RF – модули своими руками

Иногда возникает ситуация, когда имеются в наличии ПАВ- резонаторы на те частоты, на которые промышленность не выпускает приемные модули. Да и не секрет, что стоимость промышленных микросборок около 7 уе (RX 5000) способно отбить охоту экспериментировать у кого угодно. Современная элементная база позволяет собрать и передатчик и приемник самостоятельно с характеристиками, как минимум, не худшими, чем у промышленных модулей.

Передатчик данных.

Стандартная схема, испытанная многими радиолюбителями. Состоит из управляемого задающего генератора и усилителя мощности. Мощность около 10 мВт, потребляемый ток 15 мА. Ток задающего генератора около 2 мА. Потребляемый ток и мощность оконечного каскада можно регулировать резисторами смещения. Следует помнить при этом, что ток оконечного каскада свыше 50 мА способен вывести из строя транзистор применяемый в данной конструкции.

Приемник данных.

Приемник – сверхрегенератор с чувствительностью около 1 мкв. Сохраняет работоспособность от 3 до 6 вольт никуда при этом не «уезжая» по частоте. Связь сверхрегенератора с антенной индуктивная, что позволяет избежать пагубного влияния наводок и сильных сигналов на работу сверхрегенеративного каскада.

Настройка приемника производится сдвиганием и раздвиганием витков катушки в цепи коллектора. Применение емкостей параллельно коллекторной катушке нежелательно т к это ухудшает добротность контура. На частоту 423,2 МГц контур имеет 9 витков.

В проведенных многочисленных испытаниях выяснилось, что применение УВЧ совместно с правильно настроенным приемником подобного, типа ничего не дает в плане улучшения чувствительности, а лишь ухудшая динамику сверхрегенератора допускает некоторую небрежность его настройки. АМ сигнал, принятый приемником, имеет очень малую амплитуду, поэтому он сначала усиливается а затем подается на вход компаратора (порогового устройства). На выходе компаратора появляется лог 1, если уровень напряжения на его входе превышает определенный уровень.

В процессе настройки приемника сигнал, излучаемый передатчиком, удобно контролировать еще в аналоговой форме после первого усилителя (вывод 1 LM 358), подсоединив туда вход обычного УНЧ.

433/315 МГц, вы узнаете из этого небольшого обзора. Эти радиомодули обычно продают в паре - с одним передатчиком и одним приемником. Пару можно купить на eBay по $4, и даже $2 за пару, если вы покупаете 10 штук сразу.

Большая часть информации в интернете обрывочна и не очень понятна. Поэтому мы решили проверить эти модули и показать, как получить с их помощью надежную связь USART -> USART.

Распиновка радиомодулей

В общем, все эти радиомодули имеют подключение 3 основных контакта (плюс антенна);

Передатчик

  • Напряжение vcc (питание +) 3В до 12В (работает на 5В)
  • GND (заземление -)
  • Приём цифровых данных.

Приемник

  • Напряжение vcc (питание +) 5В (некоторые могут работать и на 3.3 В)
  • GND (заземление -)
  • Выход полученых цифровых данных.

Передача данных

Когда передатчик не получает на входе данных, генератор передатчика отключается, и потребляет в режиме ожидания около нескольких микроампер. На испытаниях вышло 0,2 мкА от 5 В питания в выключенном состоянии. Когда передатчик получает вход каких-то данных, он излучает на 433 или 315 МГц несущей, и с 5 В питания потребляет около 12 мА.

Передатчик можно питать и от более высокого напряжения (например 12 В), которое увеличивает мощность передатчика и соответственно дальность. Тесты показали с 5 В питанием до 20 м через несколько стен внутри дома.

Приемник при включении питания, даже если передатчик не работает, получит некоторые статические сигналы и шумы. Если будет получен сигнал на рабочей несущей частоте, то приемник автоматически уменьшит усиление, чтобы удалить более слабые сигналы, и в идеале будет выделять модулированные цифровые данные.

Важно знать, что приемник тратит некоторое количество времени, чтобы отрегулировать усиление, так что никаких "пакетов" данных! Передачу следует начинать с "вступления" до основных данных и затем приемник будет иметь время, чтобы автоматически настроить усиление перед приёмом важных данных.

Тестирование RF модулей

При испытаниях обоих модулей от +5В источника постоянного тока, а также с 173 мм вертикальной штыревой антенной. (для частоты 433,92 МГц это "1/4 волны"), было получено реальных 20 метров через стены, и тип модулей не сильно влияет на эти тесты. Поэтому можно предположить, что эти результаты типичны для большинства блоков. Был использован цифровой источник сигнала с точной частотой и 50/50 скважностью, это было использовано для модуляции данных передатчика.

Обратите внимание, что все эти модули, как правило, стабильно работают только до скорости 1200 бод или максимум 2400 бод серийной передачи, если конечно условия связи идеальные (высокий уровень сигнала).

Выше показан простой вариант блока для последовательной передачи информации микроконтроллеру, которая будет получена с компьютера. Единственное изменение - добавлен танталовый конденсатор 25 В 10 мкф на выводы питания (Vcc и GND) на оба модуля.

Вывод

Множество людей используют эти радиомодули совместно с контроллерами Arduino и другими подобными, так как это самый простой способ получить беспроводную связь от микроконтроллера на другой микроконтроллер, или от микроконтроллера к ПК.

Обсудить статью RF РАДИОМОДУЛИ НА 433 МГЦ

17 марта 2012 в 18:30

Использование RF-модулей

  • Электроника для начинающих

Иногда, между устройствами требуется установить беспроводное соединение. В последнее время для этой цели все чаще стали применять Bluetooth и Wi-Fi модули. Но одно дело передавать видео и здоровенные файлы, а другое - управлять машинкой или роботом на 10 команд. С другой стороны радиолюбители часто строят, налаживают и переделывают заново приемники и передатчики для работы с готовыми шифраторами/дешифраторами команд. В обеих случаях можно использовать достаточно дешевые RF-модули. Особенности их работы и использования под катом.

Типы модулей

RF-модули для передачи данных работают в диапазоне УКВ и используют стандартные частоты 433МГц, 868МГц либо 2,4ГГц (реже 315МГц, 450МГц, 490МГц, 915МГц и др.) Чем выше несущая частота, тем с большей скоростью можно передавать информацию.
Как правило, выпускаемые RF-модули предназначены для работы с каким-либо протоколом передачи данных. Чаще всего это UART (RS-232) или SPI. Обычно UART модули стоят дешевле, а так же позволяют использовать нестандартные (пользовательские) протоколы передачи. Вначале я думал склепать что-то типа такого , но вспомнив свой горький опыт изготовления аппаратуры радиоуправления выбрал достаточно дешевые HM-T868 и HM-R868 (60грн. = менее $8 комплект). Существуют также модели HM-*315 и HM-*433 отличающиеся от нижеописанных лишь несущей частотой (315МГц и 433МГц соответственно). Кроме того есть множество других модулей аналогичных по способу работы, поэтому информация может быть полезной обладателям и других модулей.

Передатчик

Почти все RF-модули представляют собой небольшую печатную плату с контактами для подключения питания, передчи данных и управляющих сигналов. Рассмотрим передатчик(трансмиттер) HM-T868
На нем имеется трехконтактный разъем: GND(общий), DATA(данные), VCC(+питания), а также пятачок для припайки антенны(я использовал огрызок провода МГТФ на 8,5см - 1/4 длинны волны).

Приемник

Ресивер HM-R868, внешне, очень похож на соответствующий ему трансмиттер

но на его разъеме есть четвертый контакт - ENABLE, при подаче на него питания приемник начинает работать.

Работа

Судя по документации, рабочим напряжением является 2,5-5В, чем выше напряжение, тем большая дальность работы. По сути дела - это радиоудлинитель: при подаче напряжения на вход DATA передатчика, на выходе DATA приемника так же появится напряжение (при условии что на ENABLE также будет подано напряжение). НО, есть несколько нюансов. Во-первых: частота передачи данных (в нашем случае - это 600-4800 бит/с). Во-вторых: если на входе DATA нету сигнала более чем 70мс, то передатчик переходит в спящий режим(по-сути отключается). В-третьих: если в зоне приема ресивера нету работающего передатчика - на его выходе появляется всякий шум.

Проведем небольшой эксперимент: к контактам GND и VCC трансмиттера подключим питание. Вывод DATA соединим с VCC через кнопку или джампер. К контактам GND и VCC ресивера также подключаем питание, ENABLE и VCC замыкаем между собой. К выходу DATA подключаем светодиод (крайне желательно через резистор). В качестве антенн используем любой подходящий провод длинной в 1/4 длинны волны. Должна получиться такая схемка:


Сразу после включения приемника и/или подачи напряжения на ENABLE должен загореться светодиод и гореть непрерывно (ну или почти непрерывно). После нажатии кнопки на передатчике, со светодиодом также ничего не происходит - он продолжает гореть и дальше. При отпускании кнопки светодиод мигнет(погаснет и снова загорится) и продолжает гореть дальше. При повторном нажатии и отпускании кнопки все должно повторится. Что же там происходило? Во время включения приемника, передатчик находился в спящем состоянии, приемник не нашел нормального сигнала и стал принимать всякий шум, соответственно и на выходе появилась всякая бяка. На глаз отличить непрерывный сигнал от шума нереально, и кажется, что светодиод светит непрерывно. После нажатия кнопки трансмиттер выходит из спячки и начинает передачу, на выходе ресивера появляется логическая «1» и светодиод светит уже действительно непрерывно. После отпускания кнопки передатчик передает логический «0», который принимается приемником и на его выходе также возникает «0» - светодиод, наконец, гаснет. Но спустя 70мс передатчик видит что на его входе все тот же «0» и уходит в сон, генератор несущей частоты отключается и приемник начинает принимать всякие шумы, на выходе шум - светодиод опять загорается.

Из вышесказанного следует, что если на входе трансмиттера сигнал будет отсутствовать менее 70мс и находится в правильном диапазоне частот, то модули будут вести себя как обычный провод (на помехи и другие сигналы мы пока не обращаем внимания).

Формат пакета

RF-модули данного типа можно подключить напрямую к аппаратному UART или компьютеру через MAX232, но учитывая особенности их работы я бы посоветовал использовать особые протоколы, описанные программно. Для своих целей я использую пакеты следующего вида: старт-биты, байты с информацией, контрольный байт(или несколько) и стоп-бит. Первый старт-бит желательно сделать более длинным, это даст время чтобы передатчик проснулся, приемник настроился на него, а принимающий микроконтроллер(или что там у Вас) начал прием. Затем что-то типа «01010», если на выходе приемника такое, то это скорее всего не шум. Затем можно поставить байт идентификации - поможет понять какому из устройств адресован пакет и с еще большей вероятностью отбросит шумы. До этого момента информацию желательно считывать и проверять отдельными битами, если хоть один из них неправильный - завершаем прием и начинаем слушать эфир заново. Дальше передаваемую информацию можно считывать сразу по байтам, записывая в соответствующие регистры/переменные. По окончании приема выполняем контрольное выражение, если его результат равен контрольному байту - выполняем требуемые действия с полученной информацией, иначе - снова слушаем эфир. В качестве контрольного выражения можно считать какую-нибудь контрольную сумму, если передаваемой информации немного, либо Вы не сильны в программировании - можно просто посчитать какое-то арифметическое выражение, в котором переменными будут передаваемые байты. Но необходимо учитывать то, что в результате должно получится целое число и оно должно поместится в количество контрольных байт. Поэтому лучше вместо арифметических операций использовать побитовые логические: AND, OR, NOT и, особенно, XOR. Если есть возможность, делать контрольный байт нужно обязательно так как радиоэфир - вещь очень загаженная, особенно сейчас, в мире электронных девайсов. Порой, само устройство может создавать помехи. У меня, например, дорожка на плате с 46кГц ШИМ в 10см от приемника очень сильно мешала приему. И это не говоря о том, что RF-модули используют стандартные частоты, на которых в этот момент могут работать и другие устройства: рации, сигнализации, радиоуправление, телеметрия и пр.

Каждый автолюбитель хочет поставить на своего четырехколесного друга охранную сигнализацию. Чтобы сэкономить деньги, установку можно произвести самостоятельно, отличным выбором станет Pandora dxl 5000, установка которой займет не более одного дня.

Заводская коробка устройства

Данная сигнализация представитель премиум уровня. Она имеет автозапуск и удобный интерфейс. Она имеет шестнадцать независимых каналов, с широкими возможностями программирования. Управление сигнализацией происходит с помощью ЖК брелока, с обратной связью, в нем есть новейший RF–модуль, что позволяет существенно увеличить радиус связи. Вместо брелока также можно использовать iPhone.

Комплект поставки

Стандартная комплектация

В комплект поставки Pandora dxl 5000 входит:

  • Центральный блок
  • RF-модуль
  • Основной ЖК брелок и дополнительный
  • Метки иммобилайзера
  • Кожаный чехол для меток иммобилайзера
  • GPS-приемник
  • Радиореле блокировки
  • Внешняя двухдиапазонная антенна GSM
  • Датчик температуры с кабелем
  • Релейный модуль автозапуска
  • Набор основных и дополнительных кабелей
  • Кнопка «Vаlet» с индикатором
  • Mini-USB кабель
  • Микрофон
  • Кабель дополнительного датчика
  • Провод концевого выключателя
  • Пластиковая стяжка 120-150 мм
  • Документация
  • Карта с индивидуальным кодом водителя.

Важно! Установку необходимо вести только после отключения всех разъемов системы, обязательно отключив минусовое клемме аккумулятора!

Установка сигнализации Pandora 5000 процесс не сложный. Для установки нам потребуется отвертка, дрель, паяльник, ножницы.

Снимаем клемму аккумулятора

Начало установки

Необходимо снять все дополнительные панели в салоне автомобиля, в частности обшивку рулевой колонки, щиток воздуховода, левую облицовочную панель возле переднего ветрового стекла и крышку блока с предохранителями.

Установка базового блока

Базовый блок противоугонной системы

Установку сигнализации необходимо начинать с базового блока. Базовый блок, GSM антенну, RF-модуль и все дополнительные датчики необходимо монтировать только во внутренней части салона автомобиля. После того, как вы нашли место, куда закрепить эти элементы, приступите к закреплению доступными методами.

Подходящее место для установки блока

Важно надежно закрепить все элементы. Базовый блок сигнализации необходимо разместить в салоне скрытно, он должен быть труднодоступным, нельзя ставить базовый блок в легкодоступном месте. После установки базового блока, от него необходимо вывести USB-кабель, через который будет осуществляться программирование.

Ставим RF-модуль

RF-модуль тоже монтируется в салоне автомобиля, возле него выводиться специальный светодиод индикатора состояния и делается проход к базовому блоку.

Возможное расположение остальных элементов

Кнопку Vаlet необходимо разместить под обшивкой и спрятать. Релейный модуль размещается за панелью с приборами, желательно с левой стороны, крепиться базовыми шурупами.

Установка датчиков

Далее, начинаем размещать датчики. Датчик температуры нужно закрепить на базовый болт, возле двигателя. Микрофон устанавливаем на штатные крепления, внутри моторного отсека, что находиться под двигателем. GPS приемник и антенну возможно разместить в нескольких комбинациях, лучше всего, на передней панели, под лобовым стеклом.

Удобное место расположить антенну

Как вариант, можно под задним стеклом, или в салоне, между передними сиденьями. Следите чтобы GSM антенна не была экранирована, это приведет к ее неправильной работе.

Монтаж проводки

Спайка проводов

Монтирование проводов сигнализации можно проводить скручиванием и спаиванием. Спаивание будет предпочтительнее, ибо позволит лучше закрепить провода. Спаивать необходимо оловянно-свинцовым припоем, после чего все места пайки нужно изолировать. Изоляция не должна пропускать влагу в место контакта, ибо наличие влаги приведет к быстрой порче проводки.

Необходимо, чтобы материал проводников был одинаковым, разница между электрохимическими потенциалами должна быть минимальной. Проводам нужно оставлять немного запаса, чтобы они слегка провисали. Сильно натянутая проводка может разрушаться от различных вибраций во время движения автомобиля.

Коммутированные соединения нужно размещать чуть выше остальной проводки, чтобы конденсат, который собирается на проводах не собирался месте коммутации.

Проводка должна быть аккуратной

Не стоит монтировать проводку в местах, где она может повреждаться трением. Провода не должны соприкасаться с горячими элементами автомобиля, дистанция между ними и проводами должна составлять несколько сантиметров. Провода, которые вы не использовали при монтаже проводки, необходимо укоротить и изолировать, чтобы они не прикасались к металлическим элементам автомобиля и другим проводникам. Монтаж проводки нужно делать скрытно, под элементами обшивки. Проводку необходимо вплетать в жгуты, чтобы она не торчала в разные стороны. Под капотом, в моторном отсеке, проводку необходимо проводить по специальным гофрам. Важно понимать, что проводка вашей сигнализации должна быть малозаметной.

Соединения всех элементов сигнализации

Если все сделано правильно и проводка успешно проложена, то можно начинать присоединение основных элементов сигнализации к базовому блоку. Подключать все необходимо согласно инструкции, в определенной очередности, этот процесс обычно не вызывает проблем. Главный принцип при монтаже сигнализации, это скрытность и надежность крепления ее элементов.

Настройка системы

Если все сделано правильно, и USB-кабель выведен от базового блока, то проблем с подключением к компьютеру не должно возникнуть, установка сигнализации Пандора 5000 пройдет без проблем.

Проводное подключение системы к компьютеру

Для настройки сигнализации вам потребуется ноутбук или персональный компьютер с установленной программой Pandora DXL Loader последней версии, и стандартный шнур miniUSB-USB. Первое, что нужно сделать, это подключить компьютер к базовому блоку сигнализации, подключается через шнур miniUSB-USB. После подключения, светодиод начнет мигать красно-зелеными огоньками, это значит, что все сделано верно. На компьютере запускаем DXL Loader.

Для дальнейшего входа в систему необходимо ввести специальный сервисный пин-код — по умолчанию 1-1-1-1. Для этого, необходимо нажать кнопку «Valet» в количестве раз, которое ровняется вводимой цифре. Нажимать необходимо с паузами не меньше одной секунды, паузы, которые больше секунды, трактуются системой, как введение следующей цифры. Введение первой цифры, система будет подтверждать красной вспышкой на светодиодном индикаторе. После введения всех цифр, система подтвердит их правильность, замигав красными и зелеными сигналами, это будет значить, что она перешла в режим программирования.

Обновление прошивки

Ресурс с необходимым ПО

Прошивку для сигнализации Pandora DXL 5000 можно взять на сайте http://www.alarmtrade.ru/

Для этого, необходимо перейти на сайт, выбрать раздел «Сервис», перейти на подпункт «Прошивки и инструкции». Ищем Pandora DXL 5000 и нажимаем «Скачать» возле необходимой версии прошивки.

После включения режима программирования, на мониторе, в окне DXL Loader вы увидите версию текущей прошивки базового блока.

Список поддерживаемых версий базового блока

Для обновления прошивки, необходимо выбрать раздел «Загрузить» и нажать на пункт «Загрузка прошивки». Необходимо выбрать файл прошивки, с расширением — .pld и нажать «Загрузить». Начнется автоматическая установка прошивки. Пока установка не закончиться, нельзя не чего отсоединять.

Процесс обновления ПО

После установки прошивки, появиться информационное окно об успешной операции. Отсоедините Mini-USB от базового блока на пару секунд. После этого, обратно подключите Mini-USB и введите с помощью кнопки «Valet» сервисный пин-код.

Настройка CAN-интерфейса

CAN-интерфейс

Настройка системы

Дальнейшая настройка системы продолжается в программе DXL Loader. Необходимо выбрать раздел «Настройки CAN-интерфейса», в нем найти IV раздел, и выбрать там необходимую вам модель и марку автомобиля, сохранить настройки нажав «Записать».

Пункт IV-3.5 отвечает за штатное управление системой охраны. Для включения двойного запирания и штатной охраны, при использовании брелока Pandora, его необходимо разрешить.

Пункт IV-4.1 и 4.2 включает и выключает слейв режим постановки на охрану. Если вы собираетесь управлять режимами охраны с базового брелока, эти пункты необходимо разрешить.

Пункт IV-4.3 нужен для перепостановки на охрану. Если пункт включен, и на протяжении 30 секунд машина не была поставлена на охрану, то это будет сделано автоматически. Таким же образом, можно изменить и все другие настройки системы. По окончанию настройки, необходимо нажать на «Записать» и система сохранит все заданные настройки и параметры. По окончанию записи необходимо отключить компьютер от базового блока и монтировать его на место.

Также, вы можете сохранить файл с настройками к себе на компьютер. Таким образом, возможно загружать различные настройки, не занимаясь их постоянным перепрограммированием. Для этого в программе DXL Loader необходимо нажать «Файл» и в открывшемся окне выбрать пункт «Сохранить», указав имя файла вы сохраните его на свой компьютер в указанную папку.

Меню программы

Для загрузки файла настроек, необходимо в DXL Loader нажать «Файл» и выбрать «Загрузить». Найти необходимую папку и выбрать файл настройки, после чего нажать кнопку «Загрузить». После окончания загрузки, нажать кнопку «Записать», она находиться в нижней части окна программы. Для упрощения монтажа сигнализации, есть специальные карты установки, рекомендуем ими воспользоваться.

Видео по установке Pandora 5000

Иногда, между устройствами требуется установить беспроводное соединение. В последнее время для этой цели все чаще стали применять Bluetooth и Wi-Fi модули. Но одно дело передавать видео и здоровенные файлы, а другое - управлять машинкой или роботом на 10 команд. С другой стороны радиолюбители часто строят, налаживают и переделывают заново приемники и передатчики для работы с готовыми шифраторами/дешифраторами команд. В обеих случаях можно использовать достаточно дешевые RF-модули. Особенности их работы и использования под катом.

Типы модулей

RF-модули для передачи данных работают в диапазоне УКВ и используют стандартные частоты 433МГц, 868МГц либо 2,4ГГц (реже 315МГц, 450МГц, 490МГц, 915МГц и др.) Чем выше несущая частота, тем с большей скоростью можно передавать информацию.
Как правило, выпускаемые RF-модули предназначены для работы с каким-либо протоколом передачи данных. Чаще всего это UART (RS-232) или SPI. Обычно UART модули стоят дешевле, а так же позволяют использовать нестандартные (пользовательские) протоколы передачи. Вначале я думал склепать что-то типа такого , но вспомнив свой горький опыт изготовления аппаратуры радиоуправления выбрал достаточно дешевые HM-T868 и HM-R868 (60грн. = менее $8 комплект). Существуют также модели HM-*315 и HM-*433 отличающиеся от нижеописанных лишь несущей частотой (315МГц и 433МГц соответственно). Кроме того есть множество других модулей аналогичных по способу работы, поэтому информация может быть полезной обладателям и других модулей.

Передатчик

Почти все RF-модули представляют собой небольшую печатную плату с контактами для подключения питания, передчи данных и управляющих сигналов. Рассмотрим передатчик(трансмиттер) HM-T868
На нем имеется трехконтактный разъем: GND(общий), DATA(данные), VCC(+питания), а также пятачок для припайки антенны(я использовал огрызок провода МГТФ на 8,5см - 1/4 длинны волны).

Приемник

Ресивер HM-R868, внешне, очень похож на соответствующий ему трансмиттер

но на его разъеме есть четвертый контакт - ENABLE, при подаче на него питания приемник начинает работать.

Работа

Судя по документации, рабочим напряжением является 2,5-5В, чем выше напряжение, тем большая дальность работы. По сути дела - это радиоудлинитель: при подаче напряжения на вход DATA передатчика, на выходе DATA приемника так же появится напряжение (при условии что на ENABLE также будет подано напряжение). НО, есть несколько нюансов. Во-первых: частота передачи данных (в нашем случае - это 600-4800 бит/с). Во-вторых: если на входе DATA нету сигнала более чем 70мс, то передатчик переходит в спящий режим(по-сути отключается). В-третьих: если в зоне приема ресивера нету работающего передатчика - на его выходе появляется всякий шум.

Проведем небольшой эксперимент: к контактам GND и VCC трансмиттера подключим питание. Вывод DATA соединим с VCC через кнопку или джампер. К контактам GND и VCC ресивера также подключаем питание, ENABLE и VCC замыкаем между собой. К выходу DATA подключаем светодиод (крайне желательно через резистор). В качестве антенн используем любой подходящий провод длинной в 1/4 длинны волны. Должна получиться такая схемка:


Сразу после включения приемника и/или подачи напряжения на ENABLE должен загореться светодиод и гореть непрерывно (ну или почти непрерывно). После нажатии кнопки на передатчике, со светодиодом также ничего не происходит - он продолжает гореть и дальше. При отпускании кнопки светодиод мигнет(погаснет и снова загорится) и продолжает гореть дальше. При повторном нажатии и отпускании кнопки все должно повторится. Что же там происходило? Во время включения приемника, передатчик находился в спящем состоянии, приемник не нашел нормального сигнала и стал принимать всякий шум, соответственно и на выходе появилась всякая бяка. На глаз отличить непрерывный сигнал от шума нереально, и кажется, что светодиод светит непрерывно. После нажатия кнопки трансмиттер выходит из спячки и начинает передачу, на выходе ресивера появляется логическая «1» и светодиод светит уже действительно непрерывно. После отпускания кнопки передатчик передает логический «0», который принимается приемником и на его выходе также возникает «0» - светодиод, наконец, гаснет. Но спустя 70мс передатчик видит что на его входе все тот же «0» и уходит в сон, генератор несущей частоты отключается и приемник начинает принимать всякие шумы, на выходе шум - светодиод опять загорается.

Из вышесказанного следует, что если на входе трансмиттера сигнал будет отсутствовать менее 70мс и находится в правильном диапазоне частот, то модули будут вести себя как обычный провод (на помехи и другие сигналы мы пока не обращаем внимания).

Формат пакета

RF-модули данного типа можно подключить напрямую к аппаратному UART или компьютеру через MAX232, но учитывая особенности их работы я бы посоветовал использовать особые протоколы, описанные программно. Для своих целей я использую пакеты следующего вида: старт-биты, байты с информацией, контрольный байт(или несколько) и стоп-бит. Первый старт-бит желательно сделать более длинным, это даст время чтобы передатчик проснулся, приемник настроился на него, а принимающий микроконтроллер(или что там у Вас) начал прием. Затем что-то типа «01010», если на выходе приемника такое, то это скорее всего не шум. Затем можно поставить байт идентификации - поможет понять какому из устройств адресован пакет и с еще большей вероятностью отбросит шумы. До этого момента информацию желательно считывать и проверять отдельными битами, если хоть один из них неправильный - завершаем прием и начинаем слушать эфир заново. Дальше передаваемую информацию можно считывать сразу по байтам, записывая в соответствующие регистры/переменные. По окончании приема выполняем контрольное выражение, если его результат равен контрольному байту - выполняем требуемые действия с полученной информацией, иначе - снова слушаем эфир. В качестве контрольного выражения можно считать какую-нибудь контрольную сумму, если передаваемой информации немного, либо Вы не сильны в программировании - можно просто посчитать какое-то арифметическое выражение, в котором переменными будут передаваемые байты. Но необходимо учитывать то, что в результате должно получится целое число и оно должно поместится в количество контрольных байт. Поэтому лучше вместо арифметических операций использовать побитовые логические: AND, OR, NOT и, особенно, XOR. Если есть возможность, делать контрольный байт нужно обязательно так как радиоэфир - вещь очень загаженная, особенно сейчас, в мире электронных девайсов. Порой, само устройство может создавать помехи. У меня, например, дорожка на плате с 46кГц ШИМ в 10см от приемника очень сильно мешала приему. И это не говоря о том, что RF-модули используют стандартные частоты, на которых в этот момент могут работать и другие устройства: рации, сигнализации, радиоуправление, телеметрия и пр.