» её автор довольно сумбурно попытался представить своё понимание формирования спектра при амплитудной модуляции. Но отсутствие иллюстраций и избыток математики с привлечением интегральных преобразований помешало сообществу понять мысли автора и оценить статью по достоинству; в то время как тема это достаточно простая - и рассмотреть которую мы попробуем ещё раз, на этот раз с картинками и привлечением Wolfram Mathematica.

Итак, идея амплитудной модуляции состоит в том, чтобы передавать низкочастотный сигнал - голос или музыку - модулируя высокочастотный (несущий) сигнал, многократно превышающий слышимый диапазон и занимающий узкую полосу частот в радиоэфире. Сама модуляция осуществляется простым умножением сигнала на несущий:

Здесь у нас в качестве несущей выступает синусоида с частотой 5:

А сам сигнал - с частотой 1:

Можно заметить, что сигнал смещён вверх и имеет только положительные значения. Это не случайно и является обязательным условием для возможности последующего его корректного восстановления. Как же его восстановить? Очень просто! Нужно сдвинуть фазу промодулированного сигнала на 90 градусов (операция, известная как преобразование Гильберта), и посчитать корень из суммы квадратов модулированного и преобразованного сигналов:

В более простом (но грубом) варианте преобразование Гильберта можно заменить задержкой сигнала на четверть периода несущий частоты, а итоговый сигнал дополнительно отфильтровать фильтром низких частот. В ещё более простом варианте можно вообще не считать корней и квадратов, а отфильтровать сигнал по абсолютному значению (что и применяется обычно в радиоприёмниках).

Теперь посмотрим, что у нас происходит со спектрами. Посчитаем преобразование Фурье от несущей:

Так как дельта-функция Дирака не является функцией в классическом смысле, её график нельзя построить стандартным способом; поэтому сделаем это вручную, используя общепринятое начертание:

Ожидаемо получили ту же частоту, что и в начальной формуле. Наличие ещё одной такой же частоты, но со знаком минус, не случайно - это явление называется Hermitian symmetry и является следствием того, что рассматриваемая функция сугубо действительная и в комплексном представлении имеет нулевую мнимую компоненту. Отсутствие мнимых компонент в спектре после преобразования обусловлено тем, что изначально наши функции ещё и чётные (симметричные относительно нуля).

Теперь сделаем преобразование Фурье для самого сигнала:

Здесь мы дополнительно получили дельта-функцию Дирака в центре координат - вследствие наличия в сигнале постоянной составляющей, которая не имеет колебаний по определению - что позволяет её рассматривать как нулевую частоту.

Что же будет со спектром, если их перемножить? Посмотрим:

Из теории мы знаем, что умножение во временном домене равносильно свертке в частотном (и наоборот, что широко используется при FIR-фильтрации). А поскольку один из подвергаемых свёртке сигналов состоял только из одной (положительной и отрицательной) частоты, то в результате свёртки мы получили просто линейный перенос сигнала вверх по частоте (в обе стороны). И так как симметрия осталась, сигнал у нас по-прежнему не имеет мнимой компоненты.

Приведём его теперь к комплексному (аналитическому) виду, обнулив отрицательную область частот:

И сделаем обратное преобразование Фурье:

Так как функция теперь комплексная, для построения её графика необходимо отдельно извлечь действительную и мнимую компоненты:

Теперь у нашего сигнала появилась мнимая компонента, представляющая собой сдвинутый на 90 градусов исходный сигнал. Это будет более очевидным, если представить полученную функцию в тригонометрическом виде:

Пока не очень очевидно. Попробуем упростить:

Теперь больше похоже на правду - и как видим, функция нашего исходного сигнала тоже упростилась. Попробуем её вернуть к оригинальному виду:

Множитель 1/2 появился не случайно - ведь обнулив половину спектра, мы соответственно и уменьшили мощность сигнала. Ну а теперь, имея модулированный комплексный сигнал, мы можем взять и этот модуль посчитать:

Модуль комплексного числа как раз и считается через корень суммы квадратов мнимого и действительных компонентов. И отсюда понятно, почему кодируемый сигнал должен состоять только из положительных значений - если он будет включать отрицательные значения, то после восстановления они также станут положительными, что и называется перемодуляцией:

Восстановление сигнала также возможно и при помощи квадратурного гетеродина - когда модулированный сигнал снова умножается на несущую частоту, но на этот раз - комплексную:

За счёт того, что комплексная частота в частотной области имеет только один импульс без дублирования его в отрицательной области частот - то в результате свёртки мы получим линейный перенос спектра, при которой отрицательная часть спектра встанет обратно в центр, а положительная - сдвинется ещё дальше, и её останется только отфильтровать фильтром нижних частот.

Заключение

Как видим, в рассмотрении амплитудной модуляции через преобразовании Фурье нет ничего сложного; если же рассматривать её исключительно на школьном уровне, то достаточно вспомнить, что произведение (несущей) суммы (представление сигнала в виде тригонометрического ряда) равнозначно сумме произведений (каждого члена ряда по отдельности на несущую частоту) - и, соответственно, каждое такое произведение раскладывается на сумму двух синусоид по уже озвученной автором исходной статьи формуле.

Внимательный читатель также мог заметить, что раз в результате модуляции мы получили симметричный относительно несущей частоты спектр - значит, имеет место быть избыточность данных и можно оставить только одну боковую полосу, сократив тем самым занимаемую полосу частот в радиоэфире. Такая технология действительно

где m=k AM S m /U mo – коэффициент амплитудной модуляции. На рис. 5 показаны модулированные сигналы с коэффициентами АМ, равными m=0,5 и m=1 соответственно. При стопроцентной амплитудной модуляции (m=1) имеют место максимальные изменения амплитуды модулированного сигнала: амплитуда изменяется от нуля до удвоенного значения.

Используя тригонометрическую формулу для произведения косинусов, выражение (3) можно представить в виде формулы (4). Все три слагаемые в правой части формулы (4) – гармонические колебания. Первое слагаемое представляет собой исходное немодулированное колебание (несущую). Второе и третье слагаемые называют, соответственно, верхней и нижней боковыми составляющими.

До настоящего времени в радиоэлектронике не разработано эффективных методов непосредственного перемножения двух или нескольких аналоговых сигналов. Поэтому при осуществлении амплитудной модуляции применяются косвенные методы перемножения с помощью нелинейных или параметрических цепей.

Одним из вариантов построения амплитудных модуляторов являются АМ на основе резонансных усилителей мощности, использующих эффект преобразования суммы модулирующего и несущего колебаний, подаваемых на безынерционный нелинейный элемент. Простейший АМ создают на основе нелинейного резонансного усилителя (рис. 6), включив на входе последовательно источники постоянного напряжения смещения U o , модулирующего сигнала е(t) и генератор несущего колебания U n (t), и настроив колебательный контур на несущую частоту ω o .

Для получения однотонального АМ-сигнала к входу модулятора необходимо приложить напряжение

Анализировать работу модулятора можно с помощью диаграмм токов и напряжений (рис. 7). Предположим, что сквозная характеристика транзистора (зависимость тока коллектора I к от напряжения база – эмиттер U бэ) аппроксимирована двумя отрезками прямых линий. Вследствие перемещения рабочей точки относительно напряжения смещения Uo по закону модулирующего сигнала е(t) происходит изменение угла отсечки тока в кривой несущего колебания. В результате импульсы коллекторного тока i к транзистора, отражающие изменение несущего колебания, оказываются промодулированными по амплитуде.

В спектре импульсов коллекторного тока транзистора содержится множество гармонических составляющих с частотами ω 0 и Ω, а также с кратными и комбинационными (суммарными и разностными составляю щими гармоник ω 0 и Ω) частотами. Резонансный контур должен иметь полосу пропускания Δω АМ = 2Ω для выделения из спектра импульсов коллекторного тока только гармоники с частотами ω 0 – Ω, ω 0 и ω 0 + Ω.


Рис. 7. Диаграммы токов и напряжений

2.2. Угловая модуляция

При угловой модуляции (angle modulation) в несущем гармоническом колебании u(t) = U m cos(wt+j) значение амплитуды колебаний U m остается постоянным, а информация s(t) переносится либо на частоту w, либо на фазовый угол j. И в том, и в другом случае текущее значение фазового угла гармонического колебания u(t) определяет аргумент y(t) = wt+j, который называют полной фазой колебания.

Фазовая модуляция (ФМ, phase modulation – PM).При фазовой модуляции значение фазового угла постоянной несущей частоты колебаний w o пропорционально амплитуде модулирующего сигнала s(t). Соответственно, уравнение ФМ – сигнала определяется выражением:

u(t) = U m cos, (6)

где k – коэффициент пропорциональности. Пример однотонального ФМ–сигнала приведен на рис. 8.

При s(t) = 0, ФМ–сигнал является простым гармоническим колебанием и показан на рисунке функцией u o (t). С увеличением значений s(t) полная фаза колебаний y(t)=w o t+k×s(t) нарастает во времени быстрее и опережает линейное нарастание w o t. Соответственно, при уменьшении значений s(t) скорость роста полной фазы во времени спадает. В моменты экстремальных значений s(t) абсолютное значение фазового сдвига Dy между ФМ – сигналом и значением w o t немодулированного колебания также является максимальным и носит название девиации фазы (вверх Dj в = k×s max (t) или вниз Dj н = k×s min (t) с учетом знака экстремальных значений модулирующего сигнала).

Для колебаний с угловой модуляцией применяется также понятие мгновенной частоты (instantaneous frequency), под которой понимают производную от полной фазы по времени:

На (рис. 9) приведена схема фазового модулятора (аналогичная схема используется в радиостанции «Кама – Р»). Напряжение высокой частоты через автотрансформаторную связь поступает на первичный контур – катушку L1 и варикап V1. Далее, через конденсаторы связи С1, С2 напряжение подается на второй контур – L2, V2 и третий – L3, V3. Варикапы выполняют роль контурных конденсаторов.

При отсутствии модулирующего напряжения с микрофона (U=0) на варикапах действует постоянное напряжение смещения, которое устанавливается потенциометрами R10–R12. Напряжение смещения подбирается ток, чтобы каждый контур был настроен на частоту входного напряжения . Поэтому высокочастотное напряжение проходит все 3 контура, не получая дополнительного сдвига по фазе.

При появлении на выводах 1, 2 звукового напряжения U оно через разделительные конденсаторы С6–С8 подается на варикапы. Напряжение смещения суммируется с напряжением модуляции и емкости варикапов изменяются в такт со звуковым напряжением. Вследствие меняющейся расстройки колебательных контуров выходное напряжение оказывается промодулированным по фазе. Количество контуров определяет глубину модуляции.

Конденсаторы С3–С5 имеют малое сопротивление токам высокой частоты (короткое замыкание) и относительно большое для токов звуковой частоты. Благодаря этим конденсаторам и резисторам R4–R6 осуществляется развязка между высокочастотной и низкочастотной частями схемы.

При передаче сообщений телеграфом излучение высокочастотной энергии периодически прекращается и возобновляется. Этот процесс называется манипуляцией.

Частотная модуляция (ЧМ, frequency modulation – FM) характеризуется линейной связью модулирующего сигнала с мгновенной частотой колебаний, при которой мгновенная частота колебаний образуется сложением частоты высокочастотного несущего колебания w o со значением амплитуды модулирующего сигнала с определенным коэффициентом пропорциональности:

Уравнение ЧМ – сигнала:

u(t) = U m cos(ω o t+k s(t) dt +j o). (8)

Аналогично ФМ, для характеристики глубины частотной модуляции используются понятия девиации частоты вверх Dw в = k×s max (t), и вниз

Dw н = k×s min (t).

Частотная и фазовая модуляция взаимосвязаны. Если изменяется начальная фаза колебания, изменяется и мгновенная частота, и наоборот. По этой причине их и объединяют под общим названием угловой модуляции. По форме колебаний с угловой модуляцией невозможно определить, к какому виду модуляции относится данное колебание, к ФМ или ЧМ, а при достаточно гладких функциях s(t) формы сигналов ФМ и ЧМ вообще практически не отличаются.

Схема частотного модулятора представлена на рис. 10.

При рассмотрении схемы следует сказать о том, что в отличие от амплитудной модуляции частотная модуляция осуществляется непосредственно в задающем генераторе передатчика. На рис. 10 показан упрощенный вариант схемы частотной модуляции с применением варикапа.

Варикап представляет собой специальной конструкции полупроводниковый диод. Если диод включить в обратном направлении, то его закрытый p–n переход может рассматриваться как конденсатор. Регулируя напряжение запирания, можно изменять емкость этого «конденсатора». На рисунке транзистор VT2 с колебательным контуром Ск, Lk и катушкой связи Lсв образуют генератор синусоидальных колебаний с самовозбуждением.

Так как параллельно контуру с конденсатором Ск через Ссв подключается емкость варикапа, то частота генерируемых колебаний в режиме «молчания» будет определяться следующим образом:

(9)

Здесь – емкость варикапа в исходном состоянии при отсутствии звукового напряжения .

Начальная емкость определяется начальным запирающим напряжением, которое равно напряжению на Rk при протекании тока покоя .

Модулятором в схеме является усилитель напряжения звуковой частоты на транзисторе VT1 с коллекторной нагрузкой и варикапом.

При воздействии на микрофон с коллекторной нагрузки Rk снимается звуковое напряжение , которое через высокочастотный дроссель L1 подается на варикап и изменяет его емкость и следовательно частоту генерируемых высокочастотных колебаний.

Конденсатором Ссb можно регулировать девиацию частоты генерируемых колебаний. Высокочастотный дроссель позволяет развязать высокочастотную часть схемы от низкочастотной, иными словами, исключить

попадание высокочастотного напряжения на коллектор транзистора усилителя низкой частоты.

2.3. Импульсная модуляция

Импульсная модуляция (ИМ) не является в действительности каким-то особым типом модуляции. Далее различают импульсную амплитудную и импульсную частотную модуляции. Здесь учитывают то, каким образом информация представлена - с помощью импульса или ряда импульсов. Можно рассматривать в качестве модулируемой величины амплитуду импульса или его ширину, или его положение в последовательности импульсов и т. д. Следовательно, существует большое разнообразие методов импульсной модуляции. Все они используют в качестве формы передачи или AM, или ЧМ.

Импульсная модуляция может быть использована для передачи как цифровых, так и аналоговых форм сигнала. Когда речь идет о цифровых сигналах, мы имеем дело с логическими уровнями (высоким и низким) и можем модулировать несущую (с помощью AM или ЧМ) рядом импульсов, которые представляют цифровое значение.

При использовании импульсных методов для передачи аналого­вых сигналов необходимо сначала преобразовать аналоговые данные в импульсную форму. Это преобразование также относится к модуляции, так как аналоговые данные используются для модулирования (изменения) последовательности импульсов или импульсной поднесущей. На рис. 11а показана модуляция синусоидальным сигналом последовательности импульсов.

Амплитуда каждого импульса в модулированной последовательности зависит от мгновенного значения аналогового сигнала. Синусоидальный сигнал можетбыть восстановлен из последовательности модулированных импульсов путем простой фильтрации. На рис. 11б графически показан процесс восстановления первоначального сигнала путем соединения вершин импульсов прямыми линиями. Однако восстановленная на рис. 11б форма колебаний не является хорошим воспроизведением первоначального сигнала из-за того, что число импульсов на период аналогового сигнала невелико. При использовании большего числа импульсов, т. е. при большей частоте следования импульсов по сравнению с частотой модулирующего сигнала, может быть достигнуто более качественное воспроизведение. Этот процесс амплитудно-импульсной модуляции (АИМ), относящийся к модуляции поднесущей последовательности импульсов, может быть выполнен путем выборки аналогового сигнала через постоянные интервалы времени импульсами выборки с фиксированной длительностью.

Импульсы выборки - это импульсы, амплитуды которых равны величине первоначального аналогового сигнала в момент выборки. Частота выборки (число импульсов в секунду) должна быть, по крайней мере, в два раза большей, чем самая высокая частота аналогового сигнала. Для лучшей воспроизводимости частота выборки обычно устанавливается в 5 раз большей самой высокой частоты модуляции.

АИМ является только одним типом импульсной модуляции. Кроме него существуют:

ШИМ – широтно-импульсная модуляция (модуляция импульсов по длительности);

ЧИМ – частотно-импульсная модуляция;

КИМ – кодово-импульсная модуляция.

Широтно-импульсная модуляция преобразует уровни выборок напряжений в серии импульсов, длительность которых прямо пропорциональна амплитуде напряжений выборок. Отметим, что амплитуда этих импульсов постоянна; в соответствии с модулирующим сигналом изменяется лишь длительность импульсов. Интервал выборки (интервал между импульсами) также фиксирован.

Частотно-импульсная модуляция преобразует уровни выборок напряжений в последовательность импульсов, мгновенная частота которых, или частота повторения, непосредственно связана с величиной напряжений выборок. И здесь амплитуда всех импульсов одинакова, изменяется только их частота. По существу это аналогично обычной частотной модуляции, лишь несущая имеет несинусоидальную форму, как в случае обычной ЧМ; она состоит из последовательности импульсов.

При ам­плитудной модуляции в соответствии с законом передаваемого со­общения меняется амплитуда модулируемого сигнала. Амплитудная модуляция - наиболее распространенный тип аналоговой модуляции в системах радиосвязи, радиовещания и телевидения.

Простейшая разновидность амплитудной модуляции -однотональная (от слова тон - звук одной частоты), при которой модулирующий сигнал представляет собой гармоническое колебание:

где
- амплитуда модулирующего сигнала (максимальная высота синусоиды) ;

- круговая (угловая) частота,
;

- период модулирующего колебания;

- начальная фаза.

В качестве несущего колебания в системах связи и вещания практически всегда применяется высокочастотный гармонический сигнал.

Примем в качестве тестового аналогового сообщения синусои­дальный сигнал:

(40)

Несущие, т.е. модулируемые колебания

(41)

где частота несущих колебаний
- частоты модулирующего колебания.

В результате воздействия колебания (40) на амплитуду несущих колебаний (41) получим сигнал с амплитудной модуляцией:

где
- коэффициент амплитудной модуляции.

Графики трех названных колебаний приведены на рис. 13 и рис. 14.

С целью наглядности на рис. 15, а , б изображены графики модулирующего колебания при
, несущего – при
.

      1. Спектр амплитудно-модулированного сигнала

Из (42) получим выражение:

которое в соответствии с формулой для произведения тригономет­рических функций приведем к виду

из которого следует, что спектр колебания при амплитудной моду­ляции тональным сигналом состоит из трех составляющих с часто­тами: (совпадает с частотой несущей), (
) (нижняя боковая), (
) (верхняя боковая). Амплитуда боковой состав­ляющей
.

Рис. 15. Амплитудная модуляция

a - модулирующий (управляющий) сигнал; б - несущее колебание (радиочастотный сигнал); в - амплитудно-модулированный сигнал.

Ширина спектра AM колебания
. Следовательно, имея базуB=1, сигнал при ампли­тудной модуляции относится к классу узкополосных.

При модуляции более сложным сообщением, занимающим спектр от
до
(рис. 16,а), соответственно изменится и спектр AM колебания, представленный на рис. 16,б.

Спектр амплитудно-модулированного сигнала - совокупность простых (гармонических) колебаний (составляющих) разных частот и амплитуд, на которые может быть разложен по частотной оси сложный колебательный процесс, т.е. АМ-сигнал. Аналитическое выражение для такого сигнала с учетом тригонометрической формулы произведения косинусов можно представить в виде суммы колебаний:

(45)

Из формулы (44) видно, что при однотональной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих: исходного несущего колебания амплитудой
и частотой, а также двух новых гармонических колебаний с разными частотами
и
, но одинаковыми амплитудами
/2 , появляющихся в процессе амплитудной модуляции и отражающих передаваемое сообщение.

Колебания с частотами
и
называют соответственно верхней и нижней боковыми составляющими (частотами). Они расположены симметрично относительно несущей частоты.

Спектр однотонального АМ-сигнала показан на рис. 17. Из рисунка наглядно видно, что ширина спектра АМ-сигнала (
) при однотональной модуляции равна удвоенному значению частоты модуляции:

(46)

где F – циклическая частота модуляции (модулирующего сигнала).

При отсутствии модуляции (M = 0) амплитуды боковых составляющих равны нулю и спектр АМ-сигнала преобразуется в спектр несущего колебания (составляющая
на частоте). В случае модулирования несущей сигналом сложной формы, состоящим из нескольких гармоник разных частот, каждая гармоника модулирующего (управляющего) сигнала создает две боковые частоты в спектре радиосигнала, расположенные симметрично относительно несущей частоты. Следовательно, спектр такого АМ-сигнала состоит из несущей и двух боковых полос - верхней и нижней. Ширина каждой боковой полосы равна
, a ширина спектра сложного АМ-сигнала оказывается равной удвоенному значению наивысшей частоты в спектре модулирующего сигнала (рис. 18).

Амплитудная модуляция (AM) - наиболее распространенный тип модуляции. В системе с AM амплитуда несущей изменяется в соответствии с изменением сигнала или информации (рис. 14.1). В отсутствие сигнала амплитуда несущей имеет постоянный уровень, как показано на рис. 14.1(б). При модуляции синусоидальным сигналом амплитуда несущей увеличивается или уменьшается относительно своего немодулированного уровня по синусоидальному закону в соответствии с нарастанием или спаданием модулирующего сигнала. Чем больше амплитуда модулирующего сигнала, тем сильнее изменяется амплитуда несущей. Амплитудно-модулированная несущая (рис. 14.1(в)) имеет огибающую, в точности повторяющую форму модулирующего сигнала, и при демодуляции именно эта огибающая выделяется как полезный сигнал.

Глубина модуляции

Отношение амплитуды модулирующего сигнала к амплитуде несущей называется глубиной или коэффициентом модуляции. Она определяет меру изменения уровня несущей при модуляции. Глубина модуляции всегда выражается в процентах, и поэтому о ней говорят как о «процентной» модуляции.
Амплитуда сигнала
Глубина модуляции = ----------- 100%
Амплитуда несущей

(см. рис. 14.1). Например, если амплитуда сигнала равна 1 В, а амплитуда несущей - 2 В, то глубина модуляции составляет (1 В)/(2 В) 100% = 50%. Такую глубину модуляции имеет АМ-несущая, показанная на рис. 14.1.

Рис. 14.1. Амплитудная модуляция (глубина модуляции 50%);
(а) сигнал; (б) несущая; (в) модулированная несущая.

Перемодуляция

На рис. 14.2(а) показана АМ-несущая со 100%-ной глубиной модуляции. Глубина модуляции, превышающая 100%, приводит к искажениям (рис. 14.2(б)). По этой причине глубину модуляции ограничивают. Например, при передачах радиостанции Би-би-си она ограничена величиной 80%.


Рис. 14.2. (а) Модуляция 100%; (б) перемодуляция.

Боковые частоты

Можно показать, что амплитудно-модулированная несущая состоит из трех гармонических (синусоидальных) компонент с постоянными амплитудами и разными частотами. Этими тремя компонентами являются: сама несущая и два сигнала боковых частот f1 и f2. Каждый модулирующий гармонический сигнал порождает две боковые частоты. Пусть fs – частота модулирующего сигнала и fc – частота несущей, тогда

f1 = fc – fs, f2 = fc + fs,

где f1 и f2 – так называемые нижняя боковая и верхняя боковая частоты соответственно. Например, если частота несущей равна 100 кГц, а частота сигнала - 1 кГц, то

Нижняя боковая частота f1 = 100 – 1 = 99 кГц,
Верхняя боковая частота f2 = 100 + 1 = 101 кГц.
Амплитудно-модулированная несущая, т. е. несущая вместе с двумя сигналами боковых частот, может быть представлена в виде трех вертикальных стрелок, каждая из которых соответствует одному гармоническому сигналу (рис. 14.3). То, что изображено на этом рисунке, называется частотным спектром сигнала (в данном случае частотным спектром АМ-несущей).


Рис. 14.3. Частотный спектр AM-несущей. Рис. 14.4. Боковые полосы.

Боковые полосы

Информационные сигналы почти всегда имеют сложную форму и состоят из большого числа гармонических сигналов. Поскольку каждый гармонический сигнал порождает пару боковых частот, то сложный негармонический сигнал будет порождать многочисленные боковые частоты, что приведет к образованию двух полос частот по обе стороны от несущей (рис. 14.4). Это так называемые боковые полосы частот. Область частот между наибольшей верхней боковой частотой f2 и наименьшей верхней боковой частотой f4 называют верхней боковой полосой (ВБП). Аналогично область частот между наибольшей нижней боковой частотой f3 и наименьшей нижней боковой частотой f1 называют нижней боковой полосой (НБП).
Эти две боковые полосы расположены симметрично относительно несущей, и каждая из них содержит одну и ту же информацию. Несущая не несет никакой информации. Всю информацию несут боковые частоты.
При модуляции одиночным гармоническим сигналом принимается, что верхняя и нижняя боковые полосы простираются от несущей до верхней и нижней боковых частот соответственно (рис. 14.5).

Пример 1

Несущая с частотой 100 кГц промодулирована по амплитуде сигналом, занимающим полосу частот 400-3400 Гц. Определите ширину боковых полос.

Решение

Частота 3400 Гц, самая высокая в спектре сигнала, порождает две боковые частоты (рис. 14.6):
f1 = 100 000 - 3400 = 96 600 Гц,
f2 = 100 000 + 3400 = 103 400 Гц.


Рис. 14.6.

Частота 400 Гц, самая низкая в спектре сигнала, порождает еще две боковые частоты:

f3 = 100 000 - 400 == 99 600 Гц,
f4 = 100 000 + 400 = 100 400 Гц.

Ширина верхней боковой полосы (ВБП): f2 – f4 = 103400 - 100400 = 3000 Гц.
Ширина нижней боковой полосы (НБП): f3 – f1 = 99 600 - 96 600 = 3000 Гц.

Другими словами, обе боковые полосы имеют одну и ту же ширину, равную разности значений наивысшей и наинизшей частот в спектре модулирующего сигнала: 3400 - 400 = 3000 Гц.
Боковые частоты для любой другой частоты в спектре сигнала будут находиться внутри верхней и нижней боковых полос.

Ширина полосы частот

Так как информацию несут только боковые частоты, то для качественной передачи этой информации ширина полосы частот, занимаемой в эфире АМ-системой, должна быть достаточно велика, чтобы вместить все имеющиеся боковые частоты. При модуляции гармоническим сигналом возникают две боковые частоты. Таким образом, полоса частот простирается от нижней боковой частоты f1 до верхней боковой частоты f2 (как показано на рис. 14.5).
Например, если модулирующий гармонический сигнал имеет частоту 1 кГц, то ВБП = НБП = 1 кГц и ширина полосы составит
НБП + ВБП = 2 1 кГц = 2 кГц.

Другими словами, в данном случае ширина полосы частот, занимаемой амплитудно-модулированной несущей, равна удвоенной частоте модулирующего сигнала.
В случае передачи сложного сигнала ширина полосы частот, занимаемой АМ-системой передачи информации, равна удвоенной наивысшей частоте в спектре модулирующего сигнала и, таким образом, включает в себя все боковые частоты.

Одно- и двухполосная передача

Поскольку одна боковая полоса содержит столько же информации, сколько и другая, передачу можно осуществлять с использованием только одной боковой полосы, и при этом не будет никакой потери информации. При однополосной передаче (SSB - по связной терминологии) одна из боковых полос - или нижняя, или верхняя - подавляется и передается только одна оставшаяся боковая полоса. При двухполосной (DSB) передаче передаются обе боковые полосы.
Однополосная передача занимает лишь половину той полосы частот, которая используется при двухполосной передаче, и по этой причине она применяется в телефонии и радиосвязи. При однополосной передаче в заданном диапазоне частот несущей можно расположить вдвое большее число информационных каналов, чем при двухполосной передаче. В силу простоты двухполосная передача используется всеми радиовещательными системами с AM. Поэтому, когда речь идет о связи с использованием AM, обычно имеется в виду двухполосная передача, если не оговорено обратное.

Пример 2

Несущая промодулирована по амплитуде периодическим сигналом в виде меандра с частотой 100 Гц. Пренебрегая гармониками выше пятой, установите ширину полосы частот, необходимую а) для DSB (двухполосной)-передачи и б) для SSB (однополосной)-передачи.

Решение

Сигнал в виде меандра с частотой 100 Гц содержит следующие гармоники:

основную гармонику =100 Гц,
гармонику 3-го порядка = 3 100 = 300 Гц,
гармонику 5-го порядка = 5 100 = 500 Гц.

Гармониками более высокого порядка пренебрегаем. Таким образом, в обрезанном спектре модулирующего сигнала максимальная частота fмакс = 500 Гц.
Ширина полосы для DSB-передачи = 2 fмакс = 2 500 = 1000 Гц.
Ширина полосы для SSB-передачи = DSB/2 = 1000/2 = 500 Гц.

В этом видео рассказывается об амплитудной модуляции:

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

  • согласовать параметры сигнала с параметрами линии;
  • повысить помехоустойчивость сигналов;
  • увеличить дальность передачи сигналов;
  • организовать многоканальные системы передачи (МСП с ЧРК).

Модуляция осуществляется в устройствах модуляторах . Условное графическое обозначение модулятора имеет вид:

Рисунок 1 - Условное графическое обозначение модулятора

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий , данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий) , данный сигнал является неинформационным и высокочастотным (его частота обозначается w 0 или f 0);

Sм(t) — модулированный сигнал , данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

  • гармоническое колебание, при этом модуляция называется аналоговой или непрерывной ;
  • периодическая последовательность импульсов, при этом модуляция называется импульсной ;
  • постоянный ток, при этом модуляция называется шумоподобной .

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

  • амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
  • частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
  • фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.

2. Виды импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ) , происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ) , происходит изменение частоты следования импульсов несущего сигнала;
  • Фазо-импульсная модуляция (ФИМ) , происходит изменение фазы импульсов несущего сигнала;
  • Широтно-импульсная модуляция (ШИМ) , происходит изменение длительности импульсов несущего сигнала.

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t )= Um u sin ? t (1)

на несущее колебание

S (t )= Um sin (? 0 t + ? ) (2)

происходит изменение амплитуды несущего сигнала по закону:

Uам(t)=Um+ а ам Um u sin ? t (3)

где а ам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Sам(t)=(Um+ а ам Um u sin ? t) sin(? 0 t+ ? ). (4)

Вынесем Um за скобки:

Sам(t)=Um(1+ а ам Um u /Um sin ? t) sin (? 0 t+ ? ) (5)

Отношение а ам Um u /Um = m ам называется коэффициентом амплитудной модуляции . Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией . С учетом m ам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Sам(t)=Um(1+m ам sin ? t) sin(? 0 t+ ? ). (6)

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Sам(t)=(Um+ а ам u(t)) sin (? 0 t+ ? ) . (7)

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Sам(t)=Um(1+m ам sin ? t) sin (? 0 t+ ? ) = Um sin (? 0 t+ ? ) +

+m ам Um/2 sin((? 0 ? ) t+ j ) m ам Um/2 sin((? 0 + ? )t+ j ). (8)

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ? 0 —? называется нижней боковой составляющей , а на частоте ? 0 + ? верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

Рисунок 2 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и ампдтудно-модулированного (в) сигналов

D? ам =(? 0 + ? ) (? 0 ? )=2 ? (9)

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

Составляющие в диапазоне частот (? 0 — ? max) ? (? 0 — ? min) образуют нижнюю боковую полосу (НБП), а составляющие в диапазоне частот (? 0 + ? min) ? (? 0 + ? max) образуют верхнюю боковую полосу (ВБП)

Рисунок 3 - Временные и спектральные диаграммы сигналов при случайном модулирующем сигнале

Ширина спектра для данного сигнала будет определятся

D ? ам =(? 0 + ? max ) (? 0 ? min )=2 ? max (10)

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах m ам. Как видно при m ам =0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

Рисунок 4 - Временные и спектральные диаграммы АМ сигналов при различных mам: а) при mам=0, б) при mам=0,5, в) при mам=1, г) при mам>1

а), при индексе модуляции m ам =1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 01 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

  • узкая ширина спектра АМ сигнала;
  • простота получения модулированных сигналов.

Недостатками этой модуляции являются:

  • низкая помехоустойчивость (т. к. при воздействии помехи на сигнал искажается его форма — огибающая, которая и содержит передаваемое сообщение);
  • неэффективное использование мощности передатчика (т. к. наибольшая часть энергии модулированного сигнала содержится в составляющей несущего сигнала до 64%, а на информационные боковые полосы приходится по 18%).

Амплитудная модуляция нашла широкое применение:

  • в системах телевизионного вещания (для передачи телевизионных сигналов);
  • в системах звукового радиовещания и радиосвязи на длинных и средних волнах;
  • в системе трехпрограммного проводного вещания.

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляции происходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

Рисунок 5 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и балансно-модулированного (в) сигналов

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

Рисунок 6 - Спектральные диаграммы однополосно-модулированных сигналов: а) с верхней боковой полосой (ВБП), б) с нижней боковой полосой (НБП)

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение частоты несущего сигнала по закону:

w чм (t) = ? 0 + а чм Um u sin ? t (9)

где а чм — коэффициент пропорциональности частотной модуляции.

Поскольку значение sin ? t может изменятся в диапазоне от -1 до 1, то наибольшее отклонение частоты ЧМ сигнала от частоты несущего сигнала составляет

? ? m = а чм Um u (10)

Величина Dw m называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

Значение ? чм (t) непосредственно подставить в S(t) нельзя, т. к. аргумент синуса ? t+j является мгновенной фазой сигнала?(t) которая связана с частотой выражением

? = d ? (t )/ dt (11)

Отсюда следует что, чтобы определить? чм (t) необходимо проинтегрировать ? чм (t)

Причем в выражении (12) ? является начальной фазой несущего сигнала.

Отношение

Мчм = ?? m / ? (13)

называется индексом частотной модуляции .

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

S чм (t)=Um sin(? 0 t Мчм cos ? t+ ? ) (14)

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

Рисунок 7 - Формирование ЧМ сигнала

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

S чм (t)= Um J 0 (M чм ) sin(? 0 t+ ? )

Um J 1 (M чм ) {cos[(? 0 ? )t+ j ]+ cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции