См. также «Физический портал»

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в г., является одним из краеугольных камней квантовой механики.

Краткий обзор

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана , так и для неидеальных измерений или измерений Ландау .

Согласно принципу неопределённостей, частица не может быть описана как классическая частица, то есть например у нее не могут быть одновременно точно измерено положение и скорость (импульс) , так же как у обычной классической волны и как волна . (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована на всё пространство коробки, то есть ее координаты не имеют определенного значения, локализация частицы осуществлена не точнее размеров коробки), ни определённым значением импульса (включая его направление; в примере с частицей в коробке модуль импульса определен, но не определено его направление).

Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).

Соотношение неопределенностей в квантовой механике есть в математическом смысле есть непосредственное прямое следствие некоего свойства преобразования Фурье .

Существует точная количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов . Рассмотрим переменный во времени сигнал, например звуковую волну . Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может одновременно иметь и точное значение времени его фиксации, как его имеет очень короткий импульс, и точного значения частоты, как это имеет место для непрерывного (и в принципе бесконечно длительного) чистого тона (чистой синусоиды). Временно́е положение и частота волны математически полностью аналогичны координате и (квантово-механическому) импульсу частицы. Что совсем не удивительно, если вспомнить, что (или p x = k x в системе единиц ), то есть импульс в квантовой механике - это и есть пространственная частота вдоль соответствующей координаты.

В повседневной жизни мы обычно не наблюдаем квантовую неопределённость потому, что значение чрезвычайно мало, и поэтому соотношения неопределенностей накладывают такие слабые ограничения на погрешности измерения, которые заведомо незаметны на фоне реальных практических погрешностей наших приборов или органов чувств.

Определение

Если имеется несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения Δx координаты и среднеквадратического отклонения Δp импульса, мы найдем что:

,

где - приведённая постоянная Планка .

Отметим, что это неравенство даёт несколько возможностей - состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x - нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» (но не произвольно высокой) точностью.

Варианты и примеры

Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме, он применим к каждой паре сопряжённых переменных . В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которую мы здесь приведем

Следовательно, верна следующая общая форма принципа неопределённости , впервые выведенная в г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером :

Это неравенство называют соотношением Робертсона - Шрёдингера .

Оператор A B B A называют коммутатором A и B и обозначают как [A ,B ] . Он определен для тех x , для которых определены оба A B x и B A x .

Из соотношения Робертсона - Шрёдингера немедленно следует соотношение неопределённости Гейзенберга :

Предположим, A и B - две физические величины, которые связаны с самосопряжёнными операторами. Если A B ψ и B A ψ определены, тогда:

,

Среднее значение оператора величины X в состоянии ψ системы, и

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ . В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти соотношения неопределённостей между физическими переменными, а именно, определить значения пар переменных A и B , коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости - между координатой и импульсом частицы в пространстве:
  • отношение неопределённости между двумя ортогональными компонентами оператора полного углового момента частицы:
где i , j , k различны и J i обозначает угловой момент вдоль оси x i .
  • следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:
. Однако, при условие периодичности несущественно и принцип неопределенности принимает привычный вид: .

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера - Рао в классической теории измерений, в случае когда измеряется положение частицы. Средне-квадратичный импульс частицы входит в неравенство как информация Фишера . См. также полная физическая информация.

Интерпретации

Эйнштейн был убеждён, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орёл, 50 % решка). Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё, будут известны, а орлы/решки будут все ещё распределяться случайно (при случайных начальных силах).

Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.

Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределённости - результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своём поведении.

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или приводится в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет (). Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

В некоторых научно-фантастических рассказах устройство для преодоления принципа неопределённости называют компенсатором Гейзенберга, наиболее известное используется на звездолёте «Энтерпрайз» из фантастического телесериала Звёздный Путь в телепортаторе. Однако, неизвестно, что означает «преодоление принципа неопределённости». На одной из пресс-конференций продюсера сериала спросили «Как работает компенсатор Гейзенберга?», на что он ответил «Спасибо, хорошо!»

Материал из свободной русской энциклопедии «Традиция»


В квантовой механике принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) устанавливает, что существует ненулевой предел для произведения дисперсий сопряжённых пар физических величин, характеризующих состояние системы. Принцип неопределённости обнаруживается также в классической теории измерений физических величин.

Обычно принцип неопределённости иллюстрируется следующим образом. Рассмотрим ансамбль невзаимодействующих эквивалентных частиц, приготовленных в определённом состоянии, для каждой из которых измеряется либо координата q , либо импульс p . При этом результаты измерений будут случайными величинами, среднеквадратические отклонения которых от средних значений будут удовлетворять соотношению неопределённостей , где – . Поскольку любое измерение изменяет состояние каждой частицы, при одном измерении нельзя одновременно измерить значения и координаты и импульса. Для ансамбля частиц уменьшение дисперсии при измерении физической величины приводит к увеличению дисперсии сопряжённой физической величины. Считается, что принцип неопределённости связан не только с возможностями экспериментальной техники, но и показывает фундаментальное свойство природы.

Содержание

  • 1 Краткий обзор
  • 2 История
  • 3 Принцип неопределённости и эффект наблюдателя
    • 3.1 Микроскоп Гейзенберга
  • 4 Критика
    • 4.1 Щель в экране
    • 4.2 Коробка Эйнштейна
    • 4.3 Парадокс Эйнштейна - Подольского - Розена
    • 4.4 Критика Поппера
  • 5 Принцип неопределённости информационной энтропии
  • 6 Производные
    • 6.1 Физическая интерпретация
    • 6.2 Матричная механика
    • 6.3 Волновая механика
    • 6.4 Симплектическая геометрия
  • 7 Соотношение Робертсона - Шрёдингера
    • 7.1 Другие принципы неопределённости
  • 8 Энергия-время в принципе неопределённости
  • 9 Теоремы неопределённости в гармоническом анализе
    • 9.1 Теорема Бенедика
    • 9.2 Принцип неопределённости Харди
  • 10 Бесконечная вложенность материи
  • 11 Выражение конечного доступного количества информации Фишера
  • 12 Научный юмор
  • 13 Принцип неопределённости в популярной культуре
  • 14 Ссылки
  • 15 Литература
  • 16 Внешние ссылки

Краткий обзор

В квантовой механике соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Кроме этого принимается, что для частиц по крайней мере отчасти справедлив корпускулярно-волновой дуализм. В таком приближении положение частицы определяется местом концентрации соответствующей частице волны, импульс частицы связывается с длиной волны, и возникает наглядная аналогия между отношениями неопределённости и свойствами волн или сигналов. Положение является неопределённым настолько, насколько волна распределена в пространстве, а неопределённость импульса выводится из неопределённости длины волны при её измерении в разные моменты времени. Если волна находится в точечноподобной области, её положение определено с хорошей точностью, но у такой волны в виде короткого волнового цуга отсутствует определённая длина волны, характерная для бесконечной монохроматической волны.

В качестве волны, соответствующей частице, можно взять волновую функцию. В многомировой интерпретации квантовой механики считается, что при каждом измерении положения частицы происходит декогеренция . В отличие от этого в копенгагенской интерпретации квантовой механики говорят, что при каждом измерении положения частицы как будто бы происходит коллапс волновой функции до малой области, где находится частица, и за пределами этой области волновая функция близка к нулю (это описание полагается возможным приёмом для согласования поведения волновой функции как характеристики частицы, так как волновая функция лишь косвенно связана с реальными физическими величинами). Такая трактовка вытекает из того, что квадрат волновой функции показывает вероятность нахождения частицы в пространстве. Для малой области импульс частицы в каждом измерении не может быть измерен точно вследствие самой процедуры измерений импульса. При измерении положения частица будет чаще обнаруживаться там, где имеется максимум волновой функции, и в серии одинаковых измерений появится наиболее вероятное положение и определится среднеквадратическое отклонение от него:

Точно также в серии одинаковых измерений осуществляется распределение вероятностей, определяются статистическая дисперсия и среднеквадратическое отклонение от среднего импульса частицы :

Произведение данных величин связано соотношением неопределённости:

где – постоянная Дирака.

В некоторых случаях «неопределённость» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что в случае нормального распределения переменных приводит для произведения неопределённостей к большей нижней границе, становящейся равной . Согласно соотношению неопределённостей, состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x – нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» но не с произвольно высокой точностью.

Отношения неопределённости накладывают ограничения на теоретический предел точности любых измерений. Они справедливы для так называемых идеальных измерений, иногда называемых измерениями Джона фон Неймана. Они тем более справедливы для неидеальных измерений или измерений согласно Л.Д. Ландау. В повседневной жизни мы обычно не наблюдаем неопределённость потому, что значение чрезвычайно мало.

Как правило, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. Принцип неопределённости в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим. Примером является частица с определённым значением энергии, находящаяся в коробке. Такая частица является системой, которая не характеризуется ни определённым «положением» (какое-либо определённое значение расстояния от потенциальной стенки), ни определённым значением импульса (включая его направление).

Принцип неопределённости выполняется не только в опытах для множества частиц в одинаковых начальных состояниях, когда учитываются среднеквадратичные отклонения от средних значений для пары сопряжённых физических величин, измеряемых отдельно друг от друга, но и в каждых разовых измерениях, когда можно оценить значения и разброс одновременно обеих физических величин. Хотя принцип неопределённости связан с эффектом наблюдателя , он не исчерпывается им, поскольку связан ещё и со свойствами наблюдаемых квантовых объектов и их взаимодействиями между собой и с приборами.

История

Основная статья : Введение в квантовую механику

Вернер Гейзенберг сформулировал принцип неопределённости в институте Нильса Бора в Копенгагене во время работы над математическими основами квантовой механики.

В 1925 г. следуя работам Хендрика Крамерса , Гейзенберг развил матричную механику, заменившую существовавшую ранее на основе постулатов Бора версию квантовой механики. Он предположил, что квантовое движение отличается от классического, так что у электронов в атоме нет точно определённых орбит. Следовательно, для электрона уже нельзя точно сказать, где он находится в данное время и как быстро движется. Свойством матриц Гейзенберга для положения и импульса является то, что они не коммутируют между собой:

В марте 1926 г. Гейзенберг нашёл, что некоммутативность приводит к принципу неопределённости, ставшему основой того, что позже назвали копенгагенской интерпретацией квантовой механики. Гейзенберг показал связь коммутатора операторов величин и боровского принципа дополнительности. Любые две переменные, которые не коммутируют между собой, не могут быть точно измерены одновременно, так как при увеличении точности измерения одной переменной падает точность измерения другой переменной.

В качестве примера можно рассмотреть дифракцию частицы, проходящей через узкую щель в экране и отклоняющейся после прохождения на некоторый угол. Чем уже щель, тем больше получается неопределённость в направлении импульса прошедшей частицы. По закону дифракции возможное угловое отклонение Δθ приблизительно равно λ / d , где d есть ширина щели, а λ – длина волны, соответствующая частице. Если использовать формулу для в виде λ = h / p , и обозначить d Δθ = Δx , то получается соотношение Гейзенберга:

В своей статье 1927 г. Гейзенберг представил данное соотношение как минимально необходимое возмущение в величине импульса частицы, возникающее в результате измерения положения частицы , но не дал точного определения величинам Δx и Δp . Вместо этого он сделал их оценки в ряде случаев. В своей лекции в Чикаго он уточнил свой принцип так:

(1)

В современном виде соотношение неопределённостей записал Кеннард (E. H. Kennard ) в 1927 г.:

(2)

где , и σ x , σ p являются среднеквадратическими (стандартными) отклонениями положения и импульса. Сам Гейзенберг доказал соотношение (2) только для специального случая гауссовских состояний. .

Принцип неопределённости и эффект наблюдателя

Один из вариантов принципа неопределённости можно сформулировать так:

Измерение координаты частицы необходимо изменяет её импульс, и наоборот .

Это делает принцип неопределённости особым, квантовым вариантом эффекта наблюдателя , причём в роли наблюдателя может выступать и автоматизированная система измерений, использующая как принцип прямой фиксации частиц, так и метод исключения (частицы, не попавшие в детектор, прошли другим доступным путём).

Такое объяснение может быть принято и было использовано Гейзенбергом и Бором, стоявшими на философской основе логического позитивизма. Согласно логике позитивизма, для исследователя истинная природа наблюдаемой физической системы определяется результатами наиболее точных экспериментов, достижимых в принципе и ограниченных лишь самой природой. В таком случае появление неизбежных неточностей при проведении измерений становится следствием не только свойств реально используемых приборов, но и самой физической системы в целом, включая объект и систему измерения.

В настоящее время логический позитивизм не является общепринятой концепцией, поэтому объяснение принципа неопределённости на основе эффекта наблюдателя становится неполным для тех, кто придерживается другой философского подхода. Некоторые полагают, что возникающее при измерении координаты частицы значительное изменение её импульса является необходимым свойством не частицы, а лишь измерительного процесса. На самом деле частица скрытым от наблюдателя образом обладает определённым местоположением и импульсом в каждый момент времени, но их значения не определяются точно вследствие использования слишком грубых инструментов (теория скрытых параметров). Для иллюстрации можно привести пример: необходимо найти местоположение и импульс движущегося биллиардного шара, используя другой биллиардный шар. В серии экспериментов, в которых оба шара направляются приблизительно одинаково и сталкиваются, можно найти углы рассеяния шаров, их импульсы, и затем определить точки их встречи. Вследствие начальных неточностей каждое столкновение является уникальным, появляется разброс в местоположении и скоростях шаров, что для серии столкновений приводит к соответствующему соотношению неопределённости. Однако при этом мы точно знаем, что в каждом отдельном измерении шары движутся, обладая вполне конкретными импульсом в каждый момент времени. Данное знание в свою очередь возникает оттого, что за шарами можно следить с помощью отражённого света, который практически не влияет на движение массивных шаров.

Описанная ситуация иллюстрирует возникновение принципа неопределённости и зависимость результатов измерений от процедуры измерений и свойств измерительных приборов. Но в реальных экспериментах до сих пор не обнаружено способа одновременного измерения параметров элементарных частиц внешними приборами, не нарушая существенно их начального состояния. Поэтому идея о скрытых от наблюдателя параметрах частиц в стандартной квантовой механике не пользуется успехом и в ней обычно просто утверждается, что не существует состояний, в которых одновременно можно измерить координату и импульс частицы.

Существуют однако ситуации, в которых вероятно могут быть определены скрытые параметры частиц. Речь идёт о двух (или более) связанных частицах в так называемом сцепленном состоянии. Если эти частицы оказываются на достаточно большом расстоянии друг от друга и не могут влиять друг на друга, измерение параметров одной частицы даёт полезную информацию о состоянии другой частицы.

Допустим, при распаде позитрония излучаются два фотона в противоположенных направлениях. Поместим два детектора таким образом, что первый может измерить положение одного фотона, а второй детектор – импульс другого фотона. Произведя одновременные измерения, можно с помощью закона сохранения импульса достаточно точно определить как импульс и направление первого фотона, так и его местоположение при попадании в первый детектор. Изменение процедуры измерения в данном случае позволяет избежать необходимости обязательного использования принципа неопределённости как ограничительного средства при вычислении погрешностей измерения. Описанная ситуация не отменяет принцип неопределённости как таковой, поскольку координата и импульс одновременно измеряются не у одной частицы локальным образом, а у двух частиц на расстоянии друг от друга.

Микроскоп Гейзенберга

В качестве одного из примеров, иллюстрировавших принцип неопределённости, Гейзенберг приводил воображаемый микроскоп как измерительное устройство. С его помощью экспериментатор измеряет положение и импульс электрона, который рассеивает падающий на него фотон, обнаруживая тем самым своё присутствие.

Если фотон имеет малую длину волны и следовательно большой импульс, положение электрона в принципе может быть измерено достаточно точно. Но при этом фотон рассеивается случайным образом, передавая электрону достаточно большую и неопределённую долю своего импульса. Если же у фотона большая длина волны и малый импульс, он мало изменяет импульс электрона, но рассеяние будет определять положение электрона очень неточно. В результате произведение неопределённостей в координате и импульсе остаётся не меньшим, чем постоянная Планка, с точностью до числового сомножителя порядка единицы. Гейзенберг не сформулировал точное математическое выражение для принципа неопределённости, а использовал принцип как эвристическое количественное соотношение.

Критика

Копенгагенская интерпретация квантовой механики и принцип неопределенности Гейзенберга оказались двойной мишенью для тех, кто верил в реализм и детерминизм. В копенгагенской интерпретации квантовой механики не содержится фундаментальной реальности, описывающей квантовое состояние и предписывающей способ вычисления экспериментальных результатов. В ней заранее не известно, что система находится в фундаментальном состоянии таком, что при измерениях появится точно заданный результат. Физическая вселенная существует не в детерминистичной форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности), произведённая миллионами фотонов, дифрагирующими через щель, может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказан никаким известным методом. Копенгагенская интерпретация считает, что это не может быть предсказано вообще никаким методом.

Именно эту интерпретацию Эйнштейн подвергал сомнению, когда писал Максу Борну: «я уверен, что Бог не бросает кости» (Die Theorie liefert viel . Aber ich bin überzeugt , dass der Alte nicht würfelt ) . Нильс Бор, который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».

Альберт Эйнштейн считал, что случайность появляется как отражение нашего незнания фундаментальных свойств реальности, тогда как Бор верил, что распределение вероятностей является фундаментальным и неповторимым, зависящим от вида измерений. Дебаты Эйнштейна и Бора в отношении принципа неопределённости длились не один год.

Щель в экране

Первый мысленный эксперимент Эйнштейна по проверке принципа неопределённости был следующим:

Рассмотрим частицу, проходящую через щель в экране шириной d. Щель приводит к неопределённости импульса частицы порядка h/d, когда частица проходит через экран. Но импульс частицы с достаточной точностью можно определить по отдаче экрана с помощью закона сохранения импульса.

Ответ Бора был таков: так как экран подчиняется законам квантовой механики, то для измерения отдачи с точностью ΔP импульс экрана должен быть известен с такой точностью до пролёта частицы. Это приводит к неопределённости положения экрана и щели, равной h / ΔP , и если импульс экрана известен достаточно точно для измерения отдачи, положение щели оказывается определённым с точностью, не позволяющей точного измерения положения частицы.

Подобный анализ с частицами, испытывающими дифракцию на нескольких щелях, имеется у Р. Фейнмана.

Коробка Эйнштейна

Другой мысленный эксперимент Эйнштейна был задуман для проверки принципа неопределённости в отношении таких сопряжённых переменных, как время и энергия. Если в эксперименте со щелью в экране частицы двигались в заданном пространстве, то во втором случае они двигаются в течение заданного времени.

Рассмотрим коробку, наполненную световым излучением в результате радиоактивного распада. В коробке имеется затвор, открывающий её на точно известное малое время, в течение которого часть излучения покидает коробку. Для измерения унесённой с излучением энергии можно взвесить коробку после излучения, сравнить с начальным весом и применить принцип . Если коробка установлена на весах, то измерения сразу должны показать неточность принципа неопределённости.

Через день размышлений Бор определил, что если энергия самой коробки известна точно в начальный момент, то время открытия затвора не может быть известно точно. Кроме этого, весы и коробка за счёт изменения веса при излучении могут менять своё положение в гравитационном поле. Это приводит к изменению скорости течения времени за счёт движения часов и за счёт влияния гравитации на ход часов, и к дополнительной неточности времени срабатывания затвора.

Парадокс Эйнштейна - Подольского - Розена

В третий раз боровская трактовка принципа неопределённости подверглась сомнению в 1935 г., когда Альберт Эйнштейн, Борис Подольский и Натан Розен (смотри Парадокс Эйнштейна - Подольского - Розена) опубликовали свой анализ состояний удалённых на большие расстояния сцепленных частиц. Согласно Эйнштейну, измерение физической величины одной частицы в квантовой механике должно приводить к изменению вероятности распределения другой частицы, причём со скоростью, которая может превышать даже скорость света. Обдумывая это, Бор пришёл к той мысли, что неопределённость в принципе неопределённости не возникает от подобного прямого измерения.

Сам же Эйнштейн полагал, что полное описание реальности должно включать предсказание результатов экспериментов на основе "локально меняющихся детерминированных величин", приводя к увеличению информации по сравнению с той, которая ограничивается принципом неопределённости.

В 1964 г. Джон Белл показал, что предположение Эйнштейна о скрытых параметрах может быть проверено, поскольку оно приводит к определённым неравенствам между вероятностями в различных экспериментах. К настоящему времени какого-либо надёжного подтверждения существования скрытых параметров на основе неравенств Белла не получено.

Имеется также точка зрения, что на результаты экспериментов могут влиять нелокальные скрытые параметры , в частности, её придерживался Д. Бом. Здесь квантовая теория может тесно соприкасаться с другими физическими концепциями. Например, нелокальные скрытые параметры можно мыслить случайным набором данных, проявляющимся в экспериментах. Если предположить, что размер видимой вселенной ограничивает этот набор и связи между ними, то квантовый компьютер согласно Г. Хоофту вероятно будет допускать ошибки, когда будет оперировать с числами, превышающими 10000 единиц.

Критика Поппера

К.Р. Поппер критиковал принцип неопределённости в том виде, который был дан Гейзенбергом – что измерение местоположения частицы всегда влияет на результат измерения импульса, указывая, что при прохождении частицей с определённым импульсом узкой щели в отражённой волне имеется некоторая амплитуда вероятности существования импульса, равного импульсу до рассеяния. Это значит, что в ряде событий частица пройдёт щель без изменения импульса. В таком случае соотношение неопределённостей следует применять не для индивидуальных событий или опытов, а для экспериментов с множеством одинаковых частиц с одинаковыми начальными условиями, то есть для квантовых ансамблей. Критика подобного типа применима ко всем вероятностным теориям, а не только к квантовой механике, так как вероятностные утверждения требуют для своей поверки множества измерений.

С точки зрения копенгагенской интерпретации квантовой механики, приписывание частице определённого импульса до измерения эквивалентно существованию скрытого параметра. Частица должна описываться не этим импульсом, а волновой функцией, которая меняется при прохождении щели. Отсюда возникает неопределённость импульса, соответствующая принципу неопределённости.

Принцип неопределённости информационной энтропии

При формулировке многомировой интерпретации квантовой механики в 1957 г. Хью Эверетт пришёл к более строгой форме принципа неопределённости. . Если квантовые состояния имеют волновую функцию вида:

то у них будет увеличено стандартное отклонение в координате из-за суперпозиции некоторого числа взаимодействий. Будет увеличена и неопределённость в импульсе. Для уточнения неравенства в соотношении неопределённостей используется информация Шеннона для распределения величин, измеряемая числом бит, необходимых для описания случайной величины при конкретном распределении вероятностей:

Величина I интерпретируется как число бит информации, получаемой наблюдателем в момент, когда величина x достигает точности ε , равной I x + log 2 (ε) . Вторая часть есть число бит после десятичной точки, а первая даёт логарифмическое значение распределения. Для однородного распределения ширины Δx информационное содержание равно log 2 Δx . Эта величина может быть отрицательна, означая, что распределение уже одной единицы, и малые биты после десятичной точки не дают информации из-за неопределённости.

Если взять логарифм соотношения неопределённостей в так называемых естественных единицах:

то в таком виде нижняя граница равна нулю.

Эверетт и Хиршман предположили, что для всех квантовых состояний:

Это было доказано Бекнером в 1975 г. .

Производные

Когда линейные операторы A и B действуют на функцию ψ(x ) , они не всегда коммутируют. Пусть например оператор B есть умножение на x, а оператор A есть производная по x. Тогда имеет место равенство:

которое на операторном языке означает:

Это выражение очень близко к каноническому коммутатору квантовой механики, в котором оператор положения есть умножение волновой функции на x, а оператор импульса включает производную и умножение на . Это даёт:

Этот ненулевой коммутатор приводит к соотношению неопределённости.

Для любых двух операторов A и B:

что соответствует неравенству Коши - Буняковского для внутреннего произведения двух векторов и . Величина ожидания произведения AB превышает амплитуду мнимой части:

Для эрмитовых операторов это даёт соотношение Робертсона - Шрёдингера :

и принцип неопределённости как частный случай.

Физическая интерпретация

При переходе от операторов величин к неопределённостям можно записать:

где

есть среднее переменной X в состоянии ψ ,

есть среднеквадратическое отклонение переменной X в состоянии ψ.

После замены для A и для B в общем операторном неравенстве коммутатор приобретает вид:

Нормы и являются в квантовой механике стандартными отклонениями для A и B. Для координаты и импульса норма коммутатора равна .

Матричная механика

В матричной механике коммутатор матриц X и P равен не нулю, а величине , умноженной на единичную матрицу.

Коммутатор двух матриц не меняется, когда обе матрицы изменяются за счёт сдвига на постоянные матрицы x и p :

Для каждого квантового состояния ψ можно определить число x

как ожидаемое значение координаты, и

как ожидаемое значение импульса. Величины и будут ненулевыми в той степени, в которой являются неопределёнными положение и импульс, так что X и P отличаются от средних значений. Ожидаемое значение коммутатора

может быть ненулевым, если отклонение в X в состоянии , умноженное на отклонение в P , достаточно большое.

Квадрат значения типичного матричного элемента как квадрат отклонения можно оценить путём суммирования квадратов состояний энергии :

Поэтому каноническое коммутационное соотношение получается умножением отклонений в каждом состоянии, давая значение порядка :

Эта эвристическая оценка может быть уточнена с помощью неравенства Коши - Буняковского (смотри выше). Внутреннее произведение двух векторов в скобках:

ограничено произведением длин векторов:

Поэтому для каждого состояния будет:

действительная часть матрицы M есть , поэтому действительная часть произведения двух эрмитовых матриц равна:

Для мнимой части имеем:

Амплитуда больше, чем амплитуда её мнимой части:

Произведение неопределённостей ограничено снизу ожидаемым значением антикоммутатора , давая соответствующий член в соотношение неопределённостей. Этот член не важен для неопределённости положения и импульса, так как он имеет нулевое ожидаемое значение для гауссовского волнового пакета, как в основном состоянии гармонического осциллятора. В то же время член от антикоммутатора полезен для ограничения неопределённостей спиновых операторов.

Волновая механика

В уравнении Шрёдингера квантовомеханическая волновая функция содержит информацию как о положении, так и об импульсе частицы. Наиболее вероятным положением частицы является то, где концентрация волны наибольшая, а основная длина волны задаёт импульс частицы.

Длина волны локализованной волны определяется неточно. Если волна находится в объёме размером L и длина волны приблизительно равна λ , число циклов волны в этой области будет порядка L / λ . То, что число циклов известно с точностью до одного цикла, можно записать так:

Это соответствует хорошо известному результату при обработке сигналов - чем короче промежуток времени, тем менее точно определена частота. Аналогично в преобразовании Фурье, чем уже пик функции, тем шире её Фурье образ.

Если умножить равенство на h , и положить ΔP = h Δ (1 / λ) , ΔX = L , то будет:

Принцип неопределённости может быть представлен как теорема в преобразованиях Фурье: произведение стандартного отклонения квадрата абсолютного значения функции на стандартное отклонение квадрата абсолютного значения её Фурье образа не меньше, чем 1/(16π 2).

Типичным примером является (ненормализованная) гауссовская волновая функция:

Ожидаемое значение X равно нулю вследствие симметрии, поэтому вариация находится усреднением X 2 по всем положениям с весом ψ(x ) 2 и учётом нормировки:

С помощью преобразования Фурье можно перейти от ψ(x ) к волновой функции в k пространстве, где k есть волновое число и связано с импульсом соотношением де Бройля :

Последний интеграл не зависит от p, так как здесь непрерывное изменение переменных , исключающее такую зависимость, а путь интегрирования в комплексной плоскости не проходит через сингулярность. Поэтому с точностью до нормировки волновая функция снова гауссовская:

Ширина распределения k находится путём усреднения через интегрирование, как показано выше:

Тогда в данном примере

Симплектическая геометрия

В математических терминах сопряжённые переменные являются частью симплектического базиса, и принцип неопределённости соответствует симплектической форме в симплектическом пространстве.

Соотношение Робертсона - Шрёдингера

Возьмём любые два самосопряжённые эрмитовые операторы A и B , и систему в состоянии ψ. При измерении величин A и B проявится распределение вероятностей со стандартными отклонениями Δ ψ A и Δ ψ B . Тогда будет справедливо неравенство:

где [A ,B ] = AB - BA есть коммутатор A и B , {A ,B } = AB +BA есть антикоммутатор , и есть ожидаемое значение. Это неравенство называется соотношением Робертсона - Шрёдингера, включающее в себя принцип неопределённости как частный случай. Неравенство с одним коммутатором вывел в 1930 г. Говард Перси Робертсон (Howard Percy Robertson ), и несколько позже Эрвин Шрёдингер добавил член с антикоммутатором .

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ . В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Другие принципы неопределённости

Соотношение Робертсона - Шрёдингера приводит к соотношениям неопределённости для любых двух переменных, которые не коммутируют друг с другом:

  • Соотношение неопределённости между координатой и импульсом частицы:

  • между энергией и положением частицы в одномерном потенциале V(x):

  • между угловой координатой и моментом импульса частицы при малой угловой неопределённости:

  • между ортогональными компонентами полного момента импульса частицы:

где i , j , k различны и J i означает момент импульса вдоль оси x i .

  • между числом электронов в сверхпроводнике и фазой их упорядочивания в теории Гинзбурга-Ландау:

Существует также отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Энергия-время в принципе неопределённости

Энергия и время входят в соотношение неопределённостей, которое не вытекает напрямую из соотношения Робертсона - Шрёдингера.

Произведение энергии на время имеет ту же размерность, что и произведение импульса на координату, момент импульса и функция действия. Поэтому уже Бору было известно следующее соотношение:

здесь Δt есть время существования квантового состояния, а время как и пространственная координата задаёт эволюцию частицы в системе пространственно-временных координат.

Из соотношения следует, что состояние с малым временем жизни не может иметь определенного значения энергии – за это время энергия обязана измениться, тем более существенно, чем меньше время. Если энергия состояния пропорциональна частоте колебаний, то для высокой точности измерения энергии необходимо измерять частоту за такой период времени, который включает в себя достаточно много волновых циклов.

Например, в спектроскопии возбуждённые состояния имеют ограниченное время жизни. Средняя энергия испускаемых фотонов лежит вблизи теоретического значения энергии состояния, но распределение энергий имеет некоторую ширину, называемую естественная ширина линии . Чем быстрее распадается состояние, тем шире соответствующая ему ширина линии, что затрудняет точное измерение энергии. . Аналогично имеются трудности при определении массы покоя быстро распадающихся резонансов в физике элементарных частиц. Чем быстрее распадается частица, тем менее точно известна её масса-энергия.

В одной неточной формулировке принципа неопределённости утверждается, что для измерения энергии квантовой системы с точностью ΔE требуется время Δt > h / ΔE . Её неточность была показана Ахароновым (Yakir Aharonov ) и Д. Бомом в 1961 г. На самом деле время Δt есть время, когда система существует в отсутствие внешних возмущений, а не время измерения или воздействия измерительных приборов.

В 1936 г. Поль Дирак предложил точное определение и вывод энерго -временного соотношения неопределённости в релятивистской квантовой теории "событий". В этой формулировке частицы движутся в пространстве-времени и на каждой траектории имеют своё собственное внутреннее время. Многовременная формулировка квантовой механики математически эквивалентна стандартной формулировке, но более удобна для релятивистского обобщения. На её основе Синъитиро Томонага создал ковариантную теорию возмущений для квантовой электродинамики.

Более известную и используемую формулировку энерго -временного соотношения неопределённости дали в 1945 г. Л. И. Мандельштам и И . E. Тамм. Для квантовой системы в нестационарном состоянии наблюдаемая величина B представляется самосогласованным оператором , и справедлива формула:

где Δ ψ E есть стандартное отклонение оператора энергии в состоянии , Δ ψ B есть стандартное отклонение оператора и есть ожидаемая величина в этом состоянии. Второй множитель в левой части имеет размерность времени, и он отличается от времени, входящем в уравнение Шрёдингера. Этот множитель является временем жизни состояния по отношению к наблюдаемой B , по истечении которого ожидаемое значение изменяется заметно.

Теоремы неопределённости в гармоническом анализе

В гармоническом анализе принцип неопределённости подразумевает, что нельзя точно получить значения функции и её отображения Фурье; при этом выполняется следующее неравенство:

Имеются и другие соотношения между функцией ƒ и её отображением Фурье.

Теорема Бенедика

Эта теорема утверждает, что набор точек, где функция ƒ не равна нулю, и набор точек, где не равна нулю, не могут быть оба слишком малы. В частности, ƒ в L 2 (R ) и её отображение Фурье не могут поддерживаться одновременно (иметь один и тот же носитель функции) на покрытиях с ограниченной мерой Лебега. При обработке сигналов этот результат хорошо известен: функция не может одновременно быть ограниченной и во времени и в диапазоне частот.

Принцип неопределённости Харди

Математик G. H. Hardy в 1933 г. сформулировал следующий принцип: невозможно для функций ƒ и обоим быть "очень быстро возрастающими." Так, если ƒ определена в L 2 (R ), то:

кроме случая f = 0 . Здесь отображение Фурье равно , и если в интеграле заменить на для каждого a < 2π , то соответствующий интеграл будет ограниченным для ненулевой функции f 0 .

Бесконечная вложенность материи

В теории принцип неопределённости получает особое толкование. Согласно этой теории, всё множество существующих во Вселенной объектов можно расположить по уровням, в пределах которых размеры и массы принадлежащих им объектов различаются не так сильно, как между различными уровнями. При этом возникает . Оно выражается например в том, что массы и размеры тел при переходе от уровня к уровню вырастают в геометрической прогрессии и могут быть найдены с помощью соответствующих коэффициентов подобия. Существуют основные и промежуточные уровни материи. Если брать такие основные уровни материи, как уровень элементарных частиц и уровень звёзд, то в них можно найти подобные друг другу объекты – нуклоны и нейтронные звёзды. Электрон также имеет свой аналог на уровне звёзд – в виде дисков, открытых возле рентгеновских пульсаров, являющихся основными кандидатами в магнитары. . По известным свойствам элементарных частиц (масса, радиус, заряд, спин и т.д.) с помощью коэффициентов подобия можно определить соответствующие свойства подобных им объектов на уровне звёзд.

Кроме этого, в силу физические законы не меняют своей формы на разных уровнях материи. Это означает, что кроме подобия объектов и их свойств, существует подобие соответствующих явлений. Благодаря этому на каждом уровне материи можно рассматривать свой собственный принцип неопределённости. Характерной величиной кванта действия и момента импульса на уровне элементарных частиц является величина , то есть . Она непосредственно входит в принцип неопределённости. Для нейтронных звёзд характерной величиной кванта действия является ħ’ s = ħ ∙ Ф’ ∙ S’ ∙ Р’ = 5,5∙10 41 Дж∙с , где Ф’, S’, Р’ – коэффициенты подобия по массе, скоростям процессов и размерам соответственно. Следовательно, если производить измерения местоположения, импульса или других величин у отдельных нейтронных звёзд с помощью звёздных или ещё более массивных объектов, то при их взаимодействии произойдёт обмен импульсом и моментом импульса, с характерным значением звёздного кванта действия порядка ħ’ s . При этом измерение координаты будет влиять на точность измерения импульса и наоборот, приводя к принципу неопределённости.

Из изложенного следует, что сущность принципа неопределённости вытекает из самой процедуры измерений. Так, элементарные частицы не могут быть исследованы иначе, как с помощью самих элементарных частиц или их композитных состояний (в виде ядер, атомов, молекул и т.д.), которые неизбежно влияют на результаты измерений. Взаимодействие частиц друг с другом или с приборами в таком случае приводит к необходимости введения статистических методов в квантовую механику и лишь вероятностных предсказаний результатов любых опытов. Так как процедура измерений стирает часть информации, имеющейся у частиц до измерений, то прямой детерминации событий от каких-либо скрытых параметров, предполагаемой в теории скрытых параметров, не получается. Например, если направить одну частицу на другую в точно заданном направлении, то должно получиться вполне определённое рассеяние частиц друг на друге. Но здесь возникает проблема в том, что вначале нужно ещё каким-то способом направить частицу именно в данном заданном направлении. Как видно, детерминации событий мешает не только процедура измерений, но и процедура установки точных начальных состояний исследуемых частиц.

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера - Рао в классической теории измерений. В случае, когда измеряется положение частицы, среднеквадратичный импульс частицы входит в неравенство как информация Фишера . См. также полная физическая информация .

Научный юмор

Необычная природа принципа неопределённости Гейзенберга и его запоминающееся название, сделали его источником нескольких шуток. Говорят, что популярной надписью на стенах физического факультета университетских городков является: «Здесь, возможно, был Гейзенберг».

Однажды Вернера Гейзенберга останавливает на шоссе полицейский и спрашивает: «Вы знаете, как быстро Вы ехали, сэр?». На что физик отвечает: «Нет, но я точно знаю, где я!»

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или описывается в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет. Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

14 июня 2011 в 19:15

Доработка китайской акустики (SVEN SPS-678)

  • DIY или Сделай сам

Привет, %username%. Сегодня я расскажу как немного апгрейдить твою компьютерную акустику. Сразу оговорюсь, что данное руководство не преследует цель сделать из твоей акустики B&W, а лишь в разумных пределах улучшить звучание при минимальных затратах времени и денег.

Итак, имеем такие вот колонки:

В чем проблема подобных девайсов?? А в том, что китайцы экономят совершенно на всем, в чем мы можем убедиться, взглянув на принципиальную схему усилителя, найденную на просторах сети:

Колонки имеют все практически идентичную схему, так что тебе, %username%, не должно составить труда разобраться.
можно скачать в полном размере.

Вскрыв, ты должен увидеть примерно такую картину:

Что нам понадобится:

  • паяльник
  • припой
  • термоусадочная трубка
  • детали по вкусу:)
Блок питания
Начнем с блока питания. Трансформатор 2*13V 1.2A. Но как же так, %username%!!?? Ведь на коробочке написано, что колонки должны выдавать каждая по 18 Вт мощности, а с таким трансформатором получается всего P=U*I=15.6 Вт на 2 канала!!! Но здесь все на самом деле немного сложнее. Такой расчет будет верен для синусоидального сигнала, но реальный музыкальный сигнал намного сложнее, он достигает своих максимумов достаточно редко. Если взять средний уровень сигнала, то по сравнению с синусом, он в несколько раз меньше. Исчерпывающую информацию вы можете найти в этой статье.
Так что воспльзовавшись программой можно убедиться, что наш трансформатор почти вписывается в требования.
Выпрямитель.

Дальше у нас диодный мост D1-D4 из диодов 1N4007 . 1-амперные диоды, заменяем на диоды Шоттки, так как прямое падения напряжения на них меньше чем на кремниевых диодах. Я поставил 1N5819 . Подойдут любые диоды, лишь бы ток и обратное напряжение подходили под параметры схемы.
В среднем падение напряжения на кремниевых диодах составляет 0.5-0.6В, на моих экземплярах падения напряжения составило всего 150 мВ.

И не забываем очень жирно смазывать флюсом места пайки, тогда припой соберется в красивые блестящие шарики вокруг выводов. Если намазать мало, то он будет плохо приставать к контактам и растекаться во все стороны.

Конденсаторы фильтра
Здесь мастера из поднебесной тоже решили сэкономить и поставили всего 3300 мкФ в плечо. Маловато, надо увеличивать, только без фанатизма!!! Чем больше емкости ставишь, тем больший ток идет через диоды в момент заряда конденсаторов и они могут не выдержать.
Я поставил дополнительно еще по 4700 мкФ в плечо, оставив родные.


С блоком питания все.
Усилитель.
На входе стоят электролиты (С9, С10) - непорядок, так как он работает на переменном токе без смещения, что совсем не хорошо. В даташите на микросхему стоит конденсатор емкостью 1 мкФ, правда тоже электролит.
Идем в магазин и покупаем наш отечественный пленочный К73-17 емкостью 1 мкФ и ставим его. Так как он намного больше электролита, то на ноги лучше одеть термоусадку, чтобы ничего не замкнуло. Запаиваем:

Кроссовер
Если так можно назвать электролитический конденсатор 4.7 мкФ.
Тут есть два варианта:
  • просто ставим пленку
  • соображаем новый кроссовер
У нас стоит конденсатор на твиттере, который режет нижние частоты (фильтр 1 порядка), а на низкочастотный динамик идет весь диапазон. Можно было бы сделать кроссовер, но соотношение качество/трудоемкость получилось бы не в пользу качества. Поэтому выбираем первый вариант. И опять ставим пленочный конденсатор К73-17 4.7 мкФ:


Аналогичную операцию не забываем произвести и во второй колонке.
Темброблок
Тоже не блещет искусной разработкой, поэтому при желании можно его отключить, соединив провода со входа сразу с регулятором громкости (R9, R10). Но я пока решил оставить.
Звук
Тут все очень субъективно. Но мой взгляд стал заметно плотнее.
Но есть и объективные параметры:
  • увеличение емкостей в фильтре БП дает меньшие просадки и на высокой громкости не будет ощущения, что звук проваливается.
  • использование диодов Шотки немного увеличивает напряжение питания, позволяя разогнать микросхему до большей мощности (даташитное напряжение 22В)
  • пленочные конденсаторы вносят в разы меньшие искажения, чем электролитические
В заключении:
Итак, с минимальными финансовыми вложениями и затратами времени можно несколько улучшить звучание твоей акустической системы.

Для компьютерного пользователя ноутбук, несомненно, является удобным, компактным и достаточно функциональным прибором. Но, к сожалению, и данный аппарат не лишён изъянов.

Наверняка многие пользователи ноутбуков и нетбуков сталкивались с проблемой тихого воспроизведения звука через встроенные динамики этих аппаратов.

Если в условиях дома можно подключить внешнюю стереосистему, то вне домашних стен это бывает невозможно и приходиться ограничиваться наушниками. В таком случае речи о коллективном просмотре какого-либо фильма или сериала не идёт.

Как исправить ситуацию?

Исправить сложившуюся ситуацию помогут портативные компьютерные колонки с питанием от порта USB. Сейчас на прилавках магазинов огромный выбор данных приборов, но качество их может отличаться в разы.

Цена портативных компьютерных колонок с питанием от USB-порта достаточно низка и доступна широкому слою населения. Несмотря на это покупка данного устройства может быть и неудачной, так как качество воспроизведения звука такой системой оставит желать лучшего. Как ни странно, но среди дешёвых аппаратов данного класса попадаются приборы весьма хорошего качества, как по дизайну, так и по качеству звуковоспроизведения.

Проведём “вскрытие” портативной акустической системы с питанием от USB-порта и изучим электронную начинку данного прибора. С точки зрения радиолюбителя любопытно узнать, из каких электронных компонентов собираются подобные устройства. Полученные знания могут пригодиться при самостоятельном конструировании портативных звуковых колонок с питанием по USB или их ремонте.

Разборке подвергнем портативные мультимедийные USB колонки марки Sven 315 . Несмотря на их дешевизну, данная модель портативных колонок показала хорошее качество воспроизведения и звуковую мощность, достаточную для озвучивания небольшого помещения.


Разборка компьютерных USB колонок

Разбираются портативные колонки легко. Чтобы вскрыть корпус необходимо аккуратно снять переднюю декоративную панель.



Для того чтобы достать печатную плату усилителя необходимо выкрутить фиксирующую гайку, которая скрыта под пластмассовой ручкой регулятора громкости. После этого электронную плату можно свободно вынуть из корпуса.

Электронная начинка

Состав электронной начинки прибора оказался довольно прост. На небольшой по размеру печатной плате смонтирована интегральная схема стереофонического усилителя на базе микросхемы LM4863D . При напряжении питания в 5 вольт данная микросхема может выдать по 2,2 Вт выходной мощности на канал при сопротивлении звуковой катушки динамика в 4 Ом. На основании описания (datasheet) коэффициент нелинейных искажений + шум (THD+N ) при максимальной выходной мощности составляет 1%.


Плата усилителя и динамик

На основании этих данных можно сделать вывод о том, что на базе микросхемы LM4863D можно собрать довольно неплохой стерео усилитель с низковольтным питанием (5V) и выходной мощностью 2 Вт на каждый канал. Многие, кто ещё не знаком с современными микросхемами считают, что вместо LM4863D подойдёт TDA2822. Это заблуждение! TDA2822 очень прожорлива (по сравнению с LM4863) и на максимальной мощности выдаёт сильные искажения сигнала. Также оптимальное питание для TDA2822 около 12 вольт, что для портативной техники не есть хорошо. TDA2822 можно рекомендовать как легкодоступную замену, если в наличии нет LM4863. Такое может случиться, например, при ремонте.

Стоит отметить, что микросхема LM4863 разрабатывалась специально для компактных систем, поэтому микросхема требует минимум внешних элементов (так называемой обвязки). Микросхема выпускается в разных корпусах, от привычного DIP, до компактного SOIC.

Если возникнет желание самостоятельно собрать усилитель на базе микросхемы LM4863, то можно столкнуться с проблемой. Найти на радиорынках данную микросхему не так уж легко (так было на момент написания данной статьи). А вот на сетевых торговых площадках найти такую микросхему не составило труда. Например, в интернет-магазине AliExpress.com микросхему LM4863 легко найти во всевозможных корпусах и любом количестве. Цена 1 микросхемы менее 1$, если покупать сразу штук 10.

Как купить радиодетали на Aliexpress, я рассказывал .

Кроме самой микросхемы усилителя на печатной плате установлен разъём для подключения пассивной звуковой колонки (без встроенного усилителя), сдвоенный переменный резистор для регулировки входного звукового сигнала и электролитический конденсатор . Со стороны печатных проводников монтажной платы установлены SMD элементы обвязки, которые необходимы для работы интегрального усилителя. Питание микросхемы осуществляется от разъёма USB, который подключается к любому свободному порту ноутбука или стационарного компьютера.

Типовая схема подключения микросхемы LM4863 взята из описания (datasheet"а) на данную микросхему и показана на рисунке.


Типовая схема включения микросхемы LM4863 (взято из описания)

По типовой схеме включения микросхемы LM4863 видно, что она способна работать и на обычные наушники (Headphone ), сопротивление которых составляет 32 Ом. В микросхеме предусмотрена схема определения подключения наушников и для реализации этой функции отведён 16 (HP-IN) вывод.

Для тех, кто разбирается в электронике и datasheet’ы на английском языке их не пугают, могут легко микросхемы LM4863 в интернете на сайте alldatasheet.com.

Схема усилителя портативных USB колонок

Принципиальная схема усилителя сведена вручную с печатной платы компьютерных USB колонок Sven-315. На схеме показан один конденсатор C2 вместо двух (C7,C9), которые реально присутствуют на печатной плате (см. ниже). Сделано это потому, что на печатной плате конденсаторы соединены параллельно (C7 и C9), и на сведённой схеме конденсатор C2 указывает на общую ёмкость этих двух конденсаторов.


Принципиальная схема усилителя на базе LM4863D (сведена вручную)

Как видим, типовая схема из описания отличается от той, что сведена вручную с печатной платы усилителя компьютерных колонок. На схеме отсутствуют элементы, которые устанавливаются в случае добавления в схему разъёма для наушников. В остальном схема соответствует типовой, приведённой в описании на микросхему LM4863.


Размещение элементов на печатной плате

Если планируется использовать портативные колонки без ноутбука, например, совместно с MP3-плеером, то для питания колонок вполне подойдёт 5-ти вольтовый адаптер питания. Главное, чтобы адаптер питания смог обеспечить достаточный ток нагрузки (как оценочный грубый ориентир: стандартный ток нагрузки для портов USB – не более 500 mA). Согласно описанию на микросхему LM4863 максимальный ток покоя (когда на микросхему не подаётся звуковой сигнал) составляет 20 mA. Естественно, при воспроизведении потребляемый ток будет выше.

На фото показан вариант запитки портативных колонок SVEN-315 от 5-ти вольтового адаптера, который используется для зарядки плеера iPod. Максимальный ток нагрузки адаптера 1А чего с лихвой хватает для штатной работы портативных колонок.

Как выяснилось, качественное звуковоспроизведение портативных колонок SVEN-315 заключается в рациональном исполнении корпуса. Как известно, на качество звуковых акустических систем влияют не только применяемые в них громкоговорители, но и корпус. Чтобы убедиться в этом, достаточно вытащить динамик из корпуса и включить воспроизведение. Качество и звуковая мощность воспроизведения окажутся намного хуже. Данное замечание сделано не случайно, поскольку было проведено сравнение качества звуковоспроизведения портативных колонок SVEN-315 и аналогичных, но более дорогих USB колонок SVEN PS-30.

Несмотря на тот факт, что звуковые колонки SVEN PS-30 смонтированы на базе интегрального USB аудио чипа CM6120-S в составе которого 16-ти битный ЦАП и звуковые усилители класса D, качество их звуковоспроизведения субъективно (на слух) гораздо хуже из-за плохого исполнения корпуса акустической системы.

Корпус портативных колонок SVEN-315 изготовлен из ABS-пластика. Возможно, именно конструкция корпуса и позволяет “выжать” из малогабаритных динамиков все их скромные возможности.

Идея переделки акустики SVEN возникла почти сразу после покупки. С самого начала эти АС SVEN излучали заметный фон с ярко выраженными гармониками в всей области слышимых звуковых частот.

Для подтверждения сложной, огибающей данного фона был подключен к выходу усилителя акустика SVEN цифровой анализатор . Природой фона оказалось крайне плохое экранирование схемы, плохая трассировка печатной платы: разработчики не нашли точку «земля», а также не стабильный блок питания. Все эти факторы порождали целый ансамбль гармоник на выходе усилителя. Стоит уделить внимание и самому усилителю. Часто можно слышать такие жаргонизмы как то микросхемный звук или, что более узко, TDA-шный. С ними я не согласен, но отмечу, что некоторые действительно «портят» входной сигнал. В акустике SVEN стоят как раз такие — TDA2030. Может это связанно с ее массовым производством в разных странах и видимо нередким случаем подделки этих дешевых и распространенных микросхем. Новая плата на TA8205 и напряжения LD1084 Так вот звук этих колонок SVEN оставляет желать лучшего. Если говорить аудиофильскими терминами, то звук не достаточно детальный и прозрачный. Да они дешевые, да они маленькие и сами динамические головки простые… Но одержимый их изменить, я добился более качественного звучания. Для новой схемы в номинации «лучшая схема» участвовали следующие микросхемы: — TA7270; — TA7250; — TA8205.

Хочу отметить, что мне знакомы некоторые другие микросхемы фирмы TOSHIBA и все они обладают стабильными характеристиками и высоким качеством усиления. С выхода перечисленных была снята амплитудно-частотная характеристика (АЧХ). Все как одна показали ровную линейную АЧХ.

Плата управления усилителем

Мой выбор был сделан в пользу TA8205, представляющая собой усилитель Hi-Fi. Номиналы некоторых элементов схемы включения этой микросхемы были изменены. Учитывая сильный сигнал с выхода компьютера (АС SVEN как настольные для работы с компьютером), я занизил чувствительность усилителя и настроил его на «мягкий» режим включения. Также усилитель оснащен схемой управления. Идея этой схемы заключается в «мягком» включении усилителя при наличии входного сигнала и отключение его через минуту при его отсутствии. работает стабильно.

Новая плата на TA8205 и стабилизатор напряжения LD1084

Отмечу, что усилитель оснащен стабилизатором напряжения, не имеет на выходе гармонических помех и полностью соответствует техническим характеристиками, заложенным производителем. А так же греется он заметно слабее родного на TDA2030. На слух фон представляет собой белый шум, слышимый в полной тишине, если приложить ухо к самой защитной сетке SVEN. Переделанные колонки SVEN теперь не раздражают своим фоном, а при музыки чувствуется положительная разница с первоначальным вариантом в области средних и высоких частот. Низкие частоты воспроизводятся на слух также, что обусловлено объемом акустических систем. Микросхема фирмы TOSHIBA снова себя оправдала, а значит и усилия, потравленные на переделку акустики. Источником звука была встроенная аудио карта и айфон 4s с ЦАП фирмы . Александр Палей (спец. корр. «Звукомания»)

Я надеюсь, статья «ПЕРЕДЕЛКА КОМПЬЮТЕРНОЙ АКУСТИКИ SVEN »» была интересной и помогла кому-то. Пожалуйста, оставляйте комментарии ниже, чтобы я мог вернуться к вам.

Не бойтесь меня и добавляйтесь в