Множество действительных чисел - это совокупность дополнения рациональных чисел иррациональными. Обозначается это множество буквой R, а в качестве символа принято использовать запись (-∞, +∞) либо (-∞,∞).

Описать множество действительных чисел можно следующим образом: это множество конечных и бесконечных десятичных дробей, конечные десятичные дроби и бесконечные десятичные периодические дроби - рациональные числа, а бесконечные десятичные и непериодические дроби - иррациональные числа.
Любое действительное число можно указать на координатной прямой. Также уместно и обратное утверждение: любая точка на координатной прямой имеет действительную координату. На математическом языке это звучит так: между множеством точек координатной прямой и множеством R действительных чисел можно установить взаимно однозначное соотношение. Для самой координатной прямой зачастую используют термин «числовая прямая», так как координатная прямая является геометрической моделью множества действительных чисел.
Оказываться, что ваше знакомство с координатной прямой было давно, но пользовать ею вы начнете только сейчас. Почему? Ответ вы сможете найти в примере из видеоурока.

Известно, что для действительных чисел a и b выполняются уже хорошо известные вам законы сложения и умножения: коммуникативный закон сложения, коммутативный закон умножения, ассоциативный закон сложения, дистрибутивный закон умножения относительно сложения и другие. Проиллюстрируем некоторые из них:
a + b = b + a;
ab = ba;
a + (b + c) = (a + b) + c;
a(bc) = (ab)c;
(a + b)c = ac + bc
Также выполняются следующие правила:
1. В результате произведения (частного) двух отрицательных чисел получается число положительное.
2. В результате произведения (частного) отрицательного и положительного числа получается число отрицательное.
Сравнить действительные числа друг с другом можно, опираясь на определение:
Действительное число a больше или меньше действительного числа b, в том случае, когда разность a - b является положительным или отрицательным числом.
Записывается это так: a > b, a < b.
Это значит, что а является положительным числом, а b - отрицательное.
То есть, в случае, когда a > 0 => a положительно;
a < 0 => a отрицательное;
a > b, то a - b положительно => a - b > 0;
a < b, то a - b отрицательное => a - b < 0.
Помимо знаков (<; >) строгих неравенств, используются и знаки нестрогих неравенств - (≤;≥).
Например, для любого числа b, выполняется неравенство b2 ≥ 0.
Примеры сравнения чисел и расположения их в порядке возрастания Вы можете в видеоуроке.
Благодаря геометрической модели множества действительных чисел - числовой прямой, операция сравнения выглядит особо наглядно.

Основное свойство алгебраической дроби

Мы продолжаем знакомство с алгебраическими дробями. Если на предыдущем уроке речь шла об основных понятиях, то на этом уроке вы узнаете об основном свойстве алгебраической дроби. Определение основного свойства дроби известно из курса математики 6 класса (сокращение дробей). В чем же оно состоит? Часто при решении задач, уравнений возникает необходимость преобразовать одну «неудобную» для вычислений дробь в другую, «удобную». Именно для выполнения таких преобразований и необходимо знать её основное свойство и правила изменения знаков, с которыми вы познакомитесь, просмотрев видеоурок.

Значение обыкновенной дроби останется неизменным при умножении или делении числителя и знаменателя на одно и то же число (кроме нуля). В этом и состоит основное свойство дроби.
Рассмотрим пример:
7/9 = 14/18
Имеем две дроби, тождественно равные друг другу. Числитель и знаменатель в данном случае умножили на 2, при этом значение дроби не изменилось.
Что происходит с дробью при делении числителя и знаменателя на одно и то же число, вы узнаете из видеоурока.
Алгебраическая дробь - это, в принципе, та же самая обыкновенная дробь, над ней можно выполнять те же действия, что и над обыкновенной.
Выражение, стоящее в числителе, и выражение, стоящее в знаменателе дроби, можно домножить или разделить на одно и то же буквенно-цифровое выражение (многочлен или одночлен), одно и то же число (кроме нуля: если выражение или число, стоящее в знаменателе дроби, умножить на ноль, он примет нулевое значение; а, как известно, на ноль делить нельзя). Такое преобразование алгебраической дроби называют её сокращением. В этом и состоит основное свойство алгебраической дроби. Как оно реализуется на практике - вы можете узнать из видеоурока.
Преобразование дробей в дроби с одинаковыми знаменателями называют приведением дробей к общему знаменателю. Для выполнения данного действия необходимо выполнить определенную последовательность действий, состоящую в следующем:

Разложив все знаменатели на множители, определяем НОК для числовых коэффициентов.
. Записываем произведение, с учетом НОК коэффициентов и всех буквенных множителей. Если множители одинаковые, берём множитель один раз. Из всех степеней, у которых одинаковые основания, берем множитель с максимальным показателем степени.
. Находим значения, являющиеся дополнительными множителями для числителя каждой из дробей.
. Для каждой дроби определяем новый числитель - как произведение старого числителя на дополнительный множитель.
. Записываем дроби с новым числителем, который определили, и общим знаменателем.

Пример 1: Привести следующие дроби a/4b2 b a2/6b3 к общему знаменателю.
Решение:
Для начала определим общий знаменатель. (Он равен 12b2).
Затем, следуя алгоритму, определим дополнительный множитель для каждой из дробей. (Для первой - 3b, для второй - 2).
Выполнив умножение, получим результат.
(a*3b)/(4b2*3b) = 3ab/12b3 и (a2*2)/(6b2*2) = 2a2/12b2 .
Пример 2: Привести дроби c/(c - d) и c/(c + d) к общему знаменателю.
Решение:
(c+d)(c-d)=c2-d2
c*(c + d)/(c - d)(c + d) = (c2 + cd)/(c2 - d2)
c*(c - d)/(c + d)(c - d) = (c2 - cd)/(c2 - d2)

Более подробное решение аналогичных примеров вы найдете в видеоуроке.
Основное свойство алгебраической дроби имеет следствие в виде правила изменения знаков:
a - b/c - d = b - a/d - c
В этом случае числитель и знаменатель дроби умножили на -1. Аналогичные действия можно производить не со всей дробью, а только с числителем или только со знаменателем. Как изменится результат, если, например, только числитель или только знаменатель умножить на -1, вы узнаете, просмотрев видеоурок.
Теперь, изучив основное свойство алгебраической дроби и вытекающее из него правило, нам по силам решать более сложные задачи, а именно: вычитание и сложение дробей. Но это уже тема следующего урока.

Для более точного и сложного определения и для того, чтобы говорить об определителях порядка больше третьего, потребуется вспомнить еще кое-что. Нас интересует термин подстановка, даже не столько определение, сколько способ её вычисление.

Для подстановки принята запись:
, т.е. пары чисел, записанные в столбик, причем так, что верхние числа идут последовательно (вообще говоря, столбцы можно менять местами).

Подстановки бывают четными и нечетными. Для того, чтобы выяснить, является данная подстановка четной или нечетной, нужно обратить внимание на вторую строку, а точнее на порядок чисел в ней. Необходимо подсчитать количество пар чисел во второй строке, таких, что число, стоящее левее, больше числа, стоящего правее (). Если количество таких пар нечетно, то и подстановка называется нечетной, и, соответственно, если количество таких пар четно, то и подстановка называется четной.

Пример:
1)


4 стоит левее 3, левее 1, левее 2 — это уже три «неправильные» пары.
3 стоит левее 1 и 2 – еще две пары.
Итого 5 пар, т.е. это нечетная подстановка.
2)

Заметим, что числа в первой строке расположены не по порядку. Выполним перестановку столбцов.

Рассмотрим числа второго ряда.
3 стоит левее 2 и 1 – две пары,
2 стоит левее 1 – одна пара,
5 стоит левее 4 и 1 – две пары,
4 стоит левее1 – одна пара.
Итого 6 пар – подстановка четная.

Определение 2 (для студентов математических специальностей, раскрывающее всю суть определяемого понятия):

Определителем n-го порядка, соответствующим матрице
,
называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» — . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» — рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» — рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).
Пример («Сборник задач по алгебре» под ред. А.И. Кострикина, №1001):

Выяснить, какие из следующих произведений входят в развернутое выражение определителей соответствующих порядков и с какими знаками.
а)
Обратим внимание на часть определния «по одному из каждой строки и каждого столбца». Все первые индексы сомножителей различны от 1 до 6(1, 2, 3, 4, 5, 6). Все вторые индексы сомножителей различны от 1 до 6 (3, 2, 1, 4, 5, 6).
Вывод – это произведение входит в развернутое выражение определителя 6-го порядка.

3 левее 2, 1 – две пары,
2 левее 1 – одна пара,
6 левее 5, 4 – две пары,
5 левее 4 – одна пара.
Итого 6 пар, т.е. перестановка четная и слагаемое входит в развернутую запись определителя со знаком «плюс».

б)
Все первые индексы сомножителей различны от 1 до 5(3, 1, 5, 4, 2). Все вторые индексы сомножителей различны от 1 до 5 (1, 3, 2, 5, 4).
Вывод – это произведение входит в развернутое выражение определителя 5-го порядка.
Определим знак этого слагаемого, для этого составим перестановку из индексов сомножителей:

Переставим столбцы так, чтобы числа в первой строке шли по порядку от меньшего к большему.

3 левее 1, 2 – две пары.
4 левее 1, 2 – две пары,
5 левее 2 – одна пара.
Итого 5 пар, т.е. перестановка нечетная и слагаемое входит в развернутую запись определителя со знаком «минус».
в) — обратим внимание на первый и шестой сомножители: и . Они оба взяты из 4-го столбца, а значит, это произведение не может входить в развернутое выражение определителя 7-го порядка.

Методы вычисления определителей n – го порядка 1. Метод приведения к треугольному виду Этот метод заключается в преобразовании определителя к такому виду, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю. Пример 1. Вычислить определитель порядка n d= 01 01 01 01 11110 xxx xxx xxx xxx . Решение. Прибавим первую строку, умноженную на (– x) ко всем остальным: d= x x x x − − − − 0001 0001 0001 0001 11110 . К первому столбцу прибавим все последующие столбцы, умноженные на (1/x). Получим d= . 0000 0000 0000 0000 1111)1(x x x x x n − − − − − Мы получили треугольный вид, следовательно, определитель равен произведению элементов главной диагонали d=(– 1) n – 1 (n – 1)x n – 2 . Пример 2. Вычислить определитель 2221 2212 2122 1222 − − − − =d . Решение. Прибавим к первой строке все остальные, тогда в первой строке все элементы будут равны 2(n – 1) – 1=2n – 3 и, следовательно, общий множитель можно вынести за знак определителя: . 2221 2212 2122 1111)32(− − − −= nd Теперь воспользуемся тем, что в первой строке все элементы равны 1. Умножая первую строку на (– 2) и прибавляя её ко всем остальным строкам, мы получим. 0003 0030 0300 1111)32(− − − −= nd Побочная диагональ в определитель n-го порядка входит со знаком 2)1()1(− − nn (это легко проверить, если подсчитать число инверсий в подста- новке −− 1...21 ...321 nnn n). Тогда получим () ()() () () .32313321 1 1 2)1(1 2)1(−−=−−−= − − + − − nnd n nn n nn Пример 3. Вычислить определитель. 000 00330 00022 1321 nn nn d − − − − = Решение. Прибавим к (n – 1)-му столбцу n-ый, затем полученный (n – 1)-ый столбец прибавим к (n – 2)-му, и т. д. Тогда получим определитель треугольного вида. 2)1(! 0000 00300 00020 123 2)1(1 2)1(2)1(+ = −− + − ++ = nn n n nn nnnnnn d 2. Разложение определителя по строке (столбцу) Пример 1. Вычислить определитель d разложением по третьей строке, если d= 2164 7295 4173 2152 − −− −− − . Решение. Мы знаем, что имеет место, следующее разложение определителя по i-ой строке: d=a i1 A i1 +a i2 A i2 +…+a in A in , где A ij , j= n,1 – алгебраические дополнения элементов определителя. В нашем случае формула принимает вид d=a 31 A 31 +a 32 A 32 +a 33 A 33 +a 34 A 34 , т. е. мы имеем следующее разложение: d=5∙ (– 1) 3+1 ∙ 216 417 215 − − − +(– 9)∙(– 1) 3+2 ∙ 214 413 212 −− +2∙(– 1) 3+3 ∙ 264 473 252 − − − + + (-7)∙ (– 1) 3+4 ∙ 164 173 152 − −− − . Вычисляя полученные определители третьего порядка, получим d=5∙(– 6)+9∙12+2∙(– 54) + 7∙(– 3)= –51. Пример 2. Вычислить определитель d= 78102 4552 5882 6593 −−− . Решение. Прибавляя третью строку, умноженную на (– 1) ко всем остальным, получим d= 3350 4552 913130 2041 −−− . Прибавляя к третьей строке первую, умноженную на (– 2), получим d= 3350 0530 913130 2091 − −−− . Разложив этот определитель по первому столбцу, содержащему лишь один, не равный нулю элемент (с суммой индексов 1+1=2, т. е. чётной), получим d= 335 053 91313 − −−− . Преобразуем полученный определитель. Прибавляя к первой строке третью, умноженную на 3, получим d= 335 053 042 − − . Полученный определитель в третьем столбце содержит лишь один, не равный нулю элемент (с суммой индексов 3+3, т. е. чётной). Поэтому его удобно разложить по третьему столбцу: d=3 53 42 − − =3(10 – 12)= – 6. Пример 3. Вычислить определитель. 000 11000 00300 00220 00011 nn nn d − −− − − = Решение. Разложим определитель по 1-му столбцу, тогда () () () . 1100 0030 0022 0001 1 000 1100 0030 0022 1 12 nn n n nn d n −− − − −−+ −− − −= + В этом равенстве первый и второй определители имеют треугольный вид, поэтому первый определитель равен n!, а второй определитель равен (– 1)(– 2) . . . (1 – n)=(– 1) n–1 (n – 1)!. Тогда получим: () () () .011!1!! 1212 =−+=−+= +−++ nnn nnnd 3. Теорема Лапласа Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1≤k≤n – 1. Тогда сумма произведений всех миноров k – го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d. Пример 1. Пользуясь теоремой Лапласа, вычислить определитель, предварительно преобразовав его. d= 43220 50300 20100 34523 12532 − − −− −− . Выберем третью и четвёртую строки. В них находится единственный минор отличный от нуля, поэтому d= 53 21 − ∙(– 1) 3+4+4+5 ∙ 320 423 232 − −− . Воспользовавшись формулами для вычисления определителей второго и третьего порядков, получим d=12–12+16+27=43. Пример 2. Вычислить определитель. 005000 050000 500000 000500 000010 000001 − = d Решение. Данный определитель имеет вид, указанный в следствии из теоремы Лапласа, поэтому мы можем этим следствием воспользоваться. Тогда () .51 005 050 500 ,5 500 010 001 3 2)4)(3(3 − −− − −==−=−= n nn n BA По следствию из теоремы Лапласа имеем: () .51 2 2 147 2 − +− −== n nn BAd 4. Метод выделения линейных множителей Определитель рассматривается как многочлен от одной или нескольких входящих в него букв. Преобразуя его, обнаруживают, что он делится на ряд линейных множителей, а значит (если эти множители взаимно просты) и на их произведение. Сравнивая отдельные члены определителя с членами произведения линейных множителей, находят частное от деления определителя на это произведение и тем самым находят выражение определителя. Пример. Вычислить определитель методом линейных множителей d= 2 2 9132 5132 32x-21 3211 x − . Решение. Прибавим к первой строке вторую, умноженную на (– 1), а к третьей – четвёртую, умноженную на (– 1): d= 2 2 2 2 9132 4000 32x-21 0010 x x x − − − . Воспользуемся тем, что в первой строке и в третьей строке стоит лишь по одному неравному нулю элементу, и обнулим элементы стоящие во втором и третьем столбцах: d= 0102 4000 0201 0010 2 2 − − x x . Прибавим ко второй строке четвёртую, тогда d= 0102 4000 0303 0010 2 2 − − x x . Из первой строки видно, что определитель делится на x 2 – 1, из второй строки видно, что определитель делится на 3, а из третьей строки видно, что он делится на x 2 – 4. Так как все эти множители взаимно просты, то определитель делится на их произведение 3(x 2 – 1)(x 2 – 4). В данном произведении член x 4 имеет знак «+», а в определителе он содержится со знаком « – », поэтому d= – 3(x 2 – 1)(x 2 – 4). 5. Метод представления определителя в виде суммы определителей Некоторые определители легко вычисляются путём разложения их в сумму определителей того же порядка относительно строк или столбцов. Пример. Вычислить определитель d= add acc abb aaa 42 32 22 12 + + + + . Элементы первого столбца являются суммами двух слагаемых, это даёт возможность данный определитель представить как сумму двух определителей: d= ad ac ab aa 42 32 22 12 + add acc abb aaa 4 3 2 1 . В первом определителе первый и четвёртый столбцы пропорциональны, следовательно, он равен нулю. Во втором определителе первый и третий столбцы равны, следовательно, он тоже равен нулю. Таким образом, d=0. 6. Метод изменения элементов определителя Этот метод основан на следующем свойстве: если ко всем элементам определителя D прибавить одно и то же число x, то определитель увеличится на произведение числа x на сумму алгебраических дополнений всех элементов определителя D. D′=D+x = n ji ij A 1, . Таким образом, вычисление определителя D′ сводится к вычислению определителя D и суммы его алгебраических дополнений. Этот метод применяют в тех случаях, когда путём изменения всех элементов определителя на одно и то же число он приводится к такому виду, в котором легко сосчитать алгебраические дополнения всех элементов. Пример. Вычислить определитель D= n axxxx xaxx xxax xxxa 3 2 1 . Прибавим ко всем элементам число (– x), тогда D′= xa xa xa xa n − − − − 0000 000 000 000 3 2 1 . Алгебраические дополнения элементов определителя D, не лежащих на главной диагонали, равны нулю. Остальные алгебраические дополнения имеют положительный знак, поскольку все суммы индексов чётные. В нашем случае формула принимает вид: D′=(a 1 – x)…(a n – x), x = n ji ij A 1, = – x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − . Тогда искомый определитель D=D′–x = n ji ij A 1, =(a 1 – x)…(a n – x)+x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − = =x(a 1 – x)(a 2 – x)…(a n – x) − +…+ − + xaxax n 111 1 . 7. Метод рекуррентных соотношений Этот метод заключается в том, что данный определитель выражают, преобразуя и разлагая его по строке или столбцу, через определители того же вида, но более низкого порядка. Полученное равенство называется рекуррентным соотношением. Этот метод используется для вычисления определителей вида.)(000 00 0 00 21 −− −+= + + + + = nnn DDD αββα βα βαα ββαα ββα D n – (α+β)D n – 1 +αβD n – 2 =0 или, в общем виде D n – pD n – 1 +qD n – 2 =0, где p=α+β, q=αβ. Пусть рекуррентное соотношение имеет вид: D n =pD n – 1 – qD n – 2 , n>2, (5) где p, q – постоянные не зависящие от n. При q=0 D n вычисляется как член геометрической прогрессии: D n =p 1 − n D 1 ; здесь D 1 – определитель 1 – го порядка данного вида, т. е. элемент определителя D n , стоящий в левом верхнем углу. Пусть q>0 и α, β – корни квадратного уравнения x 2 – px+q=0. Тогда р=α+β, q=αβ и равенство (5) можно переписать так: D n – αD n – 1 =β (D n – 1 – αD n – 2) (6) или D n – βD n – 1 =α(D n – 1 – βD n – 2). (7) Предположим сначала, что α≠β. По формуле (n – 1) – го члена геометрической прогрессии находим из равенств (6) и (7): D n – αD n – 1 =β 2 − n (D 2 – αD 1) и D n – βD n – 1 =α 2 − n (D 2 – βD 1). Откуда.)()(12 1 12 1 βα αββα − −−− = −− DDDD D nn n (8) Пусть теперь α=β. Равенства (6) и (7) обращаются в одно и то же D n – αD n – 1 =α (D n – 1 – αD n – 2), откуда D n – αD n – 1 =Aα 2 − n , (9) где A=D 2 – αD 1 . Заменяя здесь n на n – 1, получим: D n – 1 – αD n – 2 =Aα 3 − n , откуда D n – 1 =αD n – 2 +Aα 3 − n . Подставляя это выражение в равенство (9), найдём D n =α 2 D n – 2 +2Aα 2 − n . Повторяя тот же приём несколько раз, получим D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 . Пример 1. Вычислить определитель методом рекуррентных соотношений. d= 21...0000 12...0000 ..................... 00...2100 00...1210 00...0121 00...0012 . Решение. Разложим определитель по первой строке, тогда D n =2(– 1) 1+1 D n – 1 +(– 1) 2+1 2...000 ............... 0...210 0...120 0...011 . Определитель в последнем равенстве разложим по первому столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =2, D 2 =3, тогда A=3 – 2=1. Следовательно, D n =2+(n – 1)=n+1. Пример 2. Вычислить определитель методом рекуррентных соотношений: d= 210...000 121...000 012...000 ..................... 000...210 000...122 000...043 . Решение. Разлагая d по последней строке, получим D n =2(– 1) nn + D n – 1 +(– 1))1(−+ nn 110...000 021...000 012...000 ..................... 000...210 000...122 000...043 . Определитель в последнем равенстве разложим по (n – 1) – му столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n = α n – 1 D 1 +(n – 1)Aα n – 2 , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =3, D 2 = – 2, тогда A= – 5. Следовательно, D n =3+(n – 1)(– 5)=8 – 5n. 8. Определитель Вандермонда Определителем Вандермонда называется определитель вида. 1111 11 3 1 2 1 1 22 3 2 2 2 1 321 −−−− = n n nnn n n aaaa aaaa aaaa d Докажем, что при любом n определитель Вандермонда равен произведению всевозможных разностей a i – a j , где 1≤j

Мы можем оповещать вас о новых статьях,
чтобы вы всегда были в курсе самого интересного.