Воспользуемся изложенным выше общим методом для решения одной задачи, а именно для нахождения закона распределения суммы двух случайных величин. Имеется система двух случайных величин (X,Y) с плотностью распределения f(x,у).

Рассмотрим сумму случайных величин X и Y: и найдем закон распределения величины Z. Для этого построим на плоскости хОу линию, уравнение которой (рис. 6.3.1). Это - прямая, отсекающая на осях отрезки, равные z. Прямая делит плоскость хОу на две части; правее и выше ее ; левее и ниже

Область D в данном случае - левая нижняя часть пло­скости хОу, заштрихованная на рис. 6.3.1. Согласно формуле (6.3.2) имеем:

Это - общая формула для плотности распределения суммы двух случайных величин.

Из соображений симметричности задачи относительно X и Y можно написать другой вариант той же формулы:

Требуется произвести композицию этих законов, т. е. найти закон распределения величины: .

Применим общую формулу для композиции законов рас­пределения:

Подставляя эти выражения в уже встречавшуюся нам формулу

а это есть не что иное, как нормальный закон с центром рассеи­вания

К тому же выводу можно прийти значительно проще с помощью следующих качественных рассуждений.

Не раскрывая скобок и не производя преобразований в подынте­гральной функции (6.3.3), сразу приходим к выводу, что показатель степени есть квадратный трехчлен относительно х вида

где в коэффициент А величина z не входит совсем, в коэффициент В входит в первой степени, а в коэффициент С - в квадрате. Имея это в виду и применяя формулу(6.3.4), приходим к заключению, что g(z) есть показательная функция, показатель степени которой - квадратный трехчлен относительно z, а плотность аспределения; такого вида соответствует нормальному закону. Таким образом, мы; приходим к чисто качественному выводу: закон распределения вели­чины z должен быть нормальным. Чтобы найти параметры этого закона - и - воспользуемся теоремой сложения математических ожиданий и теоремой сложения дисперсий.

По теореме сложения математических ожиданий . По теореме сложения дисперсий или откуда следует формула (6.3.7).

Переходя от среднеквадратических отклонений к пропорциональным им вероятным отклонениям, получим:
.

Таким образом, мы пришли к следующему правилу: при компо­зиции нормальных законов получается снова нормальный за­кон, причем математические ожидания и дисперсии (или квад­раты вероятных отклонений) суммируются.

Правило композиции нормальных законов может быть обобщено на случай произвольного числа независимых случайных величин.

Если имеется n независимых случайных величин: подчиненных нормальным законам с центрами рассеивания и среднеквадратическими отклонениями ,то величина также подчинена нормальному закону с параметрами

Если система случайных величин (X, Y) распределена по нормальному закону, но величины X, Y зависимы, то нетрудно доказать, так же как раньше, исходя из общей формулы (6.3.1), что закон распределения величины есть тоже нормальный закон. Центры рассеивания по-прежнему складываются алгебраически, но для среднеквадратических отклонений правило становится более сложным: , где, r - коэффициент корреляции величин X и Y.

При сложении нескольких зависимых случайных величин, подчиненных в своей совокупности нормальному закону, закон распределения суммы также оказывается нормальным с параметрами

где - коэффициент корреляции величин X i , X j , а суммирование распространяется на все различные попарные комбинации величин .

Мы убедились в весьма важном свойстве нормального закона: при композиции нормальных законов получается снова нормальный закон. Это - так называемое «свойство устойчивости». Закон распределения называется устойчивым, если при композиции двух законов этого типа получается снова закон того же типа. Выше мы показали, что нормальный закон является устойчивым. Свойством устойчивости обладают весьма немногие законы распределения. Закон равномерной плотности неустойчив: при композиции двух законов равномерной плотности на участках от 0 до 1 мы получили закон Симпсона.

Устойчивость нормального закона - одно из существенных условий его широкого распространения на практике. Однако свойством устойчивости, кроме нормального, обладают и некоторые другие законы распределения. Особенностью нор­мального закона является то, что при композиции достаточно боль­шого числа практически произвольных законов распределения суммарный закон оказывается сколь угодно близок к нормальному вне зависимости от того, каковы были законы распределения слагаемых. Это можно проиллюстрировать, например, составляя композицию трех законов равномерной плотности на уча­стках от 0 до 1. Получающийся при этом закон распределения g(z) изображен на рис. 6.3.1. Как видно из чертежа, график функции g(z) весьма напоминает график нормального закона.

Рассмотрим систему двух случайных непрерывных величин . Законом распределения этой системы является нормальный закон распределения, если функция плотности вероятности этой системы имеет вид

. (1.18.35)

Можно показать, что здесь – математические ожидания случайных величин, – их среднеквадратические отклонения, – коэффициент корреляции величин . Вычисления по формулам (1.18.31) и (1.18.35) дают

. (1.18.36)

Легко видеть, что если случайные величины , распределенные по нормальному закону не коррелированны , то они являются также и независимыми

.

Таким образом, для нормального закона распределения не коррелированность и независимость – эквивалентные понятия.

Если , то случайные величины зависимы. Условные законы распределения вычисляются по формулам (1.18.20)

. (1.18.37)

Оба закона (1.18.37) представляют собой нормальные распределения. В самом деле, преобразуем, например, второе из соотношений (1.18.37) к виду

.

Это действительно нормальный закон распределения, у которого условное математическое ожидание равно

, (1.18.38)

а условное среднеквадратичное отклонение выражается формулой

. (1.18.39)

Отметим, что в условном законе распределения величины при фиксированном значении от этого значения зависит только условное математическое ожидание, но не условная дисперсия – .

На координатной плоскости зависимость (1.18.38) представляет собой прямую линию

, (1.18.40)

которая называется линией регрессии на .

Совершенно аналогично устанавливается, что условное распределение величины при фиксированном значении

, (1.18.41)

есть нормальное распределение с условным математическим ожиданием

, (1.18.42)

условным среднеквадратичным отклонением

. (1.18.43)

В этом случае линия регрессии имеет вид

. (1.18.44)

Линии регрессии (1.18.40) и (1.18.44) совпадают только тогда, когда зависимость между величинами и является линейной. Если величины и независимы, линии регрессии параллельны координатным осям.

Конец работы -

Эта тема принадлежит разделу:

Конспект лекций по математике теория вероятностей математическая статистика

Кафедра высшей математики и информатики.. конспект лекций.. по математике..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теория вероятностей
Теория вероятностей – раздел математики, в котором изучаются закономерности случайных массовых явлений. Случайным называется явление, которо

Статистическое определение вероятности
Событием называется случайное явление, которое в результате опыта может появится или не появится (двузначное явление). Обозначают события большими латинскими буквами

Пространство элементарных событий
Пусть с некоторым опытом связано множество событий, причем: 1) в результате опыта появляется одно и только одно

Действия на событиями
Суммой двух событий и

Перестановки
Число различных перестановок из элементов обозначается

Размещения
Размещением из элементов по

Сочетания
Сочетанием из элементов по

Формула сложения вероятностей для несовместных событий
Теорема. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий. (1

Формула сложения вероятностей для произвольных событий
Теорема. Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их произведения.

Формула умножения вероятностей
Пусть даны два события и. Рассмотрим событие

Формула полной вероятности
Пусть – полная группа несовместных событий, их называют гипотезами. Рассмотрим некоторое событие

Формула вероятностей гипотез (Байеса)
Рассмотрим снова – полную группу несовместных гипотез и событие

Асимптотическая формула Пуассона
В тех случаях, когда число испытаний велико, а вероятность появления события

Случайные дискретные величины
Случайной называется величина, которая при повторении опыта может принимать неодинаковые числовые значения. Случайная величина называется дискретной,

Случайные непрерывные величины
Если в результате опыта случайная величина может принимать любое значение из некоторого отрезка или всей действительной оси, то она называется непрерывной. Законо

Функция плотности вероятности случайной непрерывной величины
Пусть. Рассмотрим точку и дадим ей приращени

Числовые характеристики случайных величин
Случайная дискретная или непрерывная величины считаются полностью заданными, если известны их законы распределения. В самом деле, зная законы распределения можно всегда вычислить вероятность попада

Квантили случайных величин
Квантилем порядка случайной непрерывной величины

Математическое ожидание случайных величин
Математическое ожидание случайной величины характеризует ее среднее значение. Все значения случайной величины группируются вокруг этого значения. Рассмотрим сначала случайную дискретную величину

Среднеквадратичное отклонение и дисперсия случайных величин
Рассмотрим сначала случайную дискретную величину. Числовые характеристики мода, медиана, квантили и математическое ожида

Моменты случайных величин
Кроме математического ожидания и дисперсии в теории вероятностей используются числовые характеристики более высоких порядков, которые называются моментами случайных величин.

Теоремы о числовых характеристиках случайных величин
Теорема 1. Математическое ожидание неслучайной величины равно самой этой величине. Доказательство:Пусть

Биномиальный закон распределения

Закон распределения Пуассона
Пусть случайная дискретная величина, принимающая значения

Равномерный закон распределения
Равномерным законом распределения случайной непрерывной величины называется закон функция плотности вероятности, которого

Нормальный закон распределения
Нормальным законом распределения случайной непрерывной величины называется закон функция плотност

Экспоненциальный закон распределения
Экспоненциальное или показательное распределение случайной величины применяется в таких приложениях теории вероятностей, как теория массового обслуживания, теория надежности

Системы случайных величин
На практике в приложениях теории вероятностей часто приходиться сталкиваться с задачами, в которых результаты эксперимента описываются не одной случайной величиной, а сразу несколькими случайными в

Система двух случайных дискретных величин
Пусть две случайные дискретные величины образуют систему. Случайная величина

Система двух случайных непрерывных величин
Пусть теперь систему образуют две случайные непрерывные величины. Законом распределения этой системы называется вероятно

Условные законы распределения
Пусть и зависимые случайные непрерывные велич

Числовые характеристики системы двух случайных величин
Начальным моментом порядка системы случайных величин

Система нескольких случайных величин
Полученные результаты для системы их двух случайных величии могут быть обобщены на случай систем, состоящих из произвольного числа случайных величин. Пусть система образована совокупностью

Предельные теоремы теории вероятностей
Основной целью дисциплины теория вероятностей является изучение закономерностей случайных массовых явлений. Практика показывает, что наблюдение массы однородных случайных явлений обнаружив

Неравенство Чебышева
Рассмотрим случайную величину с математическим ожиданием

Теорема Чебышева
Если случайные величины попарно независимы и имеют конечные ограниченные в совокупности дисперсии

Теорема Бернулли
При неограниченном увеличении числа опытов частота появления события сходится по вероятности к вероятности события

Центральная предельная теорема
При сложении случайных величин с любыми законами распределения, но с ограниченными в совокупности дисперсиями, закон расп

Основные задачи математической статистики
Рассмотренные выше законы теории вероятностей представляют собой математическое выражение реальных закономерностей, фактически существующих в различных случайных массовых явлениях. Изучая

Простая статистическая совокупность. Статистическая функция распределения
Рассмотрим некоторую случайную величину, закон распределения которой неизвестен. Требуется на основании опытных данных о

Статистический ряд. Гистограмма
При большом числе наблюдений (порядка сотен) генеральная совокупность становится неудобной и громоздкой для записи статистического материала. Для наглядности и компактности статистический материал

Числовые характеристики статистического распределения
В теории вероятностей рассматривались различные числовые характеристики случайных величин: математическое ожидание, дисперсию, начальные и центральные моменты различных порядков. Аналогичные числов

Выбор теоретического распределения по методу моментов
Во всяком статистическом распределении неизбежно присутствуют элементы случайности, связанные с ограниченностью числа наблюдений. При большом числе наблюдений эти элементы случайности сглаживаются,

Проверка правдоподобия гипотезы о виде закона распределения
Пусть заданное статистическое распределение аппроксимировано некоторой теоретической кривой или

Критерии согласия
Рассмотрим один из наиболее часто применяемых критериев согласия – так называемый критерий Пирсона. Предположи

Точечные оценки для неизвестных параметров распределения
В п.п. 2.1. – 2.7 мы подробно рассмотрели способы решения первой и второй основных задач математической статистики. Это задачи определения законов распределения случайных величин по опытным данным

Оценки для математического ожидания и дисперсии
Пусть над случайной величиной с неизвестными математическим ожиданием

Доверительный интервал. Доверительная вероятность
На практике при малом числе опытов над случайной величиной приближенная замена неизвестного параметра

Последнее обновление: 19.06.2017

В C# используется большинство операций, которые применяются и в других языках программирования. Операции представляют определенные действия над операндами - участниками операции. В качестве операнда может выступать переменной или какое-либо значение (например, число). Операции бывают унарными (выполняются над одним операндом), бинарными - над двумя операндами и тернарными - выполняются над тремя операндами. Рассмотрим все виды операций.

Бинарные арифметические операции:

    Операция сложения двух чисел:

    Int x = 10; int z = x + 12; // 22

    Операция вычитания двух чисел:

    Int x = 10; int z = x - 6; // 4

    Операция умножения двух чисел:

    Int x = 10; int z = x * 5; // 50

    операция деления двух чисел:

    Int x = 10; int z = x / 5; // 2 double a = 10; double b = 3; double c = a / b; // 3.33333333

    При делении стоит учитывать, что если оба операнда представляют целые числа, то результат также будет округляться до целого числа:

    Double z = 10 / 4; //результат равен 2

    Несмотря на то, что результат операции в итоге помещается в переменную типа double, которая позволяет сохранить дробную часть, но в самой опеации участвуют два литерала, которые по умолчанию рассматриваются как объекты int, то есть целые числа, и результат то же будет целочисленный.

    Для выхода из этой ситуации необходимо определять литералы или переменные, участвующие в операции, именно как типы double или float:

    Double z = 10.0 / 4.0; //результат равен 2.5

    Операция получение остатка от целочисленного деления двух чисел:

    Double x = 10.0; double z = x % 4.0; //результат равен 2

Также есть ряд унарных операций, в которых принимает участие один операнд:

    Операция инкремента

    Инкремент бывает префиксным: ++x - сначала значение переменной x увеличивается на 1, а потом ее значение возвращается в качестве результата операции.

    И также существует постфиксный инкремент: x++ - сначала значение переменной x возвращается в качестве результата операции, а затем к нему прибавляется 1.

int x1 = 5; int z1 = ++x1; // z1=6; x1=6 Console.WriteLine($"{x1} - {z1}"); int x2 = 5; int z2 = x2++; // z2=5; x2=6 Console.WriteLine($"{x2} - {z2}");

Операция декремента или уменьшения значения на единицу. Также существует префиксная форма декремента (--x) и постфиксная (x--).

Int x1 = 5; int z1 = --x1; // z1=4; x1=4 Console.WriteLine($"{x1} - {z1}"); int x2 = 5; int z2 = x2--; // z2=5; x2=4 Console.WriteLine($"{x2} - {z2}");

При выполнении сразу нескольких арифметических операций следует учитывать порядок их выполнения. Приоритет операций от наивысшего к низшему:

    Инкремент, декремент

    Умножение, деление, получение остатка

    Сложение, вычитание

Для изменения порядка следования операций применяются скобки.

Рассмотрим набор операций:

Int a = 3; int b = 5; int c = 40; int d = c---b*a; // a=3 b=5 c=39 d=25 Console.WriteLine($"a={a} b={b} c={c} d={d}");

Здесь мы имеем дело с тремя операциями: декремент, вычитание и умножение. Сначала выполняется декремент переменной c, затем умножение b*a, и в конце вычитание. То есть фактически набор операций выглядел так:

Int d = (c--)-(b*a);

Но с помощью скобок мы могли бы изменить порядок операций, например, следующим образом:

Int a = 3; int b = 5; int c = 40; int d = (c-(--b))*a; // a=3 b=4 c=40 d=108 Console.WriteLine($"a={a} b={b} c={c} d={d}");

Ассоциативность операторов

Как выше было отмечено, операции умножения и деления имеют один и тот же приоритет, но какой тогда результат будет в выражении:

Int x = 10 / 5 * 2;

Стоит нам трактовать это выражение как (10 / 5) * 2 или как 10 / (5 * 2) ? Ведь в зависимости от трактовки мы получим разные результаты.

Когда операции имеют один и тот же приоритет, порядок вычисления определяется ассоциативностью операторов. В зависимости от ассоциативности есть два типа операторов:

    Левоассоциативные операторы, которые выполняются слева направо

    Правоассоциативные операторы, которые выполняются справа налево

Все арифметические операторы (кроме префиксного инкремента и декремента) являются левоассоциативными, то есть выполняются слева направо. Поэтому выражение 10 / 5 * 2 необходимо трактовать как (10 / 5) * 2 , то есть результатом будет 4.