияние напряжения затвор - исток на ход стоковых характеристик.

В случае приложения к затвору напряжения (Uзи При подаче на затвор напряжения Uзи > 0 поле затвора притягивает электроны в канал из р-слоя полупроводниковой пластины. Концентрация носителей заряда в канале увеличивается, что соответствует режиму обогащения канала носителями. Проводимость канала возрастает, ток Iс увеличивается. Стоковые характеристики при Uзи > 0 располагаются выше исходной кривой (Uзи = 0).

Для транзистора имеется предел повышения напряжения Uсз ввиду наступления пробоя прилежащего к стоку участка сток - затвор. На стоковых характеристиках пробою соответствует достижение некоторой величины Uси.пр. В случае Uзи 0 (режим обогащения).

Конструкция МДП-транзистора с индуцированным каналом п-типа показана на рис. 5.8, с. Канал проводимости тока здесь специально не создается, а образуется (индуцируется) благодаря притоку электронов из полупроводниковой пластины в случае приложения к затвору напряжения положительной полярности относительно истока. За счет притока электронов в приповерхностном слое происходит изменение электропроводности полупроводника, т.е. индуцируется токопроводящий канал п-типа, соединяющий области стока и истока. Проводимость канала возрастает с повышением приложенного к затвору напряжения положительной полярности. Таким образом, транзистор с индуцированным каналом работает только в режиме обогащения.

Стоковые (выходные) характеристики полевого транзистора с индуцированным каналом п-типа приведены на рис. 5.8, б. Они близки по виду аналогичным характеристикам транзистора со встроенным каналом и имеют тот же характер зависимости Iс = F(Uси). Отличие заключается в том, что управление током транзистора осуществляется напряжением одной полярности, совпадающей с полярностью напряжения Uси. Ток Iс равен нулю при Uзи = 0, в то время как в транзисторе со встроенным каналом для этого необходимо изменить полярность напряжения на затворе относительно истока. Вид стоко-затворной характеристики транзистора с индуцированным каналом показан на рис. 5.8, в.

МДП-транзисторы обоих типов выпускаются на тот же диапазон токов и напряжений, что и транзисторы с р-п-переходом. Примерно такой же порядок величин имеют крутизна S и внутреннее сопротивление ri. Что касается входного сопротивления и межэлектродных емкостей, то МДП-транзисторы имеют лучшие показатели, чем транзисторы с p-n-переходом. Как указывалось, входное сопротивление у них составляет 1012-1014 Ом. Значение межэлектродных емкостей не превышает: для Сзи, Сси - 10 пФ, для Сзс - 2 пФ. Схема замещения МДП-транзисторов аналогична схеме замещения полевых транзисторов с p-n-переходом (см. рис. 5.5).

МДП-транзисторы широко применяются в интегральном исполнении. Микросхемы на МДП-транзисторах обладают хорошей технологичностью, низкой стоимостью, способностью работы при более высоком напряжении питания, чем микросхемы на биполярных транзисторах.

Рассмотрим принцип действия МДП-транзистора с индуцированным каналом n -типа.

При постепенном увеличении положительного относительно истока напряжения
и
на затворе образуется положительный заряд, а в приповерхностном слое полупроводника сначала образуется слой, обедненный основными носителями подложки (в данном случае - дырками).

При дальнейшем росте
свободные электроныp -полупроводника подложки (собственные, а не примесные) перемещаются в приповерхностную область под затвором и образуют индуцированный (наведенный полем) инверсный (с инверсной по отношению кp -полупроводнику подложки проводимостью) слой, который и представляет собой каналn -типа между истоком и стоком (рис. 10.18).

Напряжение
, при котором возникает канал, называется пороговым
. Канал отделяется от подложки отрицательными ионами акцепторов, т.е. обедненным носителями заряда слоем. При
происходит обогащение поверхностного слоя электронами и уменьшение сопротивления канала. Такой режим работы МДП-транзистора называется режимом обогащения. В МДП-транзисторах с индуцированным каналом существует только режим обогащения.

Если
и напряжение
, то при протекании по каналу тока стокаэквипотенциальная картина поля, изображенная на рис. 10.18, нарушается. Потенциал поверхности под действием тока стока увеличивается по направлению от истока к стоку, а разность потенциалов между затвором и поверхностью уменьшается, что в конечном итоге сужает канал. При увеличении напряжения
ток стокатоже растет с постепенным замедлением скорости роста. Когда падение напряжения на объемном сопротивлении канала от протекающего тока стокаскомпенсирует превышение напряжения
над пороговым, напряжение между стоком и затвором станет равным
и у стока произойдет смыкание обедненного слоя с поверхностью полупроводника, препятствуя дальнейшему росту тока стока(рис. 10.19).

Это называется насыщением тока стока. Напряжение
, при котором происходит насыщение тока стока, называется напряжением насыщения
.

При дальнейшем увеличении напряжения
сверх
ток стоканезначительно увеличивается только в силу уменьшения длины канала и, следовательно, уменьшения сопротивления канала (рис. 10.20).

Явление переноса носителей заряда (в данном случае электронов) из канала через обедненную область в сток подобно переходу зарядов из базы в коллектор биполярного транзистора через обратно смещенный pn -переход под действием его поля. Все приращения напряжения
сверх
прикладываются в основном к высокоомной обедненной области, расположенной у стока, в результате чего ток стокапочти не увеличивается.

Напряжение
существенно зависит от напряжения на подложке, так как с его ростом увеличивается область, обедненная зарядами. Обычно в МДП-структурах сn -каналом на подложку подают наиболее отрицательный потенциал схемы, чтобы переход «исток - подложка» всегда был закрыт. Влияние постоянного напряжения между истоком и подложкой можно учесть, включив его с определенным коэффициентом в выражение для
.

На рис. 10.17 – 10.20 проведены четкие границы между зарядовыми областями МДП-структуры. Реально изменение концентраций зарядов плавное, и резко обозначенных границ между областями зарядов не существует.

При больших напряжениях на стоке
может произойти пробой МДП-транзистора, при этом может быть два вида пробоя: пробойpn -перехода под стоком и пробой диэлектрика под затвором. Пробойpn -перехода обычно имеет лавинный характер, так как МДП-транзисторы изготавливаются обычно на основе кремния. При этом на пробивное напряжение
может влиять напряжение на затворе: так как на сток и на затвор МДП-транзистора с индуцированным каналом подаются потенциалы одной полярности, то с увеличением напряжения на затворе будет увеличиваться
. Пробой диэлектрика под затвором может происходить при напряжении на затворе всего в несколько десятков вольт, так как толщина слоя диоксида кремния около 0,1 мкм. Пробой обычно имеет тепловой характер. Этот вид пробоя может возникать в результате накопления статических зарядов, так как входное сопротивление МДП-транзисторов велико. Для исключения возможности такого вида пробоя вход МДП-транзистора часто защищают стабилитроном, ограничивающим напряжение на затворе.

Семейство статических характеристик
при
МДП-транзистора с индуцированным каналом, построенное в соответствии со сказанным приведено на рис. 10.21.

участок резкого изменения тока и участок, на котором изменение тока мало.

Параметром семейства выходных характеристик биполярного транзистора является ток базы – прибор управляется током; для МДП-транзистора с индуцированным каналом параметром семейства выходных характеристик является напряжение на затворе
- прибор управляется напряжением. С увеличением напряжения
сопротивление канала уменьшается, и ток стокавозрастает – характеристика идет выше. Выходные ВАХ МДП-транзистора выходят из начала координат, в то время как выходные ВАХ биполярного транзистора могут быть сдвинуты по оси напряжений.

На графике семейства
при
МДП – транзистора с индуцированным каналом (рис. 10.21) можно выделить три основные рабочие области:

1 – область отсечки выходного тока: транзистор закрыт (
), и в цепи стока протекает малы ток, обусловленный утечкой и обратным током стокового перехода (10 -6 А)4

2 – активная область (пологая часть выходных ВАХ, для которой
и
) – область, где выходной токостается практически неизменным с ростом
;

3 – область открытого состояния (крутая часть выходной ВАХ): ток в этой области работы задается внешней цепью.

Таким образом, в области 1 рабочая точка находится, если МДП-транзистор заперт, в области 3 – если открыт; эти области соответствуют статическим состояниям МДП-транзистора в ключевом режиме эксплуатации. Активная область (область 2) для ключевого режима МДП-транзистора является областью динамического состояния: в этой области рабочая точка находится кратковременно в течение переходного процесса из одного статического состояния в другое (из закрытого в открытое и наоборот).

В активной области рабочая точка находится при эксплуатации МДП-транзистора в усилительном режиме, когда между входными и выходными сигналами сохраняется линейная зависимость.

В области 4 достаточно больших напряжений
наступают предпробойные явления, а затем и пробой, сопровождающийся резким увеличением тока. Область пробоя определяет выбор предельно допустимых напряжений.

Характер статических характеристик передачи
при
ясен из принципа действия МДП-транзистора с индуцированным каналом. Характеристики для разных напряжений
выходят из точки на оси абсцисс, соответствующей
.(рис. 10.22).

Интересным и важным с точки зрения применения МДП-транзисторов является температурное изменение статических характеристик передачи. Эти изменения вызваны различными физическими процессам, которые приводят к тому, что с увеличением температуры пороговое напряжение
уменьшается.

быть как отрицательными, так и положительными, а также нулевыми в определенной рабочей точке статических характеристик.

Обычно эффект температурной компенсации получается при напряжениях на затворе, незначительно превышающих
. Кроме того, еще надо учитывать, что крутизнахарактеристики передачи, определяющая усилительные свойства МДП-транзистора, изменяется с температурой даже при неизменном постоянном токе стока.

Рассмотрим принцип действия МДП-транзистора со встроенным каналом n -типа (рис. 10.24).

Модуляция сопротивления проводящего канала может происходить при изменении напряжения на затворе как положительной, так и отрицательной полярности. При напряжениях
и
через каналn -типа течет ток. Если
, то затвор заряжается отрицательно, а в расположенном под ним приповерхностном слое вследствие ухода из него свободных электронов появляется положительный заряд ионов. Обедненный основными носителями слой увеличивает сопротивление канала. При достижении
обедненный слой перекрывает канал, и ток через него не течет. Имеет место режим отсечки. При
происходит обогащение канала носителями заряда (в данном случае электронами), его сопротивление уменьшается, что приводит к увеличению тока стока.

Таким образом, МДП-транзистора со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала носителями заряда.

Семейство выходных статических характеристик и статическая характеристика передачи МДП-транзистора со встроенным каналом n -типа приведены на рис. 10.25.

выходные статические характеристики

характеристика передачи

Лекция 14.

Такие транзисторы сокращенно называют МДП-транзисторами. Они могут быть двух типов: транзисторы с индуцированным каналом и транзисторы со встроенным каналом. В первых из них канал возникает под действием управляющего напряжения, подаваемого между затвором и истоком. В отсутствие такого напряжения эти транзисторы закрыты (поэтому называются нормально закрытыми транзисторами). В случаях, когда такой транзистор используется в качестве нормально закрытого электронного ключа, управление им не потребует каких либо напряжений для постоянного смещения потенциала затвора. Однако, если организовать соответствующее смещение, транзистор будет работать в качестве линейного усилителя сигналов переменного напряжения.

В транзисторах второго типа проводящий канал создается в процессе их изготовления. Поэтому они являются нормально открытыми и могут усиливать переменный сигнал даже без смещения потенциала затвора. Если транзисторы с индуцированным каналом могут работать только в режиме обогащения канала свободными носителями тока необходимого вида, то транзисторы со встроенным каналом способны работать как в режиме обогащения, так и в режиме обеднения. По сравнению с исходным состоянием сопротивление канала этих транзисторов может быть увеличено или уменьшено с помощью внешнего управляющего сигнала.

В МДП-транзисторах (в отличие от транзисторов с управляющим р-п- переходом) металлический затвор изолирован от канала в объеме полупроводника слоем диэлектрика. Кроме того, у МДП-транзисторов имеется еще и четвертый вывод, называемый подложкой (П).

Принципы действия МДП-транзисторов с индуцированными каналами р -типа и п- типа качественно не отличаются. Здесь, как и в любом МДП-транзисторе, управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор.

При подаче на затвор отрицательного напряжения U ЗИ электроны приповерхностного слоя отталкиваются в глубь полупроводника, а дырки движутся к поверхности. Приповерх­ностный слой приобретает дырочную электропроводность. В нем появляется тонкий слой с инверсным типом проводимости, который выступает в качестве канала. Если между истоком и стоком приложено напряжение, то дырки, перемещаясь по каналу, создают ток стока. Путем изменения напряжения на затворе можно расширять или сужать канал и тем самым увеличивать или уменьшать сопротивление канала и, следовательно, ток стока.

Напряжение на затворе, при котором появляется проводящий канал, называют пороговым напряжением U ЗИ. пор. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения U ЗИ. пор .

По мере удаления от поверхности полупроводника концен­трация индуцированных дырок уменьшается. На расстоянии, приблизительно равном толщине канала, электропроводность становится собственной. Затем идет слой, обедненный основными носителями заряда (т.е. р-п -переход). Благодаря ему сток, исток и канал изолированы от подложки, поскольку р-п -переход смещен приложенным напряжением в обратном направлении. Очевидно, что его ширину и, следовательно, ширину канала можно изменять за счет подачи на подложку дополнительного напряжения относительно электродов стока и истока. Сле­довательно, током стока можно управлять не только пу­тем изменения напряжения на затворе, но и за счет из­менения напряжения на подложке. В последнем случае управ­ление МДП-транзистором аналогично управлению полевым транзистором с управляющим р-п -переходом.

Для образова­ния канала на затвор должно быть подано напряжение, большее U ЗИ. пор . При этом толщина образующегося инверсного слоя оказывается значительно меньше толщины обедненного слоя; если толщина обедненного слоя колеблется от сотен до тыся­ч нанометров, то толщина индуцированного канала составляет всего 1¸5 нанометров. Другими словами, дырки индуцированного канала «прижаты» к поверхности полупроводника, поэтому структура и свойства границы полупроводник - диэлектрик играют в МДП-транзисторах очень важную роль.

Рассмотрим семейство выходных вольтамперных характеристик (ВАХ) МДП-транзистора с индуцированным каналом. На рис. 13.1 видно, что каждый из графиков, соответствующий определенному значению напряжения U ЗИ, имеет три участка. На начальном участке ток стока быстро возрастает (крутая или омическая область). Затем идет слабая зависимость тока стока от напряжения U СИ (пологая область или область насыщения тока стока) и завершает график участок пробоя.


Можно заметить, что выходные ВАХ транзисторов рассматриваемого здесь вида похожи на выходные ВАХ полевых транзисторов с управляющим р-п- переходом. Как и транзисторы с управляющим р-п -переходом, МДП-транзисторы при малых напряжениях U СИ (в области I; рис. 13.1)ведут себя подобно линеаризованному управля­емому сопротивлению. При увеличении напряжения U СИ ши­рина канала уменьшается вследствие падения на нем напряже­ния и изменения результирующего электрического поля. Это особенно сильно проявляется в той части канала, которая находится вблизи стока.

Аналитичес­кие аппроксимации вольтамперных характеристик МДП-тран­зисторов не очень удобны и мало применяются в инженерной практике. Однако, при ориентировочных оценках тока стока в области насыщения можно использовать уравнение

, (13.1)

.

Управляющее действие подложки можно учесть путем введения коэффициента влияния по подложке

, (13.2)

называется крутизной характеристики на подложке. Она показывает, насколько следовало бы изменить напряжение на затворе, чтобы при изменении напряжения подложки U ПИ ток стока I C остался неизменным. Если одновременно действуют напряжения на затворе и подложке, то в выражения (13.1) и (13.2) вместо U ЗИ следует подставить

U ЗИ. эф = U ЗИ - hU ПИ. (13.3)

Инерционные свойства МДП-транзисторов зависят от ско­рости движения носителей заряда в канале, а также от межэлектродных емкостей между стоком и истоком (С СИ), между подложкой и истоком (С ПИ) и между подложкой и стоком (С ПС). Кроме того, быстродействие транзисторов зависит от значений сопротивлений, через которые эти емкости заряжаются и разряжаются. При этом ввиду малого времени пробега носителей заряда через канал, который обычно имеет длину 0,1¸5 мкм, влиянием последнего обычно пренебрегают.

При расчете схем, построенных на МДП-транзисторах с индуцированным каналом, используют эквивалентные схемы замещения этих транзисторов, в которых за инерционные свойства отвечают электрические емкости. На рис. 13.2 показана одна из таких схем. Необходимо сказать, что значения емкостей, входящих в эквивалентную схему (например, в такую, что представлена на рис. 13.2)не всегда известны. К тому же часть из них (в частности, С ПС и С ПИ) меняется в зависимости от напряжений на электродах. Поэтому на практике часто измеряют входную емкость транзистора для схемы с общим истоком (С 11И), его выходную (С 22И) и проходную (С 12И) емкости. Эти емкости характеризуют параметры полевого транзистора, который при заданном режиме измерения представлен эк­вивалентной схемой рис. 13.3. Эта схема не очень точно отражает особен­ности транзистора, но ее параметры известны или легко могут быть измерены. Обычно значения емкостей схемы с рис. 13.3 бывают следующими: входная емкость С 11И » 1¸5пФ, проход­ная емкость С 12И = 0,22 пФ, выходная емкость С 22И = 2¸6 пФ.




Кроме включения в эквивалентную схему транзистора межэлектродных емкостей, для учета инерционности используют частотную зависимость крутизны стоко-затворной характеристики. Операторное уравнение крутизны характеристики МДП-транзисторов имеет тот же вид, что и для полевых тран­зисторов с управляющим р-п -переходом:

, (13.4)

где w гр » w З = 1/t З, и t З » R СИ.откр ×С 3 . В типовом слу­чае при длине канала 5 мкм предельная частота, на ко­торой крутизна характеристики уменьшается в 0,7 раза, лежит в пределах нескольких сотен ме­гагерц.

Температурная зависимость порогового напряжения и на­пряжения отсечки обусловлена изменением положения уровня Ферми, изменением объемного заряда в обедненной области и влиянием температуры на величину заряда в диэлектрике. У МДП-транзисторов можно найти термостабильную рабочую точку, в которой ток стока мало зависит от температуры. У разных транзисторов значение тока стока в термостабильной точке находится в пределах I C = 0,05¸0,5 мА. Важным преимуществом МДП-транзисторов перед биполярными транзисторами является малое падение напряжения на них при коммутации малых сигналов. Так, если в биполярных тран­зисторах в режиме насыщения напряжение U КЭ принципиально не может быть меньше нескольких десятков - сотен милливольт, то у МДП-транзисторов при малых токах I C это падение напряже­ния (поскольку в этом случае транзистор работает в крутой области) мало и определяется током I С и сопротивлением канала R СИ. откр:

U СИ = I С ×R СИ.откр при | U СИ | < | U СИ. нас |. (13.5)

При уменьшении I C оно может быть сведено до значения, стремящегося к нулю.

МДП-транзисторы со встроенным каналом.Здесь, как и выше, мы рассмотрим транзистор с каналом только одного типа (р-типа), поскольку принципы действия транзисторов с каналами р- или п-типа одинаковы.

Такой транзистор изготавливается из пластинки полупроводникового кристалла с невысоким уровнем легирования донорами, имеющего слабо выраженную проводимость п -типа. На одной из поверхностей пластинки методом высокотемпературной диффузии устраивают слой с повышенным содержанием донорной примеси (проводимость п + ). На поверхность этого слоя напыляют металлический слой (электрод подложки). На противоположной поверхности полупроводниковой пластинки методом локальной диффузии акцепторной примеси изготавливают две отделенные друг от друга области полупроводника с р + -типом проводимости (области стока и истока), а затем, также методом диффузии, между ними изготавливают тонкий слой канала, имеющий слабо выраженную проводимость р -типа.

Таким образом, стоковая и истоковая области оказываются связанными гальванически (между ними нет р-п- перехода). Между областями с р -типом проводимости и основным объемом полупроводниковой пластинки (подложкой) образуется р -п -переход. На поверхности стоковой и истоковой областей напыляются металлические электроды, к которым припаиваются выводы стока и истока, соответственно. Поверхность полупроводниковой пластинки в месте нахождения канала покрывают слоем изолятора (диоксида кремния), а на этот слой напыляют металлический электрод (затвор). В зависимости от полярности напряжения между каналом и затвором происходит расширение или сужение встроенного канала и, следовательно, уменьшение или увеличение сопротивления канала.

Подчеркнем, что в транзисторах со встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для его прекращения необходимо к затвору приложить положитель­ное напряжение (при структуре с каналом р -типа), равное или большее напряжения отсечки U ЗИ.отс . При этом дырки из инверсного слоя будут вытеснены, практически полностью, в глубь полупроводника и канал исчезнет. При приложении отрицательного напряжения канал расширяется и ток увели­чивается. Следовательно, МДП-транзисторы со встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

При ориентировочных оценках тока стока транзистора со встроенным каналом в области насыщения можно использовать уравнение

, (13.6)

.

Графики семейства выходных ВАХ МДП-транзистора со встроенным каналом отличаются от соответствующих графиков МДП-транзисторов с индуцированным каналом лишь тем, что здесь напряжение U ЗИ может принимать как положительные значения, так и отрицательные. По форме те и другие графики идентичны. Здесь тоже имеются крутая (омическая) область I, область насыщения тока стока II и область пробоя канала транзистора в наиболее суженном месте, III.

Для расчетов усилительных схем на МДП-транзисторах со встроенным каналом рекомендуется схема замещения транзистора, показанная на рис. 6.17. В нее входят элементы: входная емкость транзистора в схеме с общим истоком (С 11И), его выходная емкость (С 22И), проходная емкость (С 12И), выходное дифференциальное сопротивление (R СИ. диф) и источник тока, определяющий усилительные свойства транзистора.



Обычно величины емкостей схемы замещения транзистора имеют следующие значения: С 11И » 1¸5пФ, С 12И = 0,22 пФ, С 22И = 2¸6 пФ. Величина сопротивления R СИ. диф находится в пределах от десятков до сотен кОм.

Рассмотрим некоторые параметры МДП-транзисторов и их ориентировочные значения. Среди них основными являются:

1. Крутизна характеристики

(при U СИ = const и U ПИ = const; S = 0,1¸500 мА/В);

1. Крутизна характеристики по подложке

(при U СИ = const и U ЗИ = const; S П = 0,1¸1 мА/В);

2. Начальный ток стока I C нач (ток стока при нулевом напряжении U ЗИ;у транзисторов с управляющим р-п -переходом I C нач = 0,2¸600 мА; для транзисторов с технологически встроенным каналом I C нач = 0,1¸100 мА; с индуцированным каналом I C . нач = 0,01¸0,5 мкА);

4. Пороговое напряжение U ЗИ. пор (U ЗИ. пор = 1¸6 В);

5. Сопротивление сток – исток в открытом состоянии R СИ.откр

(R СИ. откр = 2¸300 Ом);

6. Максимальный постоянный ток стока I C . макс (I C . макс = 10¸700 мА);

7. Остаточный ток стока I C . ост – ток стока при напряжении U ЗИ. отс (I C . ост = 0,001¸10 мА);

8. Максимальная частота усиления f р – частота, на которой коэффициент усиления по мощности К у Р равен единице (f р может принимать значения от десятков до сотен МГц).


Похожая информация.