Иногда возникают ситуации, когда у вас есть величина какого-то определенного типа, а вам нужно ее присвоить переменной другого типа. Для некоторых типов это можно проделать и без приведения типа, в таких случаях говорят об автоматическом преобразовании типов. В Java автоматическое преобразование возможно только в том случае, когда точности представления чисел переменной-приемника достаточно для хранения исходного значения. Такое преобразование происходит, например, при занесении литеральной константы или значения переменной типа byte или short в переменную типа int. Это называется расширением (widening ) или повышением (promotion ), поскольку тип меньшей разрядности расширяется (повышается) до большего совместимого типа. Размера типа int всегда достаточно для хранения чисел из диапазона, допустимого для типа byte, поэтому в подобных ситуациях оператора явного приведения типа не требуется. Обратное в большинстве случаев неверно, поэтому для занесения значения типа int в переменную типа byte необходимо использовать оператор приведения типа. Эту процедуру иногда называют сужением (narrowing ), поскольку вы явно сообщаете транслятору, что величину необходимо преобразовать, чтобы она уместилась в переменную нужного вам типа. Для приведения величины к определенному типу перед ней нужно указать этот тип, заключенный в круглые скобки. В приведенном ниже фрагменте кода демонстрируется приведение типа источника (переменной типа int) к типу приемника (переменной типа byte). Если бы при такой операции целое значение выходило за границы допустимого для типа byte диапазона, оно было бы уменьшено путем деления по модулю на допустимый для byte диапазон (результат деления по модулю на число - это остаток от деления на это число),

int а = 100;
byte b = (byte) а;

2.2.1. Автоматическое преобразование типов в выражениях

При вычислениях значения выражения точность, требуемая для хранения промежуточных результатов, зачастую должна быть выше, чем требуется для представления окончательного результата,

byte а = 40;
byte b = 50;
byte с = 100;
int d = a* b / с ;

Результат промежуточного выражения (а*b) вполне может выйти за диапазон допустимых для типа byte значений. Именно поэтому Java автоматически повышает тип каждой части выражения до типа int, так что для промежуточного результата (а* b) хватает места.

Автоматическое преобразование типа иногда может оказаться причиной неожиданных сообщений транслятора об ошибках. Например, показанный ниже код, хотя и выглядит вполне корректным, приводит к сообщению об ошибке на фазе трансляции. В нем мы пытаемся записать значение 50*2, которое должно прекрасно уместиться в тип byte, в байтовую переменную. Но из-за автоматического преобразования типа результата в int мы получаем сообщение об ошибке от транслятора - ведь при занесении int в byte может произойти потеря точности.

byte b = 50;
b = b* 2:
^ Incompatible type for =. Explicit cast needed to convert int to byte.
(Несовместимый тип для =. Необходимо явное преобразование int в byte)

Исправленный текст:
byte b = 50;
b = (byte) (b* 2);

что приводит к занесению в b правильного значения 100.

Если в выражении используются переменные типов byte, short и int, то во избежание переполнения тип всего выражения автоматически повышается до int. Если же в выражении тип хотя бы одной переменной - long, то и тип всего выражения тоже повышается до long. Не забывайте, что все целые литералы, в конце которых не стоит символ L (или 1), имеют тип int.

Если выражение содержит операнды типа float, то и тип всего выражения автоматически повышается до float. Если же хотя бы один из операндов имеет тип double, то тип всего выражения повышается до double. По умолчанию Java рассматривает все литералы с плавающей точкой как имеющие тип double. Приведенная ниже про1рамма показывает, как повышается тип каждой величины в выражении для достижения соответствия со вторым операндом каждого бинарного оператора.

class Promote {
public static void main (String args ) {
byte b= 42;
char с = "a’;
shorts = 1024;
int i = 50000;
float f = 5.67f;
doubled =.1234;
double result = (f*b) + (i/ c) - (d* s);
System, out. println ((f* b)+ "+ "+ (i / c)+ " -" + (d* s));
System, out. println ("result = "+ result); }
}

Подвыражение f*b - это число типа float, умноженное на число типа byte, поэтому его тип автоматически повышается до float. Тип следующего подвыражения i / с (int, деленный на char) повышается до int. Аналогично этому тип подвыражения d*s (double, умноженный на short) повышается до double. На следующем шаге вычислений мы имеем дело с тремя промежуточными результатами типов float, int и double. Сначала при сложении первых двух тип int повышается до float и получается результат типа float. При вычитании из него значения типа double тип результата повышается до double. Окончательный результат всего выражения - значение типа double.

Теперь, когда мы познакомились со всеми простыми типами, включая целые и вещественные числа, символы и логические переменные, давайте попробуем собрать всю информацию вместе. В приведенном ниже примере создаются переменные каждого из простых типов и выводятся значения этих переменных.

class SimpleTypes {
public static void main(String args ) {
byte b = 0x55;
short s = 0x55ff;
int i = 1000000;
long l = 0xffffffffL;
char с = ’a’;
float f= .25f;
double d = .00001234;
boolean bool = true;
System.out.println("byte b = " + b);
System.out.println("short s = " +s);
System.out.println("int i =” + i);
System.out.println("long 1 = " + l);
System.out.println("char с =” + с );
System.out.println("float f = " + f);
System.out.println("double d = " + d);
System.out.println("boolean bool =” + bool); }
}

Запустив эту программу, вы должны получить результат, показанный ниже:

byte b = 85
shorts = 22015
int i = 1000000
long 1 = 4294967295
char с = a
float f = 0.25
double d=1.234e-005
boolean bool = true

Обратите внимание на то, что целые числа печатаются в десятичном представлении, хотя мы задавали значения некоторых из них в шестнадцатиричном формате.

Часто возникает необходимость преобразования строк в значения других типов, таких как int или boolean, и наоборот. В соответствии с принятым соглашением ответственность за преобразование строки в значение другого типа возложена на соответствующий метод этого типа. Так, например, преобразование строки в величину типа int выполняет статический метод из состава класса-оболочки Integer. В следующей таблице указаны все типы, допускающие преобразование значений в строки и наоборот, и перечислены соответствующие методы.

ТИП Метод для преобразова- Метод для преобразования из строки

ния В строку

boolean String.valueOf(boolean) new.Boolean(String). booleanvalue()

byte String.valueOf(byte) Byte.parseByte(string, int)

short String.valueOf(short) Short.parseShort(string, int)

int String.valueOf(int) Integer.parseInteger(string, int)

long String.valueOf(long) Long.parseLong(String, int)

float String.valueOf(float) Float.parseFloat(String)

double String.valueOf(double) Double.parseDouble(String)

Для преобразования строки в значение Boolean необходимо создать объект Boolean и затем запросить его значение. Все остальные классы-оболочки содержат Соответствующие методы parse. Методы parse целочисленных типов существуют в двух перегруженных формах: первая, помимо строки, требует задания дополнительного аргумента типа int, представляющего основание системы счисления – от 2 до 32; вторая принимает только параметр строки и по умолчанию предполагает использование десятичной системы счисления. Во всех случаях, кроме Boolean, предполагается следующее: если строка представляет значение, которое не может быть корректно преобразовано в число соответствующего типа, выбрасывается исключение NumberFormatException. Класс Boolean удовлетворяет соглашению, в соответствии с которым любая строка-параметр, не равная “true” (без учета регистра символов), приводит к созданию объекта вооlеаn со значением false.

Методов, позволяющих преобразовать символы, которые представлены в одной из поддерживаемых языком форм (таких как \b, \uxxxx и т.д.), В значения типа char и наоборот, не существует. Чтобы получить объект String, содержащий единственный символ, достаточно вызвать метод String.valueOf, передав ему в качестве параметра соответствующее значение типа char.

Отсутствуют также и способы создания строковых представлений чисел, заданных в одном из поддерживаемых языком форматов – с ведущим нулем (О), обозначающим восьмеричное число, и префиксом Ох (или ОХ), служащим признаком шестнадцатеричной системы счисления. Напротив, в целочисленных классах-оболочках поддерживаются версии метода decode, способного преобразовать строки в числовые значения соответствующего типа и “понимающего”, что ведущий О обозначает восьмеричное число, а один из префиксов Ох ИЛИ Ох – шестнадцатеричное.

Любой прикладной класс способен обеспечить поддержку преобразований собственных объектов в строки и обратно, если в его объявлении будет соответствующим образом переопределен метод toString и предусмотрен специальный конструктор, создающий объект класса на основе строки, переданной в качестве параметра. В вашем распоряжении имеется также метод String.valueOf(Object obj), который возвращает либо строковый объект “null” (если значение obj равно null), либо результат работы метода obj.toString. Класс String содержит достаточное количество перегруженных версий метода valueOf, позволяющих преобразовать любое значение любого типа в объект String посредством простого вызова valueOf с передачей нужного аргумента.

Аннотация: Эта лекция посвящена вопросам преобразования типов. Поскольку Java – язык строго типизированный, компилятор и виртуальная машина всегда следят за работой с типами, гарантируя надежность выполнения программы. Однако во многих случаях то или иное преобразование необходимо осуществить для реализации логики программы. С другой стороны, некоторые безопасные переходы между типами Java позволяет осуществлять неявным для разработчика образом, что может привести к неверному пониманию работы программы. В лекции рассматриваются все виды преобразований, а затем все ситуации в программе, где они могут применяться. В заключение приводится начало классификации типов переменных и типов значений, которые они могут хранить. Этот вопрос будет подробнее рассматриваться в следующих лекциях.

Что все это означает? Начнем по порядку. Для простых типов расширение означает, что осуществляется переход от менее емкого типа к более емкому. Например, от типа byte (длина 1 байт) к типу int (длина 4 байта). Такие преобразования безопасны в том смысле, что новый тип всегда гарантированно вмещает в себя все данные, которые хранились в старом типе, и таким образом не происходит потери данных. Именно поэтому компилятор осуществляет его сам, незаметно для разработчика:

byte b=3; int a=b;

В последней строке значение переменной b типа byte будет преобразовано к типу переменной a (то есть, int ) автоматически, никаких специальных действий для этого предпринимать не нужно.

Следующие 19 преобразований являются расширяющими:

  • от byte к short , int , long , float , double
  • от short к int , long , float , double
  • от char к int , long , float , double
  • от int к long , float , double
  • от long к float , double
  • от float к double

Обратите внимание, что нельзя провести преобразование к типу char от типов меньшей или равной длины (byte , short ), или, наоборот, к short от char без потери данных. Это связано с тем, что char , в отличие от остальных целочисленных типов, является беззнаковым.

Тем не менее, следует помнить, что даже при расширении данные все-таки могут быть в особых случаях искажены. Они уже рассматривались в предыдущей лекции, это приведение значений int к типу float и приведение значений типа long к типу float или double . Хотя эти дробные типы вмещают гораздо большие числа, чем соответствующие целые, но у них меньше значащих разрядов.

Повторим этот пример:

long a=111111111111L; float f = a; a = (long) f; print(a);

Результатом будет:

Обратное преобразование - сужение - означает, что переход осуществляется от более емкого типа к менее емкому. При таком преобразовании есть риск потерять данные. Например, если число типа int было больше 127, то при приведении его к byte значения битов старше восьмого будут потеряны. В Java такое преобразование должно совершаться явным образом, т.е. программист в коде должен явно указать, что он намеревается осуществить такое преобразование и готов потерять данные.

Следующие преобразования являются сужающими:

  • от byte к char
  • от short к byte , char
  • от char к byte , short
  • от int к byte , short , char
  • от long к byte , short , char , int
  • от float к byte , short , char , int , long
  • от double к byte , short , char , int , long , float

При сужении целочисленного типа к более узкому целочисленному все старшие биты, не попадающие в новый тип, просто отбрасываются. Не производится никакого округления или других действий для получения более корректного результата:

print((byte)383); print((byte)384); print((byte)-384);

Результатом будет:

Видно, что знаковый бит при сужении не оказал никакого влияния, так как был просто отброшен - результат приведения противоположных чисел (384 и -384) оказался одинаковым. Следовательно, может быть потеряно не только точное абсолютное значение, но и знак величины.

Это верно и для типа char :

char c=40000; print((short)c);

Результатом будет:

Сужение дробного типа до целочисленного является более сложной процедурой. Она проводится в два этапа.

На первом шаге дробное значение преобразуется в long , если целевым типом является long , или в int - в противном случае (целевой тип byte , short , char или int ). Для этого исходное дробное число сначала математически округляется в сторону нуля, то есть дробная часть просто отбрасывается.

Например, число 3,84 будет округлено до 3 , а -3,84 превратится в -3 . При этом могут возникнуть особые случаи:

  • если исходное дробное значение является NaN , то результатом первого шага будет 0 выбранного типа (т.е. int или long );
  • если исходное дробное значение является положительной или отрицательной бесконечностью, то результатом первого шага будет, соответственно, максимально или минимально возможное значение для выбранного типа (т.е. для int или long );
  • наконец, если дробное значение было конечной величиной, но в результате округления получилось слишком большое по модулю число для выбранного типа (т.е. для int или long ), то, как и в предыдущем пункте, результатом первого шага будет, соответственно, максимально или минимально возможное значение этого типа. Если же результат округления укладывается в диапазон значений выбранного типа, то он и будет результатом первого шага.
  • и int вполне очевидны - дробные бесконечности преобразовались в, соответственно, минимально и максимально возможные значения этих типов. Результат для следующих трех типов (short , char , byte ) есть, по сути, дальнейшее сужение значений, полученных для int , согласно второму шагу процедуры преобразования. А делается это, как было описано, просто за счет отбрасывания старших битов. Вспомним, что минимально возможное значение в битовом виде представляется как 1000..000 (всего 32 бита для int , то есть единица и 31 ноль). Максимально возможное - 1111..111 (31 единица). Отбрасывая старшие биты, получаем для отрицательной бесконечности результат 0 , одинаковый для всех трех типов. Для положительной же бесконечности получаем результат, все биты которого равняются 1

    В заключение еще раз обратим внимание на то, что примитивные значения типа boolean могут участвовать только в тождественных преобразованиях.

Предыдущий оратор достаточно полно описал нисходящее преобразование, но восходящее (на мой взгляд) требует дополнительных пояснений, так как вопрос очень популярен и интересен.

Каким образом работает явное приведение типов

В вашем примере показано восходящее преобразование (Upcasting ):

List coll = new ArrayList();

На русский язык переводится так: создай ворону, типа птицы. Создай динамический массив, типа лист. В большинстве ситуаций восходящее преобразование совершенно не нужно .
Однако, приведение типов работает на собеседованиях, когда вам дают вопросы на наследование. К примеру, сайт quizful.net вообще содержит в себе множество вопросов на приведение типов. Поэтому разъясню особенности, которые знаю.

Итак, в вышеприведенном примере мы создали объект типа ArrayList , а ссылка типа List . Запомните аксиомы для этого способа:

1. Ссылку можно указать на любого родителя. Даже очень давнего. То есть, можно привести ссылку coll даже к типу Object . Компилятор пропустит любую ссылку на класс родителя, или родителя-родителя, или родителя-родителя...родителя

2. Обращение к полю - всегда идёт возврат поля ссылки, не поля объекта. Если такого поля нет в классе-ссылке будет ошибка компиляции.

Class A{ int x = 2; //Поле родителя } Class B extends A { int x = 3; //Поле которое должно перекрыть родительское int y = 5; //Поле, которого нет в родительском классе. } Class Test{ public static void main(String args) { A ab = new B(); //Восходящее преобразование System.out.println("Int x = " + ab.x); } }

Вернет Int x = 2 . Если вы попробуете обратиться к полю объекта:

System.out.println("Int y = " + ab.y); //Ошибка компилляции

Ваш компилятор скажет, что вы не правы, так как он по ссылке (A ab) не видит такого поля. Всё вышесказанное сохраняет силу, даже если ваши поля пометить модификаторами static.

3. Обращение к нестатическому методу: в этом случае вернёт метод объекта. Но при обращении к статическому методу - возвращает метод ссылки.

Class D{ public void doSome(){ //Нестатический метод System.out.println("Nonstatic doSome from D"); } public static void Action(){ //Статический метод System.out.println("static Action from D"); } } public class Okey extends D{ public void doSome(){ System.out.println("doSome from Okey"); } public static void Action(){ System.out.println("static Action from Okey"); } public static void main(String args) { D o=new Okey(); o.doSome(); //Из класса Okey o.Action(); //Из класса D } }

Nonstatic doSome from Okey

static Action from D

Разгадка проста, нестатический метод - это метод объекта, статический - метод класса. Когда мы вызываем не статический метод - компилятор понимает так: летай как ворона. Когда мы вызываем статический - буквально, летай как птица.

4. Если идёт вызов метода, который описан в классе объекта, но не описан в классе ссылки - пойдёт ошибка компилляции. Потому что, вызов метода происходит по ссылке:

Class A {} Class B extends A { void someMethod(){}; public static void main(String args) { A ab = new B(); ab.someMethod(); //Ошибка компилляции. } }

5. Конструктор объекта (при создании командой new) работает также, как если давать ссылку на свой класс.

Это достаточно большая тема, но мы постараемся рассмотреть ее как можно более полно и вместе с тем компактно. Частично мы уже касались этой темы когда рассматривали примитивные типы Java.

В Java возможны преобразования между целыми значениями и значениями с плавающей точкой. Кроме того, можно преобразовывать значения целых типов и типов с плавающей точкой в значения типа char и наоборот, поскольку каждый символ соответствует цифре в кодировке Unicode. Фактически тип boolean является единственным примитивным типом в Java, который нельзя преобразовать в другой примитивный тип. Кроме того, любой другой примитивный тип нельзя преобразовать в boolean.

Преобразование типов в Java бывает двух видов: неявное и явное .

Неявное преобразование типов выполняется в случае если выполняются условия:

  1. Оба типа совместимы
  2. Длина целевого типа больше или равна длине исходного типа

Во всех остальных случаях должно использоваться явное преобразование типов .

Так же существуют два типа преобразований:

  1. Расширяющее преобразование (widening conversion)
  2. Сужающее преобразование (narrowing conversion)

Расширяющее преобразование (widening conversion ) происходит, если значение одного типа преобразовывается в более широкий тип, с большим диапазоном допустимых значений. Java выполняет расширяющие преобразования автоматически, например, если вы присвоили литерал типа int переменной типа double или значение пепременной типа char переменной типа int. Неявное преобразование всегда имеет расширяющий тип .

Но у тут могут быть свои небольшие грабельки. Например если преобразуется значение int в значение типа float. И у значения int в двоичном представлении больше чем 23 значащих бита, то возможна потеря точности, так как у типа float под целую часть отведено 23 бита. Все младшие биты значения int, которые не поместятся в 23 бита мантиссы float, будут отброшены, поэтому хотя порядок числа сохраниться, но точность будет утеряна. То же самое справедливо для преобразования типа long в тип double.

Расширяющее преобразование типов Java можно изобразить еще так:

Сплошные линии обозначают преобразования, выполняемые без потери данных. Штриховые линии говорят о том, что при преобразовании может произойти потеря точности.

Стоит немного пояснить почему, к примеру тип byte не преобразуется автоматически (не явно) в тип char, хотя тип byte имеет ширину 8 бит, а char 16, тоже самое касается и преобразования типа short в char. Это происходит потому, что byte и short знаковые типы данных, а char без знаковый. Поэтому в данном случае требуется использовать явное приведение типов, поскольку компилятору надо явно указать что вы знаете чего хотите и как будет обрабатываться знаковый бит типов byte и short при преобразовании к типу char.

Поведение величины типа char в большинстве случаев совпадает с поведением величины целого типа, следовательно, значение типа char можно использовать везде, где требуются значения int или long. Однако напомним, что тип char не имеет знака, поэтому он ведет себя отлично от типа short, несмотря на то что диапазон обоих типов равен 16 бит.

short s = ( short ) 0xffff ; // Данные биты представляют число –1
char c = "\uffff" ; // Те же биты представляют символ юникода
int i1 = s ; // Преобразование типа short в int дает –1
int i2 = c ; // Преобразование char в int дает 65535

Сужающее преобразование (narrowing conversion ) происходит, если значение преобразуется в значение типа, диапазон которого не шире изначального. Сужающие преобразования не всегда безопасны: например, преобразование целого значения 13 в byte имеет смысл, а преобразование 13000 в byte неразумно, поскольку byte может хранить только числа от −128 до 127. Поскольку во время сужающего преобразования могут быть потеряны данные, Java компилятор возражает против любого такого преобразования, даже если преобразуемое значение укладывается в более узкий диапазон указанного типа:

int i = 13 ;
byte b = i ; // Компилятор не разрешит это выражение

Единственное исключение из правила – присвоение целого литерала (значения типа int) переменной byte или short, если литерал соответствует диапазону переменной.

Сужающее преобразование это всегда явное преобразование типов .

Явное преобразование примитивных типов

Оператором явного преобразования типов или точнее говоря приведения типов являются круглые скобки, внутри которых указан тип, к которому происходит преобразование – (type) . Например:

int i = 13 ;
byte b = ( byte ) i ; // Принудительное преобразование int в byte
i = ( int ) 13.456 ; // Принудительное преобразование литерала типа double в int 13

Приведение примитивных типов чаще всего используют для преобразования значений с плавающей точкой в целые числа . При этом дробная часть значения с плавающей точкой просто отбрасывается (то есть значение с плавающей точкой округляется по направлению к нулю, а не к ближайшему целому числу). По существу берется только целочисленная часть вещественного типа и она уже приводится к целевому типу целочисленного числа.

При приведении более емкого целого типа к менее емкому старшие биты просто отбрасываются . По существу это равнозначно операции деления по модулю приводимого значения на диапазон целевого типа (например для типа byte это 256).

Слишком большое дробное число при приведении к целому превращается в MAX_VALUE или MIN_VALUE .

Слишком большой double при приведении к float превращается в Float.POSITIVE_INFINITY или Float.NEGATIVE_INFINITY .

Таблица представленная ниже представляет собой сетку, где для каждого примитивного типа указаны типы, в которые их можно преобразовать, и способ преобразования. Буква N в таблице означает невозможность преобразования. Буква Y означает расширяющее преобразование, которое выполняется автоматически. Буква С означает сужающее преобразование, требующее явного приведения. Наконец, Y* означает автоматическое расширяющее преобразование, в процессе которого значение может потерять некоторые из наименее значимых разрядов. Это может произойти при преобразовании int или long во float или double. Типы с плавающей точкой имеют больший диапазон, чем целые типы, поэтому int или long можно представить посредством float или double. Однако типы с плавающей точкой являются приближенными числами и не всегда могут содержать так много значащих разрядов в мантиссе, как целые типы.

Автоматическое расширение типов в выражениях

Так же стоит еще раз упомянуть об автоматическом повышении (расширении) типов в выражениях. Мы с этим уже сталкивались когда рассматривали целочисленные типы данных и операции над ними, но все же стоит и тут напомнить, чтобы усвоилось еще лучше и к тому же это имеет непосредственное отношение к данной теме. В примере ниже знак @ + , , * , / и т.п.

То есть, все целочисленные литералы в выражениях, а так же типы byte , short и char расширяются до int . Если, как описано выше, в выражении не присутствуют другие, более большие типы данных (long , float или double ). Поэтому приведенный выше пример вызовет ошибку компиляции, так как переменная c имеет тип byte , а выражение b+1, в результате автоматического повышения имеет тип int .

Неявное приведение типов в выражениях совмещенного присваивания

Хоть данный раздел и относится к неявному преобразованию (приведению) типов, его объяснение мы привели тут, поскольку в данном случае так же работает и автоматическое расширение типов в выражениях, а затем уже неявное приведение типов. Вот такой кордебалет. Пример ниже я думаю все разъяснит. Так же как и в предыдущем объяснении знак @ означает любой допустимый оператор, например + , , * , / и т.п.

Это стоит пояснить на простом примере:

byte b2 = 50 ;
b2 = b2 * 2 ; // не скомпилируется
b2 *= 2 ; //скомпилируется, хотя и равнозначна b2 = b2 * 2

Вторя строка, приведенная в примере не скомпилируется из-за автоматического расширения типов в выражениях, так как выражение b2*2 имеет тип int, так как происходит автоматическое расширение типа (целочисленные литералы в выражении всегда int). Третья же строка спокойно скомпилируется, так как в ней сработает неявное приведение типов в совмещенном выражении присваивания.

Boxing/unboxing – преобразование примитивных типов в объекты обертки

Boxing и unboxin – это тоже достаточно большая тема, но она достаточно простая.

По существу boxing и unboxing это преобразование примитивных типов в объекты обертки и обратно .

Для объектов оберток примитивных типов применимо все что было сказано выше.

Об классах обертках упоминалось в таблицах, при разборе каждого из примитивных типов. Но тогда это было лишь упоминание в таблице.

Так вот, для каждого примитивного типа есть его старший брат, и он совсем не примитивный, а является настоящим классом, с полями и методами. И для каждой такой парочки возможно автоматическое преобразование.

Обычно, если в программе есть много математических вычислений, то лучше пользоваться примитивными типами, так как это быстрее и экономнее с точки зрения ресурсов, но иногда бывает необходимость преобразовать примитивный тип в объект.

Приведу простой пример:

int i3 ;
byte b2 = 3 ;
Byte myB ;
myB = b2 ;
myB ++;
b2 = myB ;
i3 = myB ;

Если пока не понятно зачем это нужно, то это не страшно, просто завяжите узелок на память.