: сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.

Для электропроводки в квартире сила тока играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения .

Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.

Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение мощности не более 3 с половиной киловатт. Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв. мм, который рассчитан на максимальный ток 25 А.

Единицы измерения мощности электрического тока.

Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.

Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р. Высчитывается по формуле P = А х B, т. е. для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.

На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт. Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А.
Но учтите, что это максимальная величина, в реальности она может быть меньше т. к. телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.

Приборы для измерения электрического тока.

Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:

  1. Амперметр — хорошо всем знакомый с практических уроков физики в школе (рисунок 1). Но в быту и профессионалами они не используются из-за непрактичности.
  2. Мультиметр — это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал .
  3. Тестер — то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
  4. Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.

Как правильно измерять силу тока.

Для того что бы измерить силу для потребителей , необходимо один зажим от амперметра, тестера или мультиметра присоединить к плюсовой клемме аккумулятора или проводу от блока питания или трансформатора, а второй зажим- к проводу идущему к потребителю и после включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- делать замеры.

Будьте аккуратны при размыкании работающей цепи возникает дуга, величина которой возрастает вместе с силой тока.

Для того что бы измерить ток для потребителей подключаемых напрямую в розетку или к электрическому кабелю от домашней электросети, измерительное устройство переводится в режим измерения переменного тока с запасом по верхнему пределу. Далее тестер или мультиметр включаются в разрыв фазного провода. Что такое фаза читаем в .

Все работы необходимо проводить только после снятия напряжения.

После того как все готово, включаем и проверяем силу тока. Только следите, что бы Вы не касались оголенных контактов или проводов.

Согласитесь, что выше описанные методы очень не удобны и да же опасны!

Я уже давно в своей профессиональной деятельности электрика пользуюсь для измерения силы тока токоизмерительными клещами (на картинке справа). Они не редко идут в одном корпусе с мультиметром.

Мерить ими просто- включаем и переводим в режим измерения переменного тока, затем разводим находящиеся сверху усы и пропускаем во внутрь фазный провод, после этого следим что бы они плотно прилегли к друг другу и производим измерения.

Как видите- быстро, просто и можно измерять силу тока под напряжением данным способом, только будьте аккуратны не закоротите в электрощите случайно соседние провода.

Только помните, что для правильного замера- нужно делать обхват только одного фазного провода, а если обхватить цельный кабель, в котором вместе идут фаза и ноль- измерения провести будет не возможно!

Похожие материалы:

Что можно сделать на основе небольшого микроконтроллера Attiny13? Много чего. Например измеритель напряжения, тока, температуры, с выводом результатов на дисплей типа HD44780. Так давайте и соберём это универсальное устройство, которое можно успешно использовать в качестве модуля в блоках питания, зарядках, УМЗЧ и в тех местах, где не требуется очень высокая точность. Размер платы всего 35 х 16 мм.

Схема измерителя U, I, T на Attiny13

  • Диапазон измерения напряжения 0-99V с разрешением 0.1 V.
  • Диапазон измерения тока 0-9.99А с разрешением 10 мА.
  • Диапазон измерения температуры 0-99C с разрешением 0.1C.
  • Потребление тока самого измерителя 35 мА.

Прежде всего надо знать, в каком диапазоне напряжения прибор будет работать. Чтобы это установить, необходимо рассчитать делитель напряжения. Например, для получения измерения 10 В, делитель должен составлять 1/10 (мы умножаем x 10 потому что напряжение будет в 10 раз больше от базового 1 В), для 30 В будет 1/30 и так далее. Затем необходимо настроить программу, для данного диапазона. Эти 30 В умножаем по 640, а результат разделим на 1023. Полученное число приблизительно записывается в начале программы, постоянной напряжения и надо скомпилировать программу (для диапазона 100 В, 8,2к).

Измерение тока также мы можем настроить подобным образом, дать другой делитель, другой диапазон, и перечислить, но не буду этого описывать. Здесь нет аналоговой калибровки температуры, потому что она показалась совершенно лишней.

Корректируем экспериментально в программе, за это отвечает константа const temp. Резистор 1К между массой и выходом датчика устанавливает напряжение, снизить его можно даже до 100 Ом.

Как работает схема

К точкам V и V+ на плате приложено напряжение, которое мы хотим измерить, к точке GND присоединяемся входом массы блока питания, а к точке В - выход массы (измерение происходит на массе). Между точками GND и V - присоединяется шунт. Питание измерителя осуществляется от точки V и V+ через стабилизатор 7805. На плате есть место на стабилизатор в корпусе TO252, но с успехом можно использовать и более крупный стабилизатор 78L05 в корпусе TO92. Максимальное напряжение, которое можно указать для точки V и V+, для обычной 7805 будет до 35В, для 78L05 будет, конечно, меньше, но не больше 30. Для того, чтобы измерять большие напряжения, чип необходимо пополнить отдельно - на стороне печати, следует прервать путь под потенциометром регулировки напряжения, а питание подать до точки А. Система работает с дисплеем 16х1 с контроллером HD44780 или 16х2.

Видео работы измерителя

При прошивке микроконтроллера необходимо задать pin reset как обычный pin (включить fusebit RSTDISBL). Перед выполнением этой операции убедитесь, что все хорошо установили, что после выключения сбрасывается, и нет доступа к процессору обычным программатором! Исходники, а также вся остальная документация и файлы, размещены

Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются или генераторы тока.

Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «~ », для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют ~220 В.

Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.

Измерение напряжения в сети переменного тока

Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.

Перед измерением следует подготовить имеющийся у вас измерительный прибор к работе:

  • Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
  • Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
  • Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, . Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
  • Включить прибор.

Из рисунка видно, что на тестере выбрана граница измерений 300 вольт, а на мультиметре 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.

Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерение напряжения. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.

После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.

Щупы проводов необходимо вставить в розетку или прикоснуться ими к оголенным проводам.

На дисплее мультиметра сразу появится величина напряжения сети в цифровом виде. На стрелочном приборе стрелка отклонится на некоторый угол. Стрелочный тестер имеет несколько градуированных шкал. Если их внимательно рассмотреть, то все становится понятным. Каждая шкала предназначена для определенных измерений: тока, напряжения или сопротивления.

Граница измерений на приборе была выставлена на 300 вольт, поэтому нужно отсчитывать по второй шкале, имеющий предел 3, при этом показания прибора необходимо умножить на 100. Шкала имеет цену деления, равной 0,1 вольта, поэтому получаем результат, изображенный на рисунке, около 235 вольт. Этот результат находится в допустимых пределах. Если при измерении показания прибора постоянно меняются, возможно, плохой контакт в соединениях электрической проводки, что может привести к искрению и неисправностям в сети.

Измерение постоянного напряжения

Источниками постоянного напряжения являются аккумуляторы, низковольтные или батарейки, напряжение которых не более 24 вольт. Поэтому прикосновение к полюсам батарейки не опасно, и нет необходимости в специальных мерах безопасности.

Для оценки работоспособности батарейки или другого источника, необходимо измерение напряжения на его полюсах. У пальчиковых батареек полюсы питания расположены на торцах корпуса. Положительный полюс маркируется «+».

Постоянный ток измеряется аналогичным образом, как и переменный. Отличие заключается только в настройке прибора на соответствующий режим и соблюдении полярности выводов.

Напряжение батарейки обычно обозначено на корпусе. Но результат измерения еще не говорит об исправности батарейки, так как при этом измеряется электродвижущая сила батарейки. Продолжительность эксплуатации прибора, в котором будет установлен элемент питания, зависит от его емкости.

Для точной оценки работоспособности батарейки, необходимо проводить измерение напряжения при подключенной нагрузке. Для пальчиковой батарейки в качестве нагрузки подойдет обычная лампочка для фонарика на 1,5 вольта. Если напряжение при включенной лампочке снижается незначительно, то есть, не более, чем на 15%, следовательно, батарейка пригодна для работы. Если напряжение падает значительно сильнее, то такая батарейка может еще послужить только в настенных часах, которые расходуют очень мало энергии.

. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА .

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный . Приборы, служащие для измерения тока, называют амперметрами , миллиамперметрами и микроамперметрами . Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми .

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1 », а около второго «PА2 ».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой , то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m , 20m , 200m , 10А . Например. На пределе «20m » можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1 , а в разрыв цепи включим мультиметр РА1 . Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA »;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m », диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m », который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8 », что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m ».

Отключаем питание. Переводим переключатель на предел «20m ». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица . Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А ». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А », еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А » сразу же переставляйте плюсовой (красный) щуп на свое штатное место . Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

  • Tutorial

Введение

Всем привет! После завершения цикла по датчикам были вопросы различного плана по измерению параметров потребления бытовых и не очень электроприборов. Кто сколько потребляет, как что подключать чтобы измерить, какие бывают тонкости и так далее. Пришло время раскрыть все карты в этой области.
В этом цикле статей мы рассмотрим тему измерения параметров электроэнергии. Этих параметров на самом деле очень даже большое количество, о которых я постараюсь постепенно рассказать небольшими сериями.
Пока в планах три серии:
  • Измерение электроэнергии.
  • Качество электроэнергии.
  • Устройства измерения параметров электроэнергии.
В процессе разбора будем решать те или иные практические задачи на микроконтроллерах до достижения результата. Разумеется, большая часть данного цикла будет посвящена измерению переменного напряжения и может пригодиться всем любителям контролировать электроприборы своего умного дома.
По итогам всего цикла мы изготовим некий умный электросчетчик с выходом в интернет. Совсем отъявленные любители контролировать электроприборы своего умного дома могут оказать посильную помощь в реализации коммуникационной части на базе, например MajorDomo. Сделаем OpenSource умный дом лучше, так сказать.
В этой серии в двух частях мы разберем следующие вопросы:
  • Подключение датчиков тока и напряжения в устройствах постоянного тока, а также однофазных и трехфазных цепей переменного тока;
  • Измерение действующих значений тока и напряжения;
  • Измерение коэффициента мощности;
  • Полная, активная и реактивная мощность;
  • Потребление электроэнергии;
Подкатом вы найдете ответы на первые два вопроса данного списка. Я намеренно не затрагиваю вопросы точности измерения показателей и с данной серии лишь радуюсь полученным результатам с точностью плюс-минус лапоть. Этому вопросу я обязательно посвящу отдельную статью в третьей серии.

1. Подключение датчиков


В прошлом цикле про датчики напряжения и тока я рассказал о видах датчиков, но не рассказал о том как ими пользоваться и куда их ставить. Пришло время это исправить
Подключение датчиков постоянного тока
Понятно что весь цикл будет посвящён системам переменного тока, но быстро пробежимся и по цепям постоянного тока, так как это может нам пригодиться при разработке источников питания постоянного тока. Возьмем к примеру классический понижающий преобразователь с ШИМ :


Рис 1. Понижающий преобразователь с ШИМ
Нашей задачей является обеспечение стабилизированного выходного напряжения. Кроме того, на основании информации с датчика тока возможно контролировать режим работы дросселя L1, не допуская его насыщения, а также реализовывать токовую защиту преобразователя. И честно говоря, вариантов установки датчиков особо и нет.
Датчик напряжения в виде резистивного делителя R1-R2, который единственный способен работать на постоянном токе, устанавливается на выходе преобразователя. Как правило специализированная микросхема преобразователя имеет вход обратной связи, и прилагает все усилия для того, чтобы на этом входе (3) оказался определённый уровень напряжения, прописанный в документации на микросхему. Например 1,25В. Если наше выходное напряжение с этим уровнем совпадает - все хорошо - мы напрямую подаем выходное напряжение на этот вход. Если нет, то устанавливаем делитель. Если нам надо обеспечить выходное напряжение в 5В, то делитель должен обеспечивать коэффициент деления 4, т. е. Например R1 = 30к, R2 = 10к.
Датчик тока обычно устанавливается между источником питания и преобразователем и на микросхему. По разности потенциалов между точками 1 и 2, и при известном сопротивлении резисторы Rs возможно определить текущее значение тока нашего дросселя. Устанавливать датчик тока между источников и нагрузкой не самая хорошая идея, так как конденсатор фильтра будет отрезан резистором от потребителей импульсных токов. Установка резистора в разрыв общего провода тоже нге сулит ничего хорошего - будет два земляных уровня с которыми возиться то еще удовольствие.
Проблемы падения напряжения можно избежать путем использования бесконтактных датчиков тока - например датчиков холла:


Рис 2. Бесконтактный датчик тока
Однако есть более хитрый способ измерения тока. Ведь на транзисторе точно также падает напряжение и через него течет тот же самый ток что и индуктивность. Следовательно, по падению напряжения на нем можно также определить текущее значение тока. Честно говоря, если посмотреть на внутреннюю структуру микросхем преобразователей, например, от Texas Instruments - то такой способ встречается так же часто как и предыдущие. Точность такого способа конечно не самая высокая, но для работы токовой отсечки этого вполне достаточно.


Рис 3. Транзистор в качестве датчика тока
Аналогично поступаем в других схемах подобных преобразователей, будь то повышающий или инвертирующий.
Однако необходимо отдельно упомянуть о трансформаторных прямоходовом и обратноходовом преобразователях.


Рис 4. Подключение датчиков тока в обратноходовых преобразователях
В них точно также может использоваться либо внешнее сопротивление, либо транзистор в его роли.
На этом с подключением датчиков в преобразователи постоянного тока мы закончили. Если у вас есть предложения по другим вариантам - с удовольствием дополню ими статью.
1.2 Подключение датчиков в однофазные цепи переменного тока
В цепях переменного тока у нас гораздо больший выбор возможных датчиков. Рассмотрим несколько вариантов.
Самый простой - использование резистивного делителя напряжения и токового шунта.


Рис 5.Подключение резисторных датчиков
Однако, у нее усть пара существенных недостатков:
Во-первых, либо мы обеспечим значительную амплитуду сигнала с токового шунта, выделив большое количество мощности на нем, либо будем довольствоваться малой амплитудой сигнала и впоследствии усиливать его. А во-вторых, резистор создает разность потенциалов между нейтралью сети и нейтралью прибора. Если прибор изолирован - то это не имеет значения, если же у прибора есть вывод заземления, то мы рискуем остаться без сигнала с датчика тока, так как закоротим его. Пожалуй стоит попробовать датчики, работающие на других принципах.
Например, воспользуемся трансформаторами тока и напряжения, либо датчиком тока на эффекте холла и трансформатором напряжения. Здесь гораздо больше возможностей по работе с оборудованием, так как нулевой провод не имеет потерь, а главное - в обоих случаях присутствует гальваническая развязка измерительного оборудования, что часто может пригодиться. Однако, необходимо учитывать, что трансформаторные датчики тока и напряжения имеют ограниченную частотную характеристику и если мы захотим измерить гармонический состав искажений, то у нас это не факт что выйдет.


Рис 6.Подключение трансформаторных и бесконтактных датчиков тока и напряжения
1.3 Подключение датчиков в многофазные цепи сетей переменного тока
В многофазных сетях наши возможности по подключению датчиков тока немного меньше. Связано это с тем, что токовый шунт использовать совсем не получится, так как разность потенциалов между шунтами фаз будет колебаться в пределах сотен вольт и мне не известен ни один контроллер общего применения, аналоговые входы которого способны выдержать такое издевательство.
Один способ использовать токовые шунты конечно есть - для каждого канала необходимо сделать гальванически развязанный аналоговый вход. Но гораздо проще и надежнее использовать другие датчики.
В своем анализаторе качества я использую резистивные делители напряжения и выносные датчики тока на эффекте холла.

Рис 7.Датчики тока в трехфазной сети
Как видно из рисунка, мы используем четырехпроводное подключение. Разумеется вместо датчиков тока на эффекте холла можно взять трансформаторы тока или петли Роговского.
Вместо резистивных делителей можно использовать трансформаторы напряжения, причем как для четырехпроводной так и для трехпроводной системы.
В последнем случае первичные обмотки трансформаторов напряжения подключаются треугольником, а вторичные звездой, общая точка которых является общей точкой измерительной цепи


Рис 8.Использование трансформаторов напряжения в трехфазной сети

2 Действующее значение тока и напряжения


Пришло время решить задачу измерения наших сигналов. Практическую значимость для нас представляет в первую очередь действующее значение тока и напряжения.
Напомню матчасть из цикла по датчикам. С помощью АЦП нашего микроконтроллера через равные промежутки времени мы будем фиксировать мгновенное значение напряжения. Таким образом, за период измерения у нас будет массив данных уровня мгновенного значения напряжения (для тока все аналогично).


Рис 9. Серия мгновенных значений напряжения
Наша задача - произвести подсчет действующего значения. Для начала воспользуемся формулой интеграла:
(1)
В цифровой системе приходится ограничиваться неким квантом времени, так что мы переходим к сумме:
(2)
Где - период дискретизации нашего сигнала, а - число отсчетов за период измерения. Где-то здесь я в видео начинаю втирать дичь про равенство площадей. Надо было выспаться в тот день. =)
В микроконтроллерах MSP430FE4252, которые применяются в однофазных электросчетчиках Меркурий, за период измерения равный 1, 2 или 4 секунд производится 4096 отсчетов. На T=1с и N=4096 мы и будем опираться в дальшейнем. Более того, 4096 точек в секунду позволят нам использовать алгоритмы быстрого преобразования фурье для определения гармонического спектра вплоть до 40 гармоники, как того требует ГОСТ. Но об этом в следующей серии.
Набросаем алгоритм для нашей программы. Нам требуется обеспечить стабильный запуск АЦП каждую 1/8192 секунды, так как у нас два канал и измерять мы будем эти данные попеременно. Для этого настроим таймер и сигнал прерывания будет автоматически перезапускать АЦП. Все АЦП так умеют.
Писать будущую программу будем на arduino, так как она у многих под рукой. У нас пока чисто академический интерес.
Имея частоту системного кварца 16МГц и 8-разрядный таймер (чтобы жизнь медом не казалась) нам необходимо обеспечить частоту срабатывания хоть какого прерывания таймера с частотой 8192Гц.
Печалимся по поводу того что 16МГц цело не делится как нам надо и итоговая частота работы таймера 8198Гц. Закрываем глаза на погрешность в 0,04% и все равно считываем по 4096 выборок на канал.
Печалимся по поводу того, что прерывание по переполнению в arduino занято расчетом времени (отвечает за millis и delay, так что это работать нормально перестанет), так что пользуемся прерыванием по сравнению.
А еще внезапно понимаем, что сигнал к нам приходит биполярный, и что msp430fe4252 с ним прекрасно справляется. Мы же довольствуемся униполярным АЦП, поэтому на операционном усилителе собираем простой преобразователь биполярного сигнала в униполярный:


Рис 10.Преобразователь биполярного сигнала в униполярный
Причем наша задача обеспечить колебание нашей синусоиды относительно половины опорного напряжения - тогда мы либо отнимем половину диапазона либо активируем опцию в настройках АЦП и получим знаковые значения.
В Arduino 10-разрядный АЦП, поэтому из беззнакового результата в пределах 0-1023 будем вычитать половину и получим -512- 511.
Проверяем модель, собранную в LTSpiceIV и убеждаемся, что все работает как надо. В видеоматериале дополнительно убеждаемся экспериментально.


Рис 11.результат моделирования. Зеленым исходный сигнал, синим - выходной

Скетч для Arduino для одного канала

void setup() { autoadcsetup(); DDRD |=(1<

Программа написана в среде Arduino IDE для микроконтроллера ATmega1280. На моей отладочной плате первые 8 каналов разведены для внутренних нужд платы поэтому используется канал ADC8. Возможно использовать данный скетч и для платы с ATmega168, однако необходимо выбрать правильный канал.
Внутри прерываний передергиваем пару служебных пинов чтобы наглядно видеть рабочую частоту оцифровки.
Пару слов о том, откуда взялся коэффициент 102. При первом запуске с генератора подавался сигнал различной амплитуды, с осциллографа считывалось показание действующего значения напряжения, а из консоли забиралось рассчитанное значение в абсолютных единицах АЦП.

Umax, В Urms, В Counted
3 2,08 212
2,5 1,73 176
2 1,38 141
1,5 1,03 106
1 0,684 71
0,5 0,358 36
0,25 0,179 19

Разделив значения третьего столбца на значения второго получаем в среднем 102. Это и будет наш «калибровочный» коэффициент. Однако можно заметить, что при снижении напряжения точность резко падает. Это происходит из-за низкой чувствительности нашего АЦП. Фактически 10 разрядов для точных расчётов катастрофически мало и если напряжение в розетке измерить таким образом вполне получится, то поставить 10-разрядный АЦП на измерение потребляемого нагрузкой тока будет преступлением против метрологии.

На данном моменте мы прервемся. В следующей части рассмотрим другие три вопроса данной серии и будем плавно переходить к созданию непосредственно самого устройства.

Представленную прошивку, а также другие прошивки для данной серии (так как видеоматериалы я снимаю быстрее чем подготавливаю статьи) вы найдете в репозитории на GitHub.