Вопросом передачи электричества без проводов ученые занимаются уже третий век. В последнее время вопрос не то чтобы не потерял актуальности, а наоборот сделал шаг вперед, что только радует. Читателям сайта мы решили подробно рассказать как развивалась беспроводная передача электроэнергии на расстояния от начала и до наших дней, а также какие технологии уже практикуются.

История развития

Передача электроэнергии на расстояние без проводов рука об руку развивается с прогрессом в области радиопередачи, потому что принцип действия в этих явлениях во многом схож, если не сказать одинаков. Большая часть изобретений основывается на методе электромагнитной индукции, а также электростатического поля.

В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно мы рассматривали в статье ранее.

Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.

Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:

Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.

Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.

Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:

  1. Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
  2. А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
  3. В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.

Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.

И к 1899 году Тесла приходит к выводу:

Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.

В наши дни

Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.

Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:

На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.

Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.

Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.

В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.

Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.

В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.

Похожие материалы:

Нравится(0 ) Не нравится(0 )

При своем появлении переменный электрический ток казался фантастикой. Его изобретатель, гениальный физик Никола Тесла, еще на рубеже XIX и XX столетий исследовал проблему беспроводной передачи электричества на большие расстояния. Пока что эта проблема решена не до конца, но полученные результаты обнадеживают.

Ультразвук для передачи энергии

Любая волна переносит энергию, в том числе и звуковые волны высокой частоты. Существует три подхода к беспроводной передаче электричества:

  • передача электрической энергии через преобразование в другой вид энергии в источнике и обратное преобразование в электричество в приемном устройстве;
  • создание и использование альтернативных проводников электричества (плазменных каналов, столбов ионизированного воздуха и т. д.);
  • использование токопроводящих свойств литосферы Земли.

Метод применения ультразвука относится к первому подходу. В источнике ультразвука особого вида при подаче электропитания возникает направленный пучок звуковых волн высокой частоты. При их попадании на приемник энергия звуковых волн преобразуется в электрический ток.

Максимальное расстояние передачи электроэнергии без проводов составляет 10 метров. Результат получен в 2011 году представителями университета Пенсильвании во время презентации в рамках выставки «The All Things Digital». Этот метод не считается перспективным из-за нескольких его недостатков: низкий КПД, малое получаемое напряжение и ограничение на силу излучения ультразвука санитарными нормами.

Применение электромагнитной индукции

Хотя большинство людей даже и не подозревает об этом, этот метод используется уже очень давно, практически с самого начала использования переменного тока. Самый обычный трансформатор переменного тока является простейшим устройством беспроводной передачи электроэнергии, только расстояние передачи при этом очень маленькое.

Первичная и вторичная обмотки трансформатора не соединены в одну цепь, а при протекании переменного тока в первичной обмотке возникает электроток во вторичной. Перенос энергии при этом происходит посредством электромагнитного поля. Поэтому этот метод беспроводной передачи электроэнергии использует преобразование энергии из одного вида в другой.

Уже разработаны и успешно используются в быту ряд приборов, работа которых основана на этом методе. Это и беспроводные зарядные устройства для мобильных телефонов и других гаджетов, и бытовые электроприборы с низким потреблением электроэнергии при работе (компактные камеры видеонаблюдения, всевозможные датчики и даже телевизоры с жидкокристаллическими экранами).

Многие специалисты утверждают, что электротранспорт будущего будет использовать беспроводные технологии зарядки аккумуляторов или получения электроэнергии для движения. В дороги будут вмонтированы индукционные катушки (аналоги первичной обмотки трансформатора). Они будут создавать переменное электромагнитное поле, которое при проезде транспорта над ним вызовет течение электротока во встроенной приемной катушке. Первые эксперименты уже проведены и полученные результаты вызывают сдержанный оптимизм.

Из достоинств такого способа можно отметить:

  • высокий КПД для небольших расстояний (порядка нескольких метров);
  • простота конструкции и освоенная технология применения;
  • относительная безопасность для здоровья людей.

Недостаток метода - малое расстояние, на котором передача энергии эффективна - существенно снижает область применения беспроводного электричества на основе электромагнитной индукции.

Использование различных микроволн

Этот метод также основан на преобразовании разных видов энергии. В роли переносчика энергии служат электромагнитные волны сверхвысокой частоты. Впервые этот метод описал и практически реализовал в своей установке японский физик и радиотехник Хидэцугу Яги в двадцатых годах прошлого века. Частота радиоволн для передачи электроэнергии без проводов находится в диапазоне от 2,4 до 5,8 ГГц. Уже протестирована и получила положительные отзывы экспериментальная установка, которая одновременно раздает Wi-Fi и запитывает слабомощные бытовые электроприборы.

Лазерный луч также является электромагнитным излучением, но с особым свойством - когерентностью. Оно уменьшает потери энергии при передаче и тем самым повышает КПД. Из достоинств можно отметить следующие:

  • возможность передачи на большие расстояния (десятки километров в атмосфере Земли);
  • удобство и простота установки для маломощных приборов;
  • наличие визуального контроля процесса передачи - лазерный луч виден невооруженным глазом.

Лазерный метод имеет и недостатки, а именно: сравнительно низкий КПД (45−50%), потери энергии из-за атмосферных явлений (дождь, туман, пылевые тучи) и необходимость нахождения передатчика и приемника в поле видимости.

Интенсивность солнечного света за пределами земной атмосферы в несколько десятков раз выше, чем на поверхности Земли. Поэтому в перспективе, как считают футурологи, солнечные электростанции будут располагаться на околоземной орбите. А передача накопленной электроэнергии, по их мнению, будет производиться без токоведущих проводов. Будет разработан и применен способ передачи, копирующий разряды молний, тем или иным способом планируется производить ионизацию воздуха. И первые опыты в этом направлении уже проведены. Этот метод основан на создании альтернативных беспроводных проводников электротока.

Полученное таким способом с околоземной орбиты беспроводное электричество носит импульсивный характер. Поэтому для его практического применения нужны мощные и недорогие конденсаторы, а также необходимо будет разработать способ их постепенной разрядки.

Наиболее эффективный метод

Планета Земля является огромным конденсатором. Литосфера, в основном, проводит электричество за исключением небольших ее участков. Существует теория, что беспроводная передача энергии может осуществляться через земную кору. Суть такова: источник тока надежно контактирует с поверхностью земли, переменный ток определенной частоты перетекает с источника в кору и распространяется во всех направлениях, через определенные промежутки в земле размещаются приемники электротока, с которых он передается потребителям.

Суть теории в том, чтобы принимать и использовать ток только одной заданной частоты. Как в радиоприемнике настраивается частота приема радиоволн, так и в таких электроприемниках будет регулироваться частота принимаемого тока. Теоретически таким методом возможно будет передавать электроэнергию на очень большие расстояния, если частота переменного тока будет низкой, порядка нескольких Гц.

Перспективы беспроводной передачи электричества

В близкой перспективе ожидается массовое внедрение в быт системы PoWiFi, состоящей из роутеров с функцией передачи электроэнергии на несколько десятков метров, и бытовых приборов, питание которых осуществляется за счет приема электричества из радиоволн. Такая система в данный момент активно тестируется и готовится к широкому использованию. Детали не разглашаются, но по имеющейся информации «изюминка» заключается в том, что используется синхронизация электромагнитных полей источника и приемника беспроводного электричества.

В очень отдаленной перспективе рассматривается вариант отказа от использования традиционных электростанций в глобальном масштабе - будут использоваться солнечные станции на околоземной орбите , преобразующие энергию солнечного света в электрическую. На поверхность планеты электричество предположительно передаваться будет через ионизированный воздух или плазменные каналы. А на самой земной поверхности исчезнут обычные линии электропередачи, их место займут более компактные и эффективные системы передачи электричества через литосферу.

Если верить истории, революционный технологический проект был заморожен из-за отсутствия у Теслы должных финансовых возможностей (эта проблема преследовала ученого практически все время его работы в Америке). Говоря в целом, основное давление на него оказывалось со стороны другого изобретателя — Томаса Эдисона и его компаний, которые продвигали технологию постоянного тока, в то время как Тесла занимался током переменным (так называемая «Война токов»). История расставила все на свои места: сейчас переменный ток используется в городских электросетях практически повсеместно, хотя отголоски прошлого доходят и до наших дней (например, одна из заявленных причин поломок пресловутых поездов Hyundai - использование на некоторых участках украинской ЖД электролиний постоянного тока).

Башня Ворденклиф, в которой Никола Тесла проводил свои эксперименты с электричеством (фото 1094 года)

Что же касается башни Ворденклиф, то, если верить легенде, Тесла продемонстрировал одному из главных инвесторов Дж.П. Моргану, акционеру первой в мире Ниагарской ГЭС и медных заводов (медь, как известно, используется в проводах), работающую установку по беспроводной передаче тока, стоимость которого для потребителей была бы (заработай такие установки в промышленных масштабах) на порядок дешевле для потребителей, после чего он свернул финансирование проекта. Как бы там ни было, всерьез о беспроводной передаче электроэнергии заговорили только спустя 90 лет, в 2007 году. И хотя до того момента, как линии электропередач полностью исчезнут из городского пейзажа, еще далеко, приятные мелочи вроде беспроводной зарядки мобильного устройства доступны уже сейчас.

Прогресс подкрался незаметно

Если мы просмотрим архивы ИТ-новостей хотя бы двухгодичной давности, то в таких подборках обнаружим разве что редкие сообщения о том, что те или иные компании занимаются разработкой беспроводных зарядных устройств, и ни слова о готовых продуктах и решениях (кроме базовых принципов и общих схем). На сегодняшний же день беспроводная зарядка уже не является чем-то сверхоригинальным или концептуальным. Подобные устройства вовсю продаются (например, свои зарядки на MWC 2013 демонстрировала LG), испытываются для электромобилей (этим занимается Qualcomm) и даже используются в общественных местах (например, на некоторых европейских ЖД-вокзалах). Более того, уже существуют несколько стандартов такой передачи электроэнергии и несколько альянсов, продвигающих и развивающих их.

За беспроводную зарядку мобильных устройств отвечают подобные катушки, одна из которых находится в телефоне, а другая - в самом зарядном устройстве

Самым известным таким стандартом является стандарт Qi, разрабатываемый Wireless Power Consortium, в который входят такие известные компании, как HTC, Huawei, LG Electronics, Motorola Mobility, Nokia, Samsung, Sony и еще около сотни других организаций. Этот консорциум был организован в 2008 году с целью создания универсального зарядного устройства для девайсов различных производителей и торговых марок. В своей работе стандарт использует принцип магнитной индукции, когда базовая станция состоит из индукционной катушки, которая создает электромагнитное поле при поступлении переменного тока из сети. В заряжаемом же устройстве присутствует похожая катушка, которая реагирует на это поле и умеет преобразовывать полученную через него энергию в постоянный ток, который используется для зарядки аккумулятора (подробно ознакомиться с принципом работы можно на сайте консорциума http://www.wirelesspowerconsortium.com/what-we-do/how-it-works/). Кроме того, Qi поддерживает протокол передачи данных между зарядными и заряжаемыми устройствами на скорости 2 кб/с, который используется для передачи данных о необходимом объеме зарядки и выполнении требуемой операции.

Беспроводную зарядку по стандарту Qi на сегодняшний день поддерживают многие смартфоны, а зарядные устройства универсальны для всех аппаратов, поддерживающих данный стандарт

Есть у Qi и серьезный конкурент - Power Matters Alliance, в который входят AT&T, Duracell, Starbucks, PowerKiss и Powermat Technologies. Эти имена находятся далеко не на первых ролях в мире информационных технологий (особенно сеть кофеен Starbucks, которая находится в альянсе из-за того, что собирается повсеместно внедрять в своих заведениях данную технологию), - они специализируются именно на энергетических вопросах. Данный альянс был сформирован не так давно, в марте 2012 года, в рамках одной из программ IEEE (Института инженеров электротехники и электроники). Продвигаемый ими стандарт PMA работает по принципу взаимной индукции - частного примера электромагнитной индукции (которую не следует путать с магнитной индукцией, используемой Qi), когда при изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через контур второго, созданного магнитным полем, порожденным током в первом проводнике, что вызывает возникновение электродвижущей силы во втором проводнике и (если второй проводник замкнут) индукционного тока. Так же, как и в случае с Qi, этот ток потом преобразуется в постоянный и подается в аккумулятор.

Ну, и не стоит забывать об Alliance for Wireless Power, в которую входят Samsung, Qualcomm, Ever Win Industries, Gill Industries, Peiker Acustic, SK Telecom, SanDisk и т. д. Эта организация пока не представила готовых решений, но среди ее целей, в том числе, - разработка зарядок, которые бы работали через неметаллические поверхности и в которых бы не использовались катушки.

Одна из целей организации Alliance for Wireless Power - возможность зарядки без привязки к конкретному месту и типу поверхности

Из всего вышенаписанного можно сделать простой вывод: через год-два большинство современных устройств смогут подзаряжаться без использования традиционных зарядных устройств. Пока же мощности беспроводной зарядки хватает, в основном, на смартфоны, однако для планшетов и ноутбуков такие устройства тоже скоро появятся (та же Apple не так давно запатентовала беспроводную зарядку для iPad). Это значит, что проблема разрядки устройств будет решена практически полностью - положил или поставил устройство в определенное место, и даже во время работы оно заряжается (или, в зависимости от мощности, разряжается намного медленнее). Со временем, можно не сомневаться, радиус их действия будет расширяться (сейчас необходимо использовать специальный коврик или подставку, на котором лежит устройство, либо оно должно находиться совсем рядом), и они будут повсеместно устанавливаться в автомобили, поезда и даже, возможно, самолеты.

Ну, и еще один вывод - скорее всего, не удастся избежать очередной войны форматов между разными стандартами и альянсами, продвигающими их.

Избавимся ли мы от проводов?

Беспроводная зарядка устройств - штука, конечно, хорошая. Но мощности, которые возникают при ней, достаточны только для заявленных целей. С помощью этих технологий пока невозможно даже осветить дом, не говоря уже о работе крупной бытовой техники. Тем не менее, эксперименты по высокомощной беспроводной передаче электроэнергии ведутся и базируются они, в том числе, и на материалах Теслы. Сам ученый предлагал установить по всему миру (тут, скорее всего, подразумевались развитые на тот момент страны, которых было намного меньше, чем сейчас) более 30 приемо-передающих станций, которые совмещали бы передачу энергии с радиовещанием и направленной беспроводной связью, что позволило бы избавиться от многочисленных высоковольтных линий электропередачи и содействовало объединению электрических генерирующих в глобальном масштабе.

Сегодня есть несколько методов решения задачи беспроводной передачи энергии, правда, все они пока позволяют добиться несущественных в глобальном плане результатов; речь идет даже не о километрах. Такие методы, как ультразвуковая, лазерная и электромагнитная передача, имеют существенные ограничения (короткие дистанции, необходимость прямой видимости передающих устройств, их размер, а в случае с электромагнитными волнами -очень низкий КПД и вред здоровью от мощного поля). Поэтому самые перспективные разработки связаны с использованием магнитного поля, а точнее - резонансного магнитного взаимодействия. Одна из них - WiTricity, разработкой занимается концерн WiTricity corporation, основанной профессором MIT Марином Солячичем и рядом его коллег.

Так, в 2007 году им удалось передать ток мощностью 60 Вт на расстояние 2 м. Его хватило на свечение лампочки, а КПД составлял 40 %. Но неоспоримым плюсом использовавшейся технологии являлось то, что она практически не взаимодействует ни с живыми существами (сила поля, по заявлению авторов, в 10 тыс. раз слабее, чем то, что царит в сердцевине магнитно-резонансного томографа), ни с медицинским оборудованием (кардиостимуляторы и т. п.), ни с другим излучением, а значит, не помешает, например, работе того же Wi-Fi.

Что самое интересное, на КПД системы WiTricity влияют не только размер, геометрия и настройка катушек, а также дистанция между ними, но и число потребителей, причем в положительном плане. Два приемных прибора, размещенные на расстоянии от 1,6 до 2,7 м по обе стороны от передающей «антенны», показали на 10 % лучший КПД, чем по отдельности - это решает проблему подключения множества устройств к одному источнику питания.

Беспроводная передача электричества

Беспроводна́я переда́ча электри́чества - способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи . К году имели место успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 % - в 1975 в Goldstone, Калифорния и в 1997 в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от ультрафиолета до микроволн).

История беспроводной передачи энергии

  • 1820 : Андре Мари Ампер открыл закон (после названный в честь открывателя, законом Ампера), показывающий, что электрический ток производит магнитное поле.
  • 1831 : Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
  • 1862 : Карло Маттеучи впервые провел опыты по передаче и приёму электрической индукции с помощью плоско спиральных катушек .
  • 1864 : Джеймс Максвелл систематизировал все предыдущие наблюдения, эксперименты и уравнения по электричеству, магнетизму и оптике в последовательную теорию и строгое математическое описание поведения электромагнитного поля .
  • 1888 : Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца был СВЧ или УВЧ искровой передатчик «радиоволн».
  • 1891 : Никола Тесла улучшил передатчик волн Герца радиочастотного энергоснабжения в своём патенте No. 454,622, «Система электрического освещения».
  • 1893 : Тесла демонстрирует беспроводное освещение люминесцентными лампами в проекте для Колумбовской всемирной выставки в Чикаго .
  • 1894 : Тесла зажигает без проводов лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хьюстон стрит в Нью-Йорке, с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
  • 1894 : Джагдиш Чандра Боше дистанционно воспламеняет порох и ударяет в колокол с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов.
  • 1895 : А. С. Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля (7 мая) года
  • 1895 : Боше передаёт сигнал на расстояние около одной мили.
  • 1896 : Гульельмо Маркони подает заявку на изобретение радио 2 июня 1896 года .
  • 1896 : Тесла передаёт сигнал на расстояние около 48 километров.
  • 1897 : Гульельмо Маркони передает текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
  • 1897 : Тесла регистрирует первый из своих патентов по применению беспроводной передачи.
  • 1899 : В Колорадо Спрингс Тесла пишет: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха ».
  • 1900 : Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
  • 1901 : Маркони передаёт сигнал через Атлантический океан, используя аппарат Тесла.
  • 1902 : Тесла против Реджинальда Фессендена: конфликт американского патента No. 21,701 «Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом».
  • 1904 : На Всемирной выставке в Сент-Луисе предлагается премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м).
  • 1917 : Разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
  • 1926 : Шинтаро Уда и Хидецугу Яги публикуют первую статью «о регулируемом направленном канале связи с высоким усилением », хорошо известном как «антенна Яги-Уда» или антенна «волновой канал».
  • 1961 : Уильям Браун публикует статью по исследованию возможности передачи энергии посредством микроволн.
  • 1964 : Уильям Браун и Уолтер Кроникт демонстрируют на канале CBS News модель вертолета, получающего всю необходимую ему энергию от микроволнового луча.
  • 1968 : Питер Глейзер предлагает беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч». Это считается первым описанием орбитальной энергетической системы .
  • 1973 : Первая в мире пассивная система RFID продемонстрирована в Лос-Аламосской Национальной лаборатории.
  • 1975 : Комплекс дальней космической связи Голдстоун проводит эксперименты по передаче мощности в десятки киловатт.
  • 2007 : Исследовательская группа под руководством профессора Марина Солячича из Массачусетского технологического института передала беспроводным способом на расстояние 2 м мощность, достаточную для свечения лампочки 60 вт, с к.п.д. 40 %, с помощью двух катушек диаметром 60 см.
  • 2008 : Фирма Bombardier предлагает новый продукт для беспроводной передачи PRIMOVE, мощная система для применения в трамваях и двигателях малотоннажной железной дороги.
  • 2008 : Корпорация Intel воспроизводит опыты Никола Тесла 1894 года и группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с к.п.д. 75 %.
  • 2009 : Консорциум заинтересованных компаний, названный Wireless Power Consortium, объявил о скором завершении разработки нового промышленного стандарта для маломощных индукционных зарядных устройств.
  • 2009 : Представлен промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом. Это изделие было разработано норвежской компанией Wireless Power & Communication .
  • 2009 : Haier Group представила первый в мире полностью беспроводной LCD телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI).

Технология (ультразвуковой метод)

Изобретение студентов университета Пенсильвании. Впервые широкой публике установка была представлена на выставке The All Things Digital (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, используется приёмник и передатчик. Передатчик излучает ультразвук, приёмник, в свою очередь, преобразует слышимое в электричество. На момент презентации расстояние передачи достигает 7-10 метров, необходима прямая видимость приёмника и передатчика. Из известных характеристик - передаваемое напряжение достигает 8 вольт, однако не сообщается получаемая сила тока. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии на животных.

Метод электромагнитной индукции

Техника беспроводной передачи методом электромагнитной индукции использует ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери все-же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создает переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, все большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция. Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щеток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приемник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приемник настроены на одну частоту. Производительность может быть улучшена еще больше путем изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приемная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приемника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi.

Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющимся беспроводным передатчиком электрической энергии.

Электростатическая индукция

Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст. Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях над уровнем моря и благодаря потоку ионов, то есть, электрической проводимости через ионизированную область, расположенную на высоте выше 5 км. Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через нее и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря емкостному плазменному разряду в ионизированной атмосфере.

Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывался как коммерческий проект по трансатлантической беспроводной телефонии и стал реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования.

Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4.5 миль (7.2 км).

Глобальная система передачи электроэнергии без проводов, так называемая "Всемирная беспроводная система", основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате "короткого замыкания" между заряженной атмосферой и землей.

Всемирная беспроводная система

Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успех можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приемниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения ее полной эксклюзивности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учетом физических свойств нашей планеты».

Одним из условий создания всемирной беспроводной системы является строительство резонансных приемников. Заземленный винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приемной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732, Аппарат для передачи электрической энергии, 18 января 1902 г.). Тесла предложил установить более тридцати приемо-передающих станций по всему миру. В этой системе приемная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приемной.

Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействие объединению электрических генерирующих в глобальном масштабе.

См. также

  • Энергетический луч

Примечания

  1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
  2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
  3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
  4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
  5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
  6. Jagadish Chandra Bose (англ.)
  7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
  8. June 5, 1899, Nikola Tesla Colorado Spring Notes 1899-1900, Nolit, 1978 (англ.)
  9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
  10. The Electrician (London), 1904 (англ.)
  11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
  12. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
  13. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
  14. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
  15. Solar Power Satellite patent (англ.)
  16. History of RFID (англ.)
  17. Space Solar Energy Initiative (англ.)
  18. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
  19. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
  20. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Архивировано ,
    Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Архивировано из первоисточника 29 февраля 2012. Проверено 6 сентября 2010.
  21. Bombardier PRIMOVE Technology
  22. Intel imagines wireless power for your laptop (англ.)
  23. wireless electricity specification nearing completion
  24. TX40 and CX40, Ex approved Torch and Charger (англ.)
  25. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
    Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Архивировано из первоисточника 26 февраля 2012. Проверено 6 сентября 2010.
  26. Eric Giler demos wireless electricity | Video on TED.com
  27. "Nikola Tesla and the Diameter of the Earth: A Discussion of One of the Many Modes of Operation of the Wardenclyffe Tower," K. L. Corum and J. F. Corum, Ph.D. 1996
  28. William Beaty, Yahoo Wireless Energy Transmission Tech Group Message #787 , reprinted in WIRELESS TRANSMISSION THEORY .
  29. Wait, James R., The Ancient and Modern History of EM Ground-Wave Propagation," IEEE Antennas and Propagation Magazine , Vol. 40, No. 5, October 1998.
  30. SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY , Sept. 2, 1897, U.S. Patent No. 645,576, Mar. 20, 1900.
  31. I have to say here that when I filed the applications of September 2, 1897, for the transmission of energy in which this method was disclosed, it was already clear to me that I did not need to have terminals at such high elevation, but I never have, above my signature, announced anything that I did not prove first. That is the reason why no statement of mine was ever contradicted, and I do not think it will be, because whenever I publish something I go through it first by experiment, then from experiment I calculate, and when I have the theory and practice meet I announce the results.
    At that time I was absolutely sure that I could put up a commercial plant, if I could do nothing else but what I had done in my laboratory on Houston Street; but I had already calculated and found that I did not need great heights to apply this method. My patent says that I break down the atmosphere "at or near" the terminal. If my conducting atmosphere is 2 or 3 miles above the plant, I consider this very near the terminal as compared to the distance of my receiving terminal, which may be across the Pacific. That is simply an expression. . . .
  32. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power
До сих пор не решена проблема передачи энергии на расстояние. Хотя была поставлена на рубеже веков. Первым, кто смог осуществить эту мечту стал Никола Тесла: "Передача энергии без проводов - не теория и не просто вероятность, как это представляется большинству людей, но явление, которое я экспериментально демонстрировал в течение ряда лет. Сама идея появилась у меня не сразу, а в результате длительного и постепенного развития и стала логическим следствием моих исследований, которые были убедительно продемонстрированы в 1893 году, когда я впервые представил миру схему моей системы беспроводной передачи энергии для всевозможных целей. Мои опыты с токами высокой частоты были первыми за всё время, проведенными публично, и они вызвали острейший интерес по причине тех возможностей, которые они открывали, а также поразительной природы самих явлений. Немногие из специалистов, знакомых с современной аппаратурой, по достоинству оценят трудность задачи, когда у меня в распоряжении были примитивные устройства”.

В 1891 Никола Тесла сконструировал резонансный трансфоpматоp (тpансфоpматоp Тесла), позволяющий получать высокочастотные колебания напряжения с амплитудой до миллиона вольт, и первым указал на физиологическое воздействие токов высокой частоты. Наблюдаемые во время грозы стоячие волны электрического поля привели Тесла к идее о возможности создания системы для обеспечения электроэнеpгией удаленных от генеpатоpа потребителей энергии без использования проводов. Изначально катушка Тесла использовалась с целью передачи энергии на большие расстояния без проводов, но вскоре эта идея отошла на последний план, так как передать таким образом энергию на расстояние практически невозможно, причиной этому является маленький КПД катушки Тесла.

Трансформатор Тесла, или катушка Тесла, - единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Это устройство использовалось ученым в нескольких размерах и вариациях для его экспериментов. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Существует 3 вида катушек Тесла:

SGTC-spark gap Tesla coil - катушка Тесла на искровом промежутке.
VTTC-vacuum tube Tesla coil - катушка Тесла на радиолампе.
SSTC-solid state Tesla coil - катушка тесла на более сложных деталях.

Описание конструкции трансформатора. В элементарной форме состоит из двух катушек - первичной и вторичной, а также обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора и терминала (на схеме показан как «выход»). В отличие от многих других трансформаторов, здесь нет никакого ферримагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферримагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент - разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов.

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Тесла сильно влияют на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.

Ещё одно интересное устройство - генератор Ван де Граафа. Это генератор высокого напряжения, принцип действия которого основан на электризации движущейся диэлектрической ленты. Первый генератор был разработан американским физиком Робертом Ван де Граафом в 1929 и позволял получать разность потенциалов до 80 киловольт. В 1931 и 1933 были построены более мощные генераторы, позволившие достичь напряжения до 7 миллионов вольт. Схема генератора Ван де Граафа:


Большой полый металлический электрод, имеющий вид полусферического купола, установлен на высоковольтной изолирующей колонне. В полость электрода заходит верхний конец ленточного транспортера электрических зарядов, представляющий собой бесконечный резиновый ремень на текстильной основе, натянутый на два металлических шкива и движущийся обычно со скоростью 20 - 40 м/сек. Нижний шкив, установленный на металлической плите, вращается электродвигателем. Верхний шкив размещается под высоковольтным электродом-куполом и находится под полным напряжением машины. Там же находится система питания источника ионов и сам источник. Нижний конец ленты проходит мимо электрода поддерживаемого обычным высоковольтным источником под высоким относительно земли напряжением до 100 кВ. В результате коронного разряда электроны с ленты переносятся на электрод. Положительный заряд поднимаемой транспортером ленты компенсируется вверху электронами купола, который получает положительный заряд. Максимально достижимый потенциал ограничивается изолирующими свойствами колонны и воздуха вокруг нее. Чем больше электрод, тем выше потенциал он может выдержать. Если установка герметически закрыта и внутреннее пространство наполнено сухим сжатым газом, размеры электрода для данного потенциала могут быть уменьшены. Заряженные частицы ускоряются в откачанной трубке, расположенной между высоковольтным электродом и «землей» или между электродами, если их два. С помощью генератора Ван-де-Граафа может быть получен очень высокий потенциал, что позволяет ускорять электроны, протоны и дейтроны до энергии 10 Мэв, а альфа-частицы, несущие двойной заряд до 20 Мэв. Энергию заряженных частиц на выходе генератора можно легко контролировать с большой точностью, что делает возможными точные измерения. Ток пучка протонов в постоянном режиме 50 мкА, а в импульсном режиме может быть доведен до 5 мА.