Колёсные и гусеничные роботы

Наиболее распространёнными роботами данного класса являются четырёхколёсные и гусеничные роботы. Создаются также роботы, имеющие другое число колёс - два или одно. Такого рода решения позволяют упростить конструкцию робота, а также придать роботу возможность работать в пространствах, где четырёхколёсная конструкция оказывается неработоспособна.


Сегвей в Музее роботов в Нагоя.

Двухколёсные роботы, как правило, для определения угла наклона корпуса робота и выработки подаваемого на приводы роботов соответствующего управляющего напряжения (с целью обеспечить удержание равновесия и выполнение необходимых перемещений) используют те или иные гироскопические устройства. Задача удержания равновесия двухколёсного робота связана с динамикой обратного маятника. На данный момент, разработано множество подобных «балансирующих» устройств. К таким устройствам можно отнести Сегвей, который может быть использован, как компонент робота; так например сегвей использован как транспортная платформа в разработанном НАСА роботе Робонавт.

Одноколёсные роботы во многом представляют собой развитие идей, связанных с двухколёсными роботами. Для перемещения в 2D пространстве в качестве единственного колеса может использоваться шар, приводимый во вращение несколькими приводами. Несколько разработок подобных роботов уже существуют. Примерами могут служить шаробот разработанный в университете Карнеги - Меллона, шаробот «BallIP» , разработанный в университете Тохоку Гакуин (англ. Tohoku Gakuin University ), или шаробот Rezero, разработанный в Швейцарской высшей технической школе. Роботы такого типа имеют некоторые преимущества, связанные с их вытянутой формой, которые могут позволить им лучше интегрироваться в человеческое окружение, чем это возможно для роботов некоторых других типов.

Существует некоторое количество прототипов сферических роботов. Некоторые из них для организации перемещения используют вращение внутренней массы. Роботов подобного типа называют англ. spherical orb robots , англ.orb bot и англ.ball bot .

Для перемещения по неровным поверхностям, траве и каменистой местности разрабатываются шестиколёсные роботы, которые имеют большее сцепление, по сравнению с четырёхколёсными. Ещё большее сцепление обеспечивают гусеницы. Многие современные боевые роботы, а также роботы, предназначенные для перемещения по грубым поверхностям разрабатываются как гусеничные. Вместе с тем, затруднено использование подобных роботов в помещениях, на гладких покрытиях и коврах. Примерами подобных роботов могут служить разработанный НАСА робот англ. Urban Robot («Urbie»), разработанные компанией iRobot роботы Warrior и PackBot.

Шагающие роботы


Робот-андроид ASIMO, производство Honda.

Первые публикации, посвящённые теоретическим и практическим вопросам создания шагающих роботов , относятся к 1970 - 1980-м годам XX в.

Перемещение робота с использованием «ног» представляет собой сложную задачу динамики. Уже создано некоторое количество роботов, перемещающихся на двух ногах, но эти роботы пока не могут достичь такого устойчивого движения, какое присуще человеку. Также создано множество механизмов, перемещающихся на более чем двух конечностях. Внимание к подобным конструкциям обусловлено тем, что они легче в проектировании. Предлагаются также гибридные варианты (как, например, роботы из фильма «Я, робот», способные перемещаться на двух конечностях во время ходьбы и на четырёх конечностях во время бега).

Роботы, использующие две ноги, как правило, хорошо перемещаются по полу, а некоторые конструкции могут перемещаться по лестнице. Перемещение по пересечённой местности является сложной задачей для роботов такого типа. Существует ряд технологий, позволяющих перемещаться шагающим роботам:

  • ZMP-технология: ZMP (англ. ) (англ. Zero Moment Point , «точка нулевого момента») - алгоритм, использующийся в роботах, подобных ASIMO компании Хонда. Бортовой компьютер управляет роботом таким образом, чтобы сумма всех внешних сил, действующих на робота, была направлена в сторону поверхности, по которой перемещается робот. Благодаря этому не создаётся крутящего момента, который мог бы стать причиной падения робота. Подобный способ движения не характерен для человека, в чём можно убедиться сравнив манеру перемещения робота ASIMO и человека.
  • Прыгающие роботы: в 1980-х годах профессором Марком Рейбертом (англ. Marc Raibert из англ. « Leg Laboratory » Массачусетского технологического института был разработан робот, способный сохранять равновесие посредством прыжков, используя только одну ногу. Движения робота напоминают движения человека на тренажёре пого-стик. Впоследствии алгоритм был расширен на механизмы, использующие две и четыре ноги. Подобные роботы продемонстрировали способности к бегу и способность выполнять сальто. Роботы, перемещающиеся на четырёх конечностях, продемонстрировали бег, перемещение рысью, аллюром, скачками.
  • Адаптивные алгоритмы поддержания равновесия. В основном базируются на расчете отклонений мгновенного положения центра масс робота от статически устойчивого положения или некоей наперед заданной траектории его движения. В частности, подобную технологию использует шагающий робот-носильщик Big Dog. При движении этот робот поддерживает постоянным отклонение текущего положения центра масс от точки статической устойчивости, что влечет необходимость своеобразной постановки ног («коленки внутрь» или «тянитолкай»), а также создает проблемы с остановкой машины на одном месте и отработкой переходных режимов ходьбы. Адаптивный алгоритм поддержания устойчивости также может базироваться на сохранении постоянного направления вектора скорости центра масс системы, однако подобные методики оказываются эффективными только на достаточно высоких скоростях. Наибольший интерес для современной робототехники представляет разработка комбинированных методик поддержания устойчивости, сочетающих расчет кинематических характеристик системы с высокоэффективными методами вероятностного и эвристического анализа.

Другие методы перемещения

  • Летающие роботы. Большинство современных самолётов являются летающими роботами, управляемыми пилотами. Автопилот способен контролировать полёт на всех стадиях - включая взлёт и посадку. К летающим роботам относятся также беспилотные летательные аппараты (БПЛА; важный их подкласс составляют крылатые ракеты). Подобные аппараты имеют, как правило, небольшой вес (за счёт отсутствия пилота) и могут выполнять опасные миссии; некоторые БПЛА способны вести огонь по команде оператора. Разрабатываются также БПЛА, способные вести огонь автоматически. Кроме метода движения, используемого самолётами, летающими роботами используются и другие методы движения - например, подобные тем, что используют пингвины, скаты, медузы; такой способ перемещения используют роботы Air Penguin, Air Ray и Air Jelly компании Festo, или используют методы полёта присущие насекомым, как, например, RoboBee.

Два змееподобных ползающих робота. Левый оснащён 64-мя приводами, правый - десятью.

  • Ползающие роботы. Существует ряд разработок роботов, перемещающихся подобно змеям, червям, слизням. Предполагается, что подобный способ перемещения может придать им возможность перемещаться в узких пространствах; в частности, предполагается использовать подобных роботов для поиска людей под обломками рухнувших зданий. Так же, разработаны змееподобные роботы, способные перемещаться в воде; примером подобной конструкции может служить японский робот ACM-R5.
  • Роботы, перемещающиеся по вертикальным поверхностям. При проектировании подобных роботов используются различные подходы. Первый подход - проектирование роботов, перемещающихся подобно человеку, взбирающемуся на стену, покрытую выступами. Примером подобной конструкции может служить разработанный в Стэнфордском университете робот Capuchin. Другой подход - проектирование роботов, перемещающихся подобно гекконам. Примерами подобных роботов являются Wallbot и Stickybot
  • Плавающие роботы. Существует много разработок роботов перемещающихся в воде подражая движениям рыб. По некоторым подсчетам эффективность подобного движения может на 80 % превосходить эффективность движения с использованием гребного винта. Кроме того, подобные конструкции производят меньше шума, а также отличаются повышенной манёвренностью. Это является причиной высокого интереса исследователей к роботам, движущимся подобно рыбам. Примерами подобных роботов являются разработанный в Эссекском университете робот Robotic Fish и робот Tuna разработанный Institute of Field Robotics (англ.) для исследования и моделирования способа движения, характерного для тунца. Так же, существуют разработки плавающих роботов других конструкций. Примерами являются роботы компании Festo: Aqua Ray имитирующий движения ската и Aqua Jelly, имитирующий движение медузы.

9 самых жутких пыток древнего мира

Что форма носа может сказать о вашей личности?

20 Признаков что вы нашли идеального парня

Танцевать как робот – это танцевать в стиле поппинг. В основе танца техника быстрого сокращения мышц и расслабления. Поэтому во время танца создается эффект будто танцор резко вздрагивает. Подобные вздрагивания в сочетании с различными позами и движениями выполняются непрерывно под ритм музыки. Танцоры изображают движения ожившего манекена или робота.

Инструкция

  1. Если вы таки решили научиться данному танцу, то следует прислушаться к следующим рекомендациям. Для занятий нужно подобрать музыку. Она должна быть ритмичной, около 100-120 ударов в минуту. Важно чувствовать ритм музыки, соблюдать музыкальность. Обучитесь делать сильное сокращение мышц, это можете телу как бы вибрировать и трястись. Такие движений являются характерной особенностью этого вида уличного танца. В танце эти «вздрагивания» выполняются непрерывно, комбинируются с разными движениями и позами.
  2. Помните, что основой этого стиля является удар. Отрабатывайте его грудной клеткой, шеей, руками, ногами в различных вариациях. Выучите 10 базовых элементов и 4-5 типичных связок. Потом до идеала доведите технику исполнения фиксации. Постарайтесь скопировать движения робота, совершайте небольшие остановки в конце каждого сделанного движения, это позволит подчеркнуть резкость следующего элемента.
  3. В движениях много жестикуляций, углов, вам следует их освоить. Учтите, что практически все движения в танце робота делаются стоя, однако есть элементы, которые осуществляются с опусканием на колени и лежа.
  4. Движения кистями рук и самими руками должны выполняться очень резко. Руки могут быстро и энергично описывать круги, словно кисть рубит воздух, подобные элементы придадут танцу решительность, собранность и силу. Можете делать указывания пальцем. Можно выполнять элементы, создающие иллюзию, словно вы скользите или плывете по полу в различных направлениях. «Пускание» волн по рукам и корпусу. Научитесь скользить ногами по полу, как бы создавая эффект скольжения по воздуху, используя перекатывание стопы с носка на пятку.
  5. Все движения необходимо повторять через одинаковые промежутки времени, так у танцора получится создать эффект, что он движется будто под светом стробоскопа.
  6. Экспериментируйте, используя уже выученные элементы. Используйте движения и элементы из других направлений, создайте свой стиль, совершенствуйте технику. Чем более непредсказуемый танец, чем разнообразнее движения, тем интереснее зрителю за ним наблюдать.
  7. Смотрите видео уроки, представленные в конце статьи, чтобы лучше понять особенности этого танца и научиться его движениям.

Обратите внимание

Этот танце появился в семидесятых годах двадцатого века. Его продолжительное время танцевали под музыку: электро, фанк и диско. Родиной поппинга является Калифорния. Сейчас движения этого стиля подстраивают под современные мелодии и песни. Частенько его танцуют под новинки электронной музыки и хип-хоп. Он очень популярен среди молодежи. Его элементы встречаются в клипах и фильмах. Даже проводятся соревнования по этому виду танца.

Видео уроки

Мы предполагаем, что владелец конструктора уже знаком с контроллером Arduino и средой проектирования Arduino IDE. Поэтому в данном описании мы не будем рассказывать, как и где скачать и установить необходимые прораммы.
Если вы с программированием Arduino сталкиваетесь в первый раз, пожалуйста познакомьтесь с подготовкой к работе на нашей странице:

В гнезда блока управления R-5 устанавливается контроллер . Поэтому и в настройках среды разработки Arduino IDE необходимо выбрать именно этот контроллер с процессором ATmega328

Теперь уже приступаем непосредственно к программированию.
Программа для контроллера Ардуино обычно состоит из 3-х частей.

В первой части, как в обычной математической задаче описываются исходные данные. Мы присваиваем названия, назначение, функционал контактов контроллера. Записываем, какие библиотеки мы будем использовать в ходе выполнения программы.

Во второй части с названием Setup пишем уже непосредственно код программы. Но этот код исполняется только один раз за время работы программы. Это необходимо для того, что бы запрограммировать выходы, входы контроллера на все время действия программы

И третья часть программы loop представляет собой команды, которые исполняются процессором в течение всего периода работы процессора.

Рассмотрим простой пример кода для движения робота.

В первой части кода мы определяем, какими контактами платы Ардуино мы будем управлять драйвером и соответственно электромоторами, придумаем название команд, что бы нам было понятно их назначение.
В блоке R-5 контакты Ардуино жестко подключены к входам драйвера.
Давайте посмотрим на рисунок ниже:

M_R _ IN - вход драйвера, управляющий направлением вращения правого электромотора. Высокий уровень (HIGHT) - вращение вперед.
M_ R _ EN - вход драйвера, разрешающий вращение правого электромотора. Высокий уровень (HIGHT) разрешает вращение. При подаче на вход сигнала с широтно-импульсной модуляцией (ШИМ, PWM) вход управляет скоростью вращения.
M_ L _ IN - вход драйвера, управляющий направлением вращения левого электромотора. Высокий уровень (HIGHT) - вращение вперед.
M_ L _ IN - вход драйвера, разрешающий вращение левого электромотора. Высокий уровень (HIGHT) разрешает вращение. При подаче на вход сигнала с широтно-импульсной модуляцией (ШИМ, PWM) вход управляет скоростью вращения.
И у нас получается следующее:

Контакт Ардуино 2 - направление вращения правого мотора
Контакт Арудино 3 - разрешение вращения правого мотора. При работе ШИМ - регулировка скорости вращения.
Контакт Ардуино 4 - направление вращения левого мотора.
Контакт Ардуино 5 - разрешение вращения левого мотора. При работе ШИМ - регулировка скорости вращения.

Пишем код.

#define DIR_R 2 // управлять направлением вращения правого мотора будем с контакта 2
#define SPEED_R 3 // управлять разрешением вращения и скоростью вращения правого //мотора будем с контакта 3
#define DIR_L 4 //управлять направлением вращения левого мотора будем с контакта 4
#define SPEED_L 5 // управлять разрешением вращения и скоростью вращения левого //мотора будем с контакта 5

//В этой части кода больше не будем задавать ни каких параметров

// приступаем ко второй части программы. Мы знаем, что в этой части кода команды //исполняются только один раз

void setup()
{
pinMode (DIR_R, OUTPUT); /
/ Драйвер управляется выходными сигналами с Ардуино.
//Поэтому мы определяем все контакты, как OUTPUT

pinMode (SPEED_R, OUTPUT);
pinMode (DIR_L, OUTPUT);
pinMode (SPEED_L, OUTPUT);
}

// И в третьей части кода мы уже пишем алгоритм работы. Т.е. то, что наш робот должен
//выполнять

void loop()
{
digitalWrite (DIR_R, HIGH);
// Команда digitalWrite устанавливает на контакте 2 высокий
//уровень. Для драйвера моторов это означает то, что мотор будет вращаться вперед
// высокий уровень на контакте 3 разрешает драйверу
//вращать электромотор

digitalWrite (DIR_L, HIGH);

delay(1000);
// Вращаем 1 сек

digitalWrite (DIR_R, HIGH);
// Низкий уровень запрещает вращение моторов
digitalWrite (DIR_L, HIGH);

delay(1000);

DigitalWrite (DIR_R, LOW); // Включаем низкий уровень и мотор должен вращаться в
//обратную сторону

digitalWrite (SPEED_R, HIGH); //Разрешаем вращение мотора
digitalWrite (DIR_L, LOW);
digitalWrite (SPEED_L, HIGH);
delay(1000);

DigitalWrite (DIR_R, LOW);
digitalWrite (SPEED_R, LOW); // Вращение запрещено
digitalWrite (DIR_L, LOW);
digitalWrite (SPEED_L, LOW);
delay(1000);
}

Скопируйте текст программы и вставьте его в Arduino IDE.
После копирования обязательно проверьте, что бы комментарии в каждой строчке начинались с двух символов //.
После проверки загрузите код в контроллер. Установите контроллер в блок R-5 и включите питание робота.

Наш робот, исполняя написанный выше скетч, должен в течение одной секунды ехать вперед, затем на секунду остановиться и начать движение назад. И так как команда loop исполняется постоянно, то робот будет выполнять эти команды пока включено питание.

Мобильный робот перемещается для решения тех или иных задач, получает данные с внешних датчиков, и должен постоянно , чтобы управлять своим движением. Все эти процессы происходят непрерывно и тесно взаимосвязаны друг с другом. Сегодня речь пойдет об основных конфигурациях колесных роботов и том, как математически описываются их перемещения. Этот материал поможет выбрать колесную конфигурацию для своего мобильного робота.

Мобильные роботы могут перемещаться в различных средах: в водной, воздушной, по земле, в космосе. И движение в каждой среде имеет свои особенности, связанные с их различными физическими свойствами.

В этой публикации я рассмотрю колесных роботов, которые способны перемещаться по достаточно плоским поверхностям.

При разработке системы перемещения робота необходимо учитывать следующие моменты:

  • скорость или ускорение движения
  • точность позиционирования (повторяемость)
  • гибкость и робастность (надежность) при различных условиях
  • эффективность (низкое энергопотребление)

Система координат

Для того чтобы математически описать движение мобильного робота нам потребуется определить системы координат. Я введу две системы координат — мировую систему координат W (буду считать что он неподвижна в пространстве), и система координат робота R , которая перемещается в пространстве и остается неподвижной относительно самого робота.

Нам необходимо определить местоположение робота, то есть мы хотим знать, как преобразовывать координаты между W и R .

Степени свободы движения

Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы.

Твердое тело, которое перемещается и вращается двигаясь по одномерному пути имеет одну степень свободы — поступательную. В качестве примера можно привезти поезд, движущийся по рельсам.

Твердое тело, которое перемещается и вращается на плоскости имеет 3 степени свободы: 2 поступательных и 1 вращательную. Пример: наземный робот.

Твердое тело, которое перемещается и вращается в 3D-объеме имеет 6 степеней свободы: 3 поступательных и 3 вращательных. Пример: летающий робот.

Особый случай — это так называемый голономный робот, который способен перемещаться мгновенно в любом направлении в пространстве его степеней свободы (робот является голономным если число управляемых степеней свободы равно полному числу степеней свободы). Голономные роботы существуют, но требуют множество моторов и необычный конструктив, что зачастую очень непрактично. Однако, наземные голономные роботы могут быть реализованы с использованием всенаправленных колес (omni-wheels).

На видео показан пример четырехколесного робота со всенаправленными колесами.


Конфигурации колесных роботов

Существует множество различных конфигураций мобильных роботов.

Есть те, которые применяются реже, например, двухколесная платформа сигвей (segway) с динамическим балансом обладает хорошей высотой при малой площади и достаточно большим ускорением.

Или марсоход Opportunity, который имеет колеса на штангах для преодоления больших препятсвий.

Но чаще применяются другие типы конфигураций.

Это простые, надежные, прочные механизмы, пригодные для роботов, которые в основном передвигаются по плоскости.

Все эти роботы неголономны (используется два двигателя, но три степени свободы движения). Например, не может мгновенно двигаться в сторону.

Робот с дифференциальным приводом

Такая конфигурация используется в .

Робот с дифференциальным приводом имеет два мотора, по одному на каждое колесо (на рисунке — это большие колеса). Изменение направления движения достигается за счет разных скоростей (отсюда и название — дифференциальный).

  • Для прямолинейного движения колеса должны вращаться с одинаковыми скоростями.
  • Для того, чтобы робот развернулся на месте, необходимо установить скорости одинаковыми по модулю, но направленными противоположно.
  • Другие комбинации скоростей приводят к движению по дуге

Движение по дуге

Обозначим скорости колес (линейные скорости с которыми они «покрывают» поверхность) и - для левого и правого колес, соответственно, и расстояние между колесами.

Для того, чтобы найти радиус криволинейного пути, рассмотрим период движения , в течении которого робот движется вдоль дуги окружности, имеющей угол .

Автомобиль/Трицикл/Реечно-зубчатый привод

Такой тип роботов имеет два мотора — один для движения, другой для рулежки.

  • Не может нормально развернуться на месте.
  • При постоянной скорости и угле поворота движется по дуге окружности.
  • В четырехколесной схеме необходим задний дифференциал и переменная связь («Принцип Аккермана») на рулевые колеса.

Круговое движение трехколесного робота

При условии, что отсутствует боковая пробуксовка колес, пересечем оси передних и задних колес, чтобы сформировать прямоугольный треугольник, и в результате получим:

Радиус траектории, которую описывают задние колеса:

За время расстояние вдоль этой дуги окружности, пройденное приводными колесами равно , поэтому угол на который повернется робот:

Зубчатая передача

Двигатели постоянного тока, как правило, обладают высокой скоростью вращения и низким крутящим момент, поэтому зубчатая передача практически всегда необходима для управления роботом.

Если Передача 1 имеет крутящий момент , она оказывает тангенциальную силу

на Передачу 2 . Крутящий момент Передачи 2 поэтому

Изменение угловой скорости между Передачей 1 и Передачей 2 вычислим, рассмотрев скорость в точке где они соприкасаются:

  • Когда маленькая шестерня приводит в движение большую, второе зубчатое колесо будет иметь более высокий крутящий момент и меньшую угловую скорость пропорционально соотношению зубьев.
  • Для достижения комбинированного воздействия шестерни можно объединять в цепочки.

Оценка движения c помощью датчиков

Очень часто, робот оценивает свое движение путем мониторинга собственных датчиков. Это может быть, например напряжение электродвигателя и колесные датчики. Эта информация называется одометрией .

Например, на основе очень простой оценки:

Пройденное расстояние пропорционально напряжению и времени. Здесь является расчетной константой (используя знания электричества и геометрии), но также может быть получена в результате калибровки .

Энкодеры дают большую точность измерения числа оборотов колес. Информация с энкодера может быть преобразована в линейное расстояние умножением на постоянный радиус колеса. Но все же, как правило, для большей точности, все равно проводится калибровка.

Движение и состояние робота для плоскости

Если предположить, что робот ограничивается перемещением на плоскости, его местоположение может быть определено вектором состояния , состоящем из трех параметров:

И определяют местоположение предопределенной точки «центра робота» в мировой системе координат.

Определяет угол поворота между системами координат (угол между осями и ).

Две системы координат совпадают в момент, когда центр робота находится в начале координат и .

Интегральное движение на плоскости

Получая перемещения робота в некоторые моменты времени, мы можем найти весь путь, пройденный роботом, просуммировав эти значения, или перейдя к пределу (при стремлении количества измерений ) — путем их интегрирования.

При движении на плоскости мы имеем три степени свободы для определения положения, представленные при .

Рассмотрим робота, который может только двигаться вперед или поворачиваться на месте:

При прямолинейном движении робота на расстояние новое состояние будет выражено как:

Если присутствует только вращательное движение, при повороте на угол :

Оценка кругового 2D движения

Для случаев и дифференциального и трехколесного роботов мы можем получить выражения для и для случая когда присутствует только движение по дуге окружности.

Одна из ключевых задач мобильной робототехники – это поиск маршрута для движения и его оптимизация. Перемещаясь в рабочей местности, робот должен постоянно оценивать окружающую обстановку, определять свое положение и положение окружающих его объектов. Существует множество различных способов, с помощью которых робот может определять собственное положение и строить маршрут между точками назначения. При перемещениях на улице применяется технология спутниковой навигации, а окружающие объекты обнаруживаются с помощью камер или дальномеров. В случае перемещения внутри помещений с помощью камер и дальномеров строится виртуальная модель пространства, по которой робот ориентируется в дальнейшем. Вышеописанные методы имеют общий характер и применимы в произвольных ситуациях, но из-за этого они очень сложны в реализации и еще не применяются широко в повседневной жизни.


Как правило, автономные робототехнические системы проектируются под конкретные задачи. Такой подход позволяет формализовать требования к системе и разработать все возможные алгоритмы реакции на изменение состояния окружающей обстановки.

Например, одной из достаточно жестко формализованных задач может быть перемещение объектов внутри производственного помещения. Как правило, при перевозке грузов на складах или в производственных цехах роботы преодолевают один и тот же маршрут постоянно. Соответственно данный маршрут заранее известен и для него можно разработать систему управления движением робота.

Ранее цеховые транспортные средства представляли собой тележки, перемещающиеся по рельсам. С ростом науки и техники на смену им пришли робокары – мобильные роботы разных типов и для различных задач, а рельсы, проложенные вдоль цеха, заменила паутина направляющих линий, начерченных на полу.


Мобильные роботы, передвигающиеся в цехах вдоль линии, подобно роботам из предыдущих лабораторных работ оснащаются различными сенсорными устройствами для восприятия окружающей обстановки: ИК-датчиками, камерами, датчиками безопасности и т.п. Но в отличие от рассматриваемых ранее роботов, реальные роботы работают отнюдь не в лабораторных условиях – зачастую направляющая линия может быть повреждена или скрыта за каким-либо объектом, некоторые маршруты могут пересекаться или вовсе прерываться частично.


На реальный маршрут могут накладываться различные ограничения, например: некоторые участки маршрута могут быть запрещены для движения, а некоторые могут быть достигнуты только после проезда через другие.

Становится очевидным, что методы движения вдоль линии, представляющей собой замкнутую траекторию, не совсем приемлемы в подобном случае. С примерами различных алгоритмов движения вдоль линии можно ознакомиться в предыдущих работах, но сразу же можно сделать вывод о том, что ни один из них не учитывает прерывистости траектории движения или наличия на ней пересечений.

Если в процессе движения управляющая программа мобильного робота окажется не в состоянии определить наличие пересечения направляющих линий, это может привести к неоднозначности принятия решения.

При переезде пересечения линий система управления мобильного робота получит данные, свидетельствующие о том, что направляющая линия находится одновременно и справа и слева относительно робота. Соответственно процесс принятия решения о последующих маневрах будет нарушен.



Для того распознавания пересечений направляющих линий может применяться множество различных способов, например в подобных целях достаточно часто применяются камеры. Но обработка изображений требует большой производительности бортового компьютера робота, поэтому такие решения не всегда применимы. В данной работе рассматривается способ управления мобильным роботом с помощью информации, поступающей от массива ИК-датчиков. С помощью массива из семи датчиков S1-S7 становится возможным определить местоположение пересечений линий. Поскольку вариантов наиболее вероятных пересечений достаточно много, следует настраивать управляющую программу робота на максимально возможное количество допустимых вариантов, определенных на основании показаний ИК-датчиков.

Выполнение маневров вблизи перекрестков

В процессе движении вдоль маршрута, представляющего собой пересекающуюся линию, помимо отслеживания линии необходимо осуществлять выбор направления движения на каждом из перекрестков. Прохождение правильной последовательности перекрестков дает возможность проехать заданный маршрут верным образом.

В рамках данной работы предлагается разработать программу следования вдоль заданного маршрута. В качестве примера рассмотрим базовый маршрут, приведенный на рисунке. Чтобы разработать программу для движения вдоль данного маршрута на нем необходимо выделить особые точки, являющиеся пересечениями маршрута или его разрывами. Для того чтобы робот доехал до финиша, он должен следовать вдоль линии и пройти четыре указанные точки.

Движение по заданному маршруту определяется алгоритмической последовательностью, которая задает один из маневров в каждой из ключевых точек. В частности, в приведенном примере на первом пересечении маршрута робот продолжает движение в прямом направлении, на втором поворачивает налево, а на третьем – направо и следует до финишной черты.


Аналогичным образом можно разработать программу движения робота вдоль любого из более сложных маршрутов. Для этого всего лишь необходимо задать последовательность движения робота через пересечения маршрута.

Управляющая программа сводится к поочередному поиску каждой из точек заданной последовательности. Каждая из точек описывается собственной функцией, с помощью которой она распознается, а также скоростью прохождения данного участка, которая определяется на стадии инициализации программы.


Текст программы представляет собой последовательность поочередных вызовов функций, задающих требуемое движение. Для того чтобы варьировать направление движения робота вдоль линии, необходимо всего лишь поменять очередность вызова функций.

Вышеуказанные функции можно разделить на два основных типа:

1) Функции, осуществляющие поворот робота на Т-образных и Г-образных перекрестках.

2) Функции, с помощью которых робот движется до ближайшего перекрестка без каких-либо действий.

В первом случае функция состоит из двух отдельных операций – вызова функции движения вперед и вызова функции поворота в заданном направлении.

Функция l_node_l_turn предназначена для осуществления поворота налево на ближайшем левом пересечении. Функция состоит из двух других функций: l_node_forward отвечающей за движение до ближайшего Г-образного перекрестка с поворотом налево, и pivot_left, за сам отвечающей за поворот налево.

Функция l_node_forward в бесконечном цикле ищет точку пересечения траекторий с помощью функции l_node_detect. Во время поиска робот постоянно следует линии с помощью функции follow_line. После обнаружения точки пересечения маршрутов робот совершает кратковременный рывок вперед, ограниченный временем таймера, для того чтобы слегка сместиться для дальнейшего поворота налево. Данное перемещение крайне важно, для того чтобы после маневра робот оказался по центру направляющей линии. Особое внимание следует уделить процессу распознавания точек пересечения маршрута. Очевидно, что в процессе движения робота по маршруту могут возникнуть различные ситуации, но большинство из них можно описать формальными признаками, например по срабатыванию ИК-датчиков.


Рассмотрим процесс движения робота через участок маршрута с левым поворотом. Очевидно, что в процессе движения робота часть ИК-датчиков попадет на черную линию и возникнет одна из ситуаций, проиллюстрированных ниже.


На рисунке черным цветом отмечены ИК-датчики, расположенные над черной линией, в свою очередь белым цветом – расположенные над белым участком поверхности. В процессе движения робота можно опросить каждый из датчиков и с помощью перебора вариантов определить текущее положение робота.


В приведенной выше функции описывается процесс распознавания левого Г-образного поворота. Согласно приведенному алгоритму под подобной точкой маршрута понимается участок траектории, на котором срабатывают ИК-датчики № 1, № 2, № 3.

Подобным образом можно распознать любой участок маршрута. На первый взгляд это может показаться достаточно простой задачей, но стоит уделять повышенное внимание точности распознавания текущего положения. На точность работы программы могут влиять качество рабочей поверхности, скорость движения робота. Для повышения точности работы программы в функции l_node_detect реализован механизм защиты от ложных срабатываний. Одно и то же условие проверяется дважды после программируемой задержки.


Меры повышения точности работы управляющей программы крайне важны при разработке системы управления. Пренебрежение ими может привести к некорректной работе алгоритма и всей робототехнической системы в целом.

Выполнение сложных маневров

В реальных ситуациях мобильные роботы перемещаются не только по прямолинейным участкам маршрута, но и по криволинейным траекториям, а также выполняют различные маневры.


Чем больше система управления содержит в себе описаний подобных маневров, тем более сложные маршруты может преодолевать робот. Например, на подобии того маршрута, что приведен ниже на рисунке.


В целом программа управления идентична программе, рассматриваемой в предыдущей части. Также как и для любой другой программы задается последовательность прохождения узлов траектории.

По сравнению с предыдущей частью работы добавились два новых типа движений – движение по дуге окружности и движение по диагонали, причем каждое из этих движений различается по направлениям.

Каждая из этих функций состоит из функции следования маршруту - diag_corner_forward, I_curve_branch_forward и функции поворота в требуемом направлении – pivot_left, pivot_right. Контроль за движением робота вдоль линии под углом осуществляется с помощью ИК-датчиков № 1 и № 7, которые задают положение робота над линией. Если же робот оказывается над линией, то запускается функция follow_line, с помощью которой робот отслеживает собственное положение относительно линии и центрируется на ней с помощью ИК-датчика № 4.

Следование линии нацелено в первую очередь на движение вдоль нее с ориентацией центра робота над линией. Поскольку центр робота совпадает с ИК-датчиком № 4, функция follow_line стремится минимизировать отклонения ИК-датчиков № 3 и № 5 относительно линии.


Суть данного процесса сводится к выполнению ряда условий:

1) Если ИК-датчик № 4 находится над линией, то робот едет прямолинейно с максимальной скоростью.

2) Если один из ИК-датчиков № 3 или № 5 обнаружил линию, то робот поворачивается в противоположном направлении с минимальной скоростью.

Во время следования линии изменяется, в зависимости от положения робота, скорость его маневрирования. Это сделано из-за того, что в некоторых ситуациях необходимы плавные движения робота, чтобы он не съехал с линии, например при маневрировании между датчиками № 3 и № 5.

В случае же если робот отклонился от линии достаточно сильно, необходимо скорректировать его положение максимально быстро, поэтому скорость его движения увеличивается.

За изменение скорости движения робота отвечает функция change_speed, которая задает скорость вращения приводов в процентном соотношении от значения максимальной скорости.


Помните, что соблюдение скоростного режима – одно из важнейших условий, влияющих на движение робота по заданному маршруту. Одно из важнейших требований к алгоритму управления мобильным роботом – соблюдение оптимальной скорости для данного участка маршрута.


Соблюдение скоростного режима – это не просто требование безопасности движения, это в первую очередь требование, позволяющее минимизировать ошибки работы управляющей программы робота. Стоит помнить, что скорость движения робота существенным образом влияет на качество распознавания узловых точек маршрута и ориентацию самого робота относительно направляющей линии.

Основная цель разработчика робототехнических систем – это обеспечение качественной и безотказной работы в процессе функционирования. Ради этого можно пожертвовать многим – производительностью, ресурсоемкостью и т.п., в том числе и быстродействием.

Заключение

Данная лабораторная работа наиболее важная среди работ, рассмотренных ранее. Это обусловлено не только сложностью преподносимого материала, но и затронутыми важными проблемами, такими как обеспечение точности и качества работы робототехнических систем.


Цель данной работы продемонстрировать, что не только внешние факторы влияют на качество работы того или иного робота. Существенное влияние на процесс выполнения поставленной задачи может оказывать сам робот, функционирующий на основании программы управления.

Рассмотренные в обеих частях программы наглядно демонстрируют влияние скорости движения на качество прохождения заданной траектории. Для закрепления результатов работы можно исследовать движение робота по приведенному ниже маршруту, сочетающему в себе все возможные маневры, рассмотренные ранее.


Помимо сложности маршрута и скорости движения на функционирование робота существенное влияние оказывает качество поверхности, по которой осуществляется движение. Вполне возможна ситуация, что линия, вдоль которой должен передвигаться робот, может оказаться поврежденной или даже закрашенной.

Разработчик робототехнической системы должен предусмотреть все возможные варианты применения своего проектного решения. Чем больше всевозможных влияющих факторов будет учтено на стадии проектирования, тем точнее и качественнее будет функционировать робот.