Нельзя организовать циркуляцию заряда по замкнутому контуру под действием только электростатической силы. Для переноса заряда в область высокого потенциала (2-b -1) придётся использовать силы неэлектростатической природы . Такие силы получили название сторонних сил. В качестве сторонних сил могут выступать любые силы кроме электростатических. Приборы, в которых на электрические заряды действуют сторонние силы, называются источниками тока. В аккумуляторах, например, сторонние силы возникают в результате химической реакции взаимодействия электродов с электролитом, в генераторах сторонними являются силы, действующие на заряды, движущиеся в магнитном поле и т.д. Именно в источниках тока благодаря работе сторонних сил создаётся генерируемая энергия, которая затем расходуется в электрической цепи.

Работа, которую совершают сторонние силы при перемещении единичного положительного заряда - одна из основных характеристик источника, его электродвижущая сила e:

Поле сторонних сил, также как и электростатическое поле, характеризуется вектором напряжённости :

Электродвижущая сила источника равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда по замкнутому контуру.

На участке цепи 1-а-2 движение носителей заряда происходит под действием только электростатической силы = q . Такие участки называются однородными.

Участок замкнутого контура, где наряду с электростатической силой действуют и сторонние силы, называют неоднородным.

Можно показать, что на однородном участке цепи средняя скорость направленного движения носителей заряда пропорциональна действующей на них силе. Для этого достаточно сравнить формулы, полученные на прошлой лекции: = (6.3) и = l

Пропорциональность скорости силе, а плотности тока - напряжённости сохранится и в случае неоднородного участка цепи. Но теперь напряжённость поля равна сумме напряжённостей электростатического поля и поля сторонних сил : .

Это уравнение закона Ома в локальной дифференциальной форме для неоднородного участка цепи.

Теперь перейдём к закону Ома для неоднородного участка цепи в интегральной форме.

Для замкнутого контура уравнение закона Ома несколько видоизменяется, так как разность потенциалов в этом случае равна нулю: .

В законе Ома для замкнутой цепи (7.8) R - полное сопротивление контура, складывающееся из внешнего сопротивления цепи R 0 и внутреннего сопротивления источника r: R = R 0 + r.



12) Закон Джоуля-Ленца в дифференциальной форме и интегральной форме.

Пусть на участке электрической цепи протекает постоянный ток I . Напряжение U на концах этого участка численно равно работе, совершаемой электрическими силами при перемещении единичного положительного заряда по этому участку. Это следует из определения напряжения.

Отсюда работа A = q  × U . За время t по участку будет перенесён заряд q = I  × t и при этом будет совершена работа: A = q  × U = U  × I  × t .

Это выражение работы электрического тока справедливо для любых проводников.

Работа, совершаемая в единицу времени - мощность электрического тока: .

Работа электрического тока (6.14) может затрачиваться на нагревание проводника, совершение механической работы (электродвигатель) и на химическое действие тока при его течении через электролит (электролиз).

Если химическое действие и механическая работа при течении тока не производятся, то вся работа электрического тока расходуется только на нагревание проводника: Q = A = U  × I  × t = I 2  × R  × t . (6.15)

Закон о тепловом эффекте электрического тока (6.15) был экспериментально установлен независимо английским учёным Д. Джоулем и русским академиком Э.Х. Ленцем. Формула (6.15) - математическая запись закона Джоуля-Ленца в интегральной форме , позволяющая вычислить количество теплоты, выделяющейся в проводнике.

.

Перед нами закон Джоуля-Ленца в дифференциальной форме .

Учитывая, что i = lE = , это выражение можно записать ещё и так:

Правила Кирхгофа.

Рассмотренные нами законы постоянного тока позволяют рассчитать токи в сложных разветвлённых электрических цепях. Эти расчёты упрощаются, если пользоваться правилами Кирхгофа.

Правил Кирхгофа два: правило токов и правило напряжений .

Правило токов относится к узлам цепи, то есть, к таким точкам схемы, где сходятся не менее трёх проводников (рис. 7.4.). Правило токов гласит: алгебраическая сумма токов в узле равняется нулю:



При составлении соответствующего уравнения, токи, втекающие в узел, берутся со знаком плюс, а покидающие его - со знаком минус. Это первое правило Кирхгофа является следствием уравнения непрерывности (см. (6.7)) или закона сохранения электрического заряда.

Правило напряжений относится к любому замкнутому контуру разветвлённой цепи.

Правило напряжений формулируется так: в любом замкнутом контуре алгебраическая сумма падений напряжения равна алгебраической сумме э.д.с., встречающихся в этом контуре:

При составлении уравнения второго правила Кирхгофа задаются направлением обхода.

Токи, совпадающие с направлением обхода, берутся со знаком плюс, токи противоположного направления - со знаком минус Э.д.с. источника берётся со знаком плюс, если он создаёт ток, совпадающий с направлением обхода. В противном случае э.д.с. отрицательна.

то есть напряжение между полюсами источника

тока зависит от ЭДС и работы сторонних сил по перемещению единичного заряда от одного полюса источника к другому.

2. Сформулируйте и запишите закон Ома для замкнутой цепи

Сила тока в замкнутой электрической цепи пропорциональна ЭДС источника и обратно пропорционально сопротивлению цепи.

3. В чем различие встречного и согласованного включения последовательно соединенных источников тока?

Говорят, что 2-й источник включен встречно первому, если они, работая в одиночку, создают токи, идущие в одном направлении. 3-й источник включен согласованно с первым, если токи, создаваемые ими, направлены одинаково.

4. Сформулируйте закон Ома для замкнутой цепи с несколькими последовательно соединенными источниками тока. Приведите формулу этого закона.

Сила тока в замкнутой электрической цепи с последовательно соединенными источниками тока прямо пропорциональна сумме их

ЭДС и обратно пропорционально сопротивлению цепи.

5. Как определить направление тока в замкнутой цепи с несколькими последовательно соединенными источниками тока?

Если

то ток течет по часовой стрелке. В обратном случае - против часовой стрелки.

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Валентина:

Вы спасли нашего сына от увольнения! Дело в том что недоучившись в институте, сын пошел в армию. А вернувшись, восстанавливаться не захотел. Работал без диплома. Но недавно начали увольнять всех, кто не имеет «корочки. Поэтому решили обратиться к вам и не пожалели! Теперь спокойно работает и ничего не боится! Спасибо!

Полную замкнутую цепь (рис.1) можно рассматривать как последовательное соединение сопротивления внешней цепи (R) и внутреннего сопротивления источника тока (r). То есть:

Если заменить источник тока таким, что его внутренне сопротивление равно такому же сопротивлению как и у предыдущего, то ток в цепи изменится. То есть ток в цепи зависит и от внутреннего сопротивления источника и от его ЭДС. Количественно все эти величины: ЭДС ($\mathcal E$) источника, его внутренне сопротивление, силу тока в цепи (I), электросопротивление цепи (R) связывает закон Ома.

Связь локального закона Ома с интегральным законом для замкнутой цепи

Допустим, что электрические токи текут в тонких проводах. В этом случае направления токов совпадают с направлением оси провода. Для тонких проводов можно считать, что плотность тока $\overrightarrow{j}=const$ в любой точке поперечного сечения провода. В нашем случае можно записать, что сила тока равна:

где $S$ -- площадь поперечного сечения проводника. Пусть мы имеем дело с постоянным током (I=const) вдоль всего проводника. Допустим, что в цепи присутствует источник ЭДС ($\mathcal E$). В данном случае локальная формулировка закона Ома будет иметь вид:

где $\overrightarrow{E}$ напряженность поля кулоновских сил, $\overrightarrow{E_{stor}}$ -- напряженность поля сторонних сил, $\sigma $ -- удельная проводимость, $\overrightarrow{e}$- единичный вектор, направленный по току. Для тонкого провода можно записать выражение (3), как:

Умножим выражение (4) на элемент длины проводника (dl) и найдем интеграл по участку проводника от точки 1 до точки 2. Так как силу тока мы признали постоянной, то имеем:

Электростатическое поле потенциально, следовательно:

Второй интеграл в выражении (5) не равен нулю только в пределах источника ЭДС. Он не зависит от положения точек 1 и 2. Они должны находиться только вне источника.

Считают, что ЭДС источника больше нуля, если путь 1-2 пересекает источник от отрицательного полюса к положительному.

где $R"$ -- электросопротивление, $\rho $ -- удельное сопротивление. Таким образом, из выражения (5) получаем:

Мы получили закон Ома в интегральной форме. В том случае, если цепь замкнута, то ${\varphi }_1={\varphi }_2$, следовательно:

где $R"$ -- электросопротивление всей цепи, электросопротивление нагрузки и внутреннее сопротивление источника тока. То есть закон Ома для замкнутой цепи запишем как:

где $r$ -- электросопротивление источника тока.

Довольно часто приходится решать задачи, в которых напряжение на концах участка цепи не известно, но заданы сопротивления составных частей цепи и ЭДС источника, который питает цепь. Тогда используют закон Ома в виде (11) для расчета силы тока, которая течет в цепи.

Пример 1

Задание: Источник тока имеет внутреннее электросопротивление равное r . Найдите падение потенциала внутри источника ($U_r$) внутри элемента, если ток в цепи равен I. Как вычислить внешнее электросопротивление цепи при заданных условиях?

В качестве основы для решения задачи используем закон Ома для замкнутой цепи:

Из формулы (1.1) легко получить формулу для расчета внешнего сопротивления:

Для того чтобы вычислить падение напряжения внутри источника тока, используем закон Ома для участка цепи:

\[{I=\frac{U_r}{r}\to U}_r=Ir\ \left(1.2\right).\]

Ответ: $U_r=Ir,$ $R=\frac{\mathcal E}{I}-r.$

Пример 2

Задание: Источник тока имеет внутреннее сопротивление равное r=1 Ом и ЭДС равную $\mathcal E$=10В. Найдите КПД источника ($\eta $), если ток в цепи равен I=5 А.

Коэффициент полезного действия источника тока равен отношению:

\[\eta =\frac{P"}{P}\left(2.1\right),\]

где $P"$ - мощность (полезная мощность), которая выделяется внешним участком цепи, $P$- полная мощность, которая развивается источником. При этом:

\ \

Следовательно, КПД источника можно выразить как:

\[\eta =\frac{I^2R\ }{\mathcal E I}=\frac{IR}{\mathcal E}\left(2.4\right).\]

Следуя закону Ома для замкнутой цепи запишем:

Выразим из (2.5) электросопротивление внешней цепи, получим:

Подставим (2.6) в выражение для КПД (2.4), получим:

\[\eta =\frac{I\left(\frac{\mathcal E}{I}-r\right)}{\mathcal E}=\frac{\mathcal E-Ir}{\mathcal E}.\]

Подставим численные данные, проведем вычисления, получим:

\[\eta =\frac{10-5\cdot 1}{10}\cdot 100\%=50\%\]

В 1826 г. немецкий ученый Георг Ом экспериментально установил прямую пропорциональную зависимость между силой тока I в проводнике и напряжением U на его концах: , где G - электрическая проводимость проводника . Величина, обратная проводимости называется электрическим сопротивле­ни­ем проводника R . Таким образом, закон Ома для участка цепи, не содержа­щего источника э.д.с. , имеет вид . Учитывая, что в общем случае участок цепи может содержать и э.д.с., закон Ома следует представить в виде .

Сопротивление проводника зависит от его размеров, формы и материала, из которого он изготовлен. Для однородного линейного проводника , где l - длина, S - площадь поперечного сечения проводника, r - удельное электриче­с­кое сопротивление, зависящее от материала, из которого изготовлен проводник. Единица сопротивления 1 Ом - это сопротивление такого проводника, в котором при напряжении 1В течет ток в 1А.

Если цепь замкнута, то , , где R - общее сопротивление всей цепи, включая сопротивление источника э.д.с. Тогда закон Ома для замкнутой цепи следует записать , где e - алгебраическая сумма всех э.д.с., имеющихся в этой цепи.

Принято называть сопротивление источника тока r - внутренним , а сопротив­ление всей остальной цепи R - внешним . Окончательный вид формулы закона Ома для замкнутой цепи . В системе единиц СИ напряжение и э.д.с. изме­ряются в Вольтах (В), сопротив­ление - в Омах (Ом), удельное электрическое сопротивление - в Ом-метрах (Ом×м), электрическая проводимость в Сименсах (См).

Закон Ома можно записать и для плотности тока. Рассмотрим участок электрической длиной dl и поперечным сечением dS (рис.2.1). Сила тока на этом участке , сопротивление , падение на­пряжения , где Е - напряженность электрического поля в проводнике. Под­ставив эти параметры в закон Ома для участка цепи, получим . Отсюда или , где - удельная электрическая проводи­мость проводника или удельная электропроводность . В векторном виде имеем (единицей измерения g в системе СИ является сименс на метр (См/м)). Полученное выражение есть закон Ома в дифференциальной форме: плот­ность тока в любой точке внутри проводника прямо пропорциональна напря­женности поля в этой точке .



1.14 Сопротивление проводника. Явление сверхпроводимости.

Способность вещества проводить ток характеризуется его удельной проводи­мостью g, либо удельным сопротивлением r. Их величина определяется химичес­кой природой проводника и условиями, в частности температурой, при которой он находится. Для большинства металлов r растет с температурой приблизительно по линейному закону: , - удельное сопротивление при 0°С, t - температура по шкале Цельсия, a - темпе­ра­турный коэффициент сопротивления близкий к 1/273 К -1 при не очень низких темпе­ратурах. Так как R~r, то , где - сопротивление при 0°С. Преобра­зовав две последние формулы, можно записать и , где Т – температура по Кельвину. На основе температурной зависимости сопротивления метал­лов созда­ны термометры сопротивления - термисторы , позволяющие определять температуру с точно­стью до 0.003 К.

При низких температурах нарушается линейность зависимости сопротивления металлов от температуры и при температуре 0 К наблюдается остаточное сопротивление R ост. Величина R ост зави­сит от чистоты материала и наличия в нем механических напряжений. Лишь у иде­ально чистого металла с идеально правильной кристаллической решеткой R ост ®0 при Т®0 (пунктирная часть кривой).

Кроме этого, в 1911 г. Г.Каммерлинг-Оннес обнару­жил, что при Т к = 4.1К сопротивление ртути скачкообразно уменьшается практически до нуля. Эта температура была названа критической , а наблюдаемое яв­ление - сверхпроводимостью . Впо­следствии этот эффект был обнаружен у целого ряда дру­гих металлов (Ti, Al , Pb, Zn, V и др.) и их спла­вов в интервале температур 0.14-20 К. Вещества в сверхпроводящем состоянии обладают необычными свойствами. Однажды возбужденный в них ток может длительно существовать без источника тока. Переход в сверхпроводящее состояние сопровождается скачкообразным изме­нением теплоемкости, теплопроводности, маг­нитных свойств вещества. Выясни­лось, что внешнее магнитное поле не проникает в толщи­ну сверхпроводника, т.е. магнитная индукция внутри него всегда равна нулю. Явление сверхпроводимости объясняется на основе квантовой теории. К настоящему времени это явление обнаружено также у ряда композиционных веществ (например, соединений металлов и диэлектриков), при этом критическая температура доходит до температуры сжижения азота, что позволяет достаточно экономично использовать явление высокотемпературной сверхпроводимости в инженерной практике. Данное явление позволяет создавать: системы передачи без потерь электрического тока по проводам из таких веществ, системы для накопления электроэнергии, мощные электромагниты, магнитные подвески для различных целей.

1.15 Работа и мощность тока, закон Джоуля-Ленца.

Определим работу, совершаемую постоянным током в проводнике, имеющем сопротивление R и находящемся под напряжением . Так как ток пред­ставляет собой перемещение заряда q под действием поля, то работу тока можно оп­ределить по формуле . Учитывая формулу и закон Ома, получим , или , или , где t - время протекания тока. Поделив обе части равенства на t, получим выраже­ния для мощности постоянного тока N

Работа тока в системе единиц СИ измеряется в доулях (Дж), а мощность - в ваттах (Вт). На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1Вт×ч - работа тока мощностью 1Вт в течение одного часа. 1Вт×ч=3.6×10 3 Дж.

Опыт показывает, что ток всегда вызывает некоторое нагревание проводника. Нагревание обусловлено тем, что кинетическая энергия движущихся по проводнику электронов (т.е. энергия тока) при каждом их столкновении с ионами металличе­ской решетки переходит в теплоту Q. Если ток идет по неподвижному металличе­скому проводнику, то вся работа тока расходуется на его нагревание и, следуя за­кону сох­ранения энергии, можно записать . Данные соотношения выражают закон Джоуля-Ленца . Впервые этот закон был установлен опытным путем Д.Джоулем в 1843 г. и независимо от него Э.Ленцем в 1844 г. Применение теплового действия тока в технике началось с открытия в 1873 г. русским инженером А.Ладыгиным лампы накаливания .

На тепловом действии тока основан целый ряд электрических приборов и ус­та­новок: тепловые электроизмерительные приборы, электропечи, электросварочная аппаратура, бытовые электронагревательные приборы - чайники, кипятильники, утюги. В пищевой промышленности широко применяется метод электроконтактного нагрева, заключающийся в том, что электрический ток, проходя через продукт, об­ла­дающий определенным сопротивлением, вызывает его равномерное нагревание. На­пример, для производства колбасных изделий через дозатор фарш поступает в формы, торцевые стенки которых служат электродами. При такой обработке обес­пе­чивается равномерность нагрева по всему объему продукта, возможность под­держа­ния определенного температурного режима, наивысшая биологическая цен­ность из­делия, наименьшие длительность процесса и расход энергии.

Определим удельную тепловую мощность тока w, т.е. количество теплоты, вы­деляющееся в единице объема за единицу времени. Выделим в проводнике элемен­тарный цилиндрический объем dV с поперечным сечением dS и длиной dl параллель­ной направлению тока, и сопротивлением , . По закону Джоуля-Ленца, за время dt в этом объеме выделится теплота . Тогда и, используя закон Ома для плотности тока и соотно­шение , получим . Эти соотношения выражают закон Джоуля-Ленца в дифференциальной форме .

1.16. Правило Кирхгофа для разветвленных электрических цепей.

До сих пор нами рассматривались простейшие электрические цепи, состоя­щие из одного замкнутого неразветвленного контура. На всех его участках силы тока оди­наковы. Расчет I, R, e в такой цепи выполняется с помощью законов Ома.

Более сложной является разветвленная электри­ческая цепь , состоящая из нескольких замкнутых кон­ту­ров, имеющих общие участки. В каждом контуре мо­жет быть несколько источников тока. Силы тока на от­дельных участках замкнутого контура могут быть раз­личными по величине и направлению (рис.2.2). В 1847 г. Г.Кирхгоф сформулировал два правила, значительно упрощающих расчет разветвленных цепей.

Первое правило Кирхгофа : алгебраическая сумма сил токов в узле равна нулю: . Узел - точка цепи, в которой сходятся не менее трех про­водников. В электрической цепи на рис.2.2 имеются два узла А и В. Ток, входящий в узел, считается положительным, выходящий - отрицательным. Например, для узла А первое правило Кирх­гофа следует записать .

Первое правило выражает закон сохранения электрического заряда, так как ни в одной точке цепи они не могут возникать или исчезать.

Второе правило Кирхгофа относится к любому замкнутому контуру, выде­ленному в разветвленной цепи: алгебраическая сумма произведений токов на со­противления, включая и внутренние, на всех участках замкнутого контура равна алгебраической сумме электродвижущих сил, встречающихся в этом контуре . Контур ‑ это замкнутый участок схемы, по которому можно пройти и вернуться в исходную точку. Второе правило Кирхгофа получается из закона Ома, записанного для всех участков от узла до узла (ветвей) разветвленной схемы. В электрической цепи на рис.2.2 имеются три контура: AMNBA, CABDC, CMNDC. При этом, токи I i в ветвях контура, совпадающие с произвольно вы­бран­ным направлением обхода контура, считаются положительными, а направлен­ные на­встречу обхода - отрицательными. Э.д.с., проходимые от «+» к «-» считаются поло­жительными и наоборот. В рассматриваемой элек­трической цепи (рис.2.2) выберем обход контуров по часовой стрелке и запишем для них уравнения по II правилу Кирхгофа: для AMNBА ; для CABDС ; для CMNDС . В данном примере внутренними сопротивлениями источников тока пренебрегаем. Первое и второе правила Кирхгофа по­зволяют составить систему линейных алгебраичес­ких уравнений, которые связывают пара­метры (I, R, ) и позволяют, зная одни, найти другие.

Простые электрические цепи имеют очень большое практическое применение. В повседневной жизни полезно знать, как под­ключить динамики или проигрыватель к сте­реосистеме, как подсоединить сигнализацию для охраны или автомобильный кас­сетный проигрыватель, как зарядить аккумуляторы или осветить новогоднюю елку.

Большинство электрических цепей содержит комбинацию последовательно или параллельно подключенных резисторов (резистор - это элемент цепи, обла­дающий только сопротивлением). Полное сопротивление участка цепи оп­ределяется отношением падения на­пряжения на нем к величине силы тока . При последовательном соединении (рис.2.3 а) через все резисторы течет один и тот же ток. При параллельном соединении (рис.2.3 б) полный ток равен сумме токов, те­кущих в отдельных резисторах.

При последовательном соединении падение на­пряже­ния на участке АВ равно , т.е. сумме падений напряжения на трех резисторах. Разделим обе части равенства на I и получим , т.е. . Таким образом, полное сопротивление участка цепи, состоящего из последо­ва­тельно соединенных резисторов, равно их алгебраической сумме .

При параллельном соединении (рис..2.3 б) мы имеем . Разделим обе части равенства на U, где U - падение напряжения на участке цепи АВ, причем , и получим . Из этого равенства следует . Величина обратная полному сопротивлению параллельно соединенных резис­торов равна алгебраической сумме величин их обратных сопротивлений .

В электрическую цепь может быть включено регулируемое (изменяющееся с помощью специального движка), сопротивление, которое называется реостатом . По назначению реостаты делятся на пусковые, служащие для ограничения силы тока во время пуска двигателей, и регулирующие - для регулировки силы тока в цепи (по­степенное снижение освещенности в театральных залах), регулировки скорости вращения электродвигателей и т.д. Реостат может быть использован в качестве так называемого датчика пере­мещения . В автоматических регуляторах уровня жидкос­ти в резервуарах применя­ется поплавково-реостатный датчик. Специальный поплавок крепится к движку реостата. Изменение уровня жидкости сдвигает поплавок, изменя­ет сопротивление реостата, и следовательно, силы тока в цепи, величина которого дает информацию об уровне.