Использование: в приемных устройствах оптических систем связи. Сущность изобретения: для повышения чувствительности в усилитель фототока, содержащий фотодиод 1, входной двухкаскадный усилитель с параллельной обратной связью по напражению, выходной формирующий каскад, выполненный на триггере Шмитта, введены элементы автосмещения фотодиода 1 на транзисторах (Т) 7 - 9 и резисторах (Р) 16, 17, каскад на Т5, 6, прямосмещенном диоде 10 и Р14, параллельная RC-цепь между эмиттером Т2 и базой Т6. При наличии оптического сигнала через фотодиод 1 протекает ток, который усиливается Т8 и Т9, токи которых складываются и образуют базовый ток Т7. Сигнальный ток коллектора Т7 образует ток смещения на Р12, потенциал на базе Т2 уменьшается и уменьшается коллекторный ток Т2, что приводит к уменьшению падения напряжения на Р16, 17. Напряжение смещения усилителя тока на Т7 - 9 увеличивается с таким расчетом, чтобы скомпенсировать увеличение падений напряжения на эмиттерных переходах Т7 - 9 и сохранить постоянной величину отрицательного смещения фотодиода 1 и потенциалов его выводов относительно шин питания и монтажа устройства. 1 ил.

Cтраница 1


Усилитель фототоков питается постоянным током с непосредственной гальванической связью между каскадами; для него необходим незаземленный источник опорного напряжения на 9 в. Для этого собран выпрямитель, который питается от обмотки трансформатора Tpl. Все цепи выпрямителя имеют хорошую изоляцию относительно земли и экранировку от остальных узлов схемы. Напряжение, подаваемое на ЭПС-134, стабилизируется кремниевым стабилитроном Д-809, стабильность которого выше батарей КБС-Л-05, применяемых в ОФ-4. Rs регулируются в соответствии с режимом стабилитрона.  

Усилители фототоков по типу применяемых усилительных элементов подразделяются на тиратронные, ламповые, полупроводниковые и магнитные. Наибольшее практическое применение получили ламповые усилители, так как они обладают стабильными характеристиками и обеспечивают четкую работу фотореле в самых жестких эксплуатационных условиях.  

Особенности усилителя фототоков: наличие вибрационного преобразователя постоянного фототока в сигнал переменного тока частотой 400 гц; применение входного трансформатора, вторичная обмотка которого вместе с конденсатором С9 образует резонансный контур, настроенный на частоту 400 гц, для выделения синусоидальной составляющей сигнала; применение трехкаскадного усилителя, собранного на сопротивлениях по двухтактной схеме на пальчиковых лампах 6Н2П; применение выходного трансформатора Тр3, напряжение со вторичной обмотки которого подается на управляющую обмотку двигателя ДИД-05.  


В качестве усилителей фототоков наиболее широкое применение получили электронные усилители, так как они обладают стабильными характеристиками и обеспечивают четкую работу фотореле в самых жестких эксплуатационных условиях.  

В качестве усилителей фототоков наиболее широкое практическое применение получили электронные усилители, так как они обладают стабильными характеристиками и обеспечивают четкую работу фотореле в самых жестких эксплуатационных условиях.  

Применение в рассмотренной схеме усилителя фототоков полностью устраняет указанный недостаток. В других вариантах описанного фотореле все элементы его, кроме реле Р, сохраняются, а вместо последнего подключается ] усилитель. Таким образом можно повысить мощность исполнительного реле, сохранив все остальные параметры фотореле.  

Фототранзисторы выполняют роль фотодиода и усилителя фототока. Конструктивно и по принципу действия фототранзистор аналогичен плоскостному биполярному транзистору.  


Фототранзистор совмещает функции фотодиода и усилителя фототока. При освещении области в ней образуются электронно-дырочные пары, которые диффундируют к эмиттеру и коллектору, увеличивая ток последнего.  


Каждый фотодиод и относящийся к нему усилитель фототока (на рис. 341 б - УФ 1 и УФ2) управляет только своим электродвигателем. Между фотодиодами установлена светонепроницаемая перегородка, позволяющая освещать фотодиоды раздельно.  

Ремевиый коэффициент усиления; б - усилитель фототока; в - источник тока; г - смеще - е Дифференциального усилителя, обеспечивающее нулевой температурный дрейф коэффициента вых еНИЯ; - детектор положительных пиковых значений; е - детектор отрицательных пико - Гкг, 2Иачении; ж - - схема управления током; з - высоковольтная схема для плавающей нагрузки щийффициент Усиления равен 22 для обоих ОУ: С / Э5В, С / - 35В); и - - быстродействую-ила логарнфмический преобразователь; к - логарифмический преобразователь с температур он компенсацией.  

ФОТОЭЛЕКТРОННЫЙ УМНОЖИТЕЛЬ (ФЭУ), усилитель слабых фототоков, действие к-рого основано на вторичной электронной эмиссии.  

Фотореле состоит из фотоэлемента Ф, усилителя фототока, в качестве которого используют вакуумный триод Т, и электромагнитного реле ЭМР, включенного в анодную цепь триода.  

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Содержание
  • Введение
    • 1. Принцип взаимодействия усилителя и фотодиода. Преобразование тока фотодиода в напряжение
      • 2. Управление частотным шумом, возникающим при работе усилителя
      • 3. Полоса пропускания усилителя и методы ее регулирования
      • 4. Борьба с помехами, вызванными внешними воздействиями
      • Список используемой литературы
  • Введение
  • Оптические приборы на фотодиодах и фототранзисторах являются одним из перспективных направлений в области измерения параметров быстропротекающих физических и технологических процессов, лежат в основе датчиков уровня освещенности, приближения, дыма и цвета.
  • Рассмотрим свойства фотодиода и основные способы его включения. Как известно, фотодиод обладает односторонней проводимостью при воздействии на него оптического излучения. В фотодиодном режиме p-n-переход смещается обратным напряжением, величина которого зависит от конкретного фотодиода: от единиц до сотен вольт. Недостаток режима в том, что с ростом обратного тока (при увеличении освещения) увеличивается и уровень шумов, тогда как уровень полезного сигнала в целом остается постоянным.
  • В вентильном режиме к диоду не прикладывается напряжение от внешних источников, так как он сам становится источником ЭДС с достаточно большим внутренним сопротивлением. В этом режиме уровень шумов остается постоянным при повышении уровня засветки.
  • Приведенная схема включения фотодиода позволяет изменять положение подстроечного резистора для выбора режима работы диода. Схему можно перевести в вентильный режим, замкнув подвижный контакт резистора на землю. В прямом смещении фотодиод также будет реагировать на свет: для этого нужно сменить его полярность.
  • Постоянное высокоомное сопротивление предназначено для предотвращения случая теплового пробоя диода (из-за подачи слишком большого напряжения). Будучи включенным параллельно с нагрузкой (R н < 5 кОм), оно практически не ослабляет полезный сигнал. Конденсатор избавляет сигнал на выходе от постоянной составляющей, которую нет смысла усиливать при получении импульсного сигнала, так как она меняется в зависимости от фоновой засветки.
  • В качестве нагрузки в схеме с фотодиодом может использоваться каскад усиления с общей базой (рис. 1, а) либо быстродействующий операционный усилитель (рис. 1, б).
  • Рис. 1. Схемы включения фотодиода
  • О применении операционных усилителей, используемых для усиления сигнала фотодиода, и пойдет речь в данной курсовой работе.

Операционный усилитель - это усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, характеризирующийся коэффициентом усиления и высокоомным входным сопротивлением, а также отрицательной обратной связью, не позволяющей усилителю перейти в режим самовозбуждения.

Рис. 2. Принцип введения отрицательной обратной связи

Усиление сигнала фотодиода -- одна из основных областей применения операционных усилителей на полевых транзисторах с p-n-переходом на входах. Существует множество разнообразных схем усилителей, каждую из которых характеризуют:

1. Линейность;

2. Постоянное смещение;

3. Определенный уровень шумов;

4. Полоса пропускания.

Фотодиодные датчики -- это мост между измеряемой физической величиной (светом) и электроникой. При наблюдениях за различными физическими процессами свет играет второстепенную роль по сравнению с температурой и давлением, но не тогда, когда необходимы дистанционные измерения без контакта с исследуемым объектом Перевод статьи по операционным усилителям “Photodiode Monitoring with Op Amps” .

Такие датчики используются в компьютерных томографах, астронавигационном оборудовании, электронных микроскопах с системой обработки сигналов. Фотодиоды не слишком дороги и позволяют создавать массивы из сотен фотодатчиков. Основная задача схемы с фоточувствительным элементом - точное преобразование выходного сигнала фотодиода в линейно зависящий от него усиленный выходной сигнал, чему препятствует противоречие между быстродействием и качеством.

фотодиод напряжение усилитель частотный

1. Принцип взаимодействия усилителя и фотодиода . Преобразование тока фотодиода в напряжение

Существуют два способа получения сигнала от фотодиода: снятие с него напряжения или тока. Для измерения напряжения схема усиления должна иметь достаточное сопротивление по переменному току, чтобы ток, протекающий через ее вход, был минимальным.

Согласно схеме на рис. 3, а), фотодиод включен последовательно со входом усилителя. Цепь обратной связи состоит из резисторов R 1 и R 2 ; она позволяет напряжению на фотодиоде изменяться соизмеримо с напряжением на входе усилителя. В таком случае отношение выходного напряжения к входному будет логарифмическим, так как чувствительность фотодиода изменяется в зависимости от приложенного к нему прямого напряжения.

Рис. 3 . Выходным сигналом фотодиода может быть: а) напряжение; б) ток

Постоянная чувствительность при постоянном приложенном напряжении позволяет сделать вывод о том, что для получения линейной зависимости выходного сигнала от световой энергии разумно использовать измерение тока. Обратная связь операционного усилителя устанавливает нулевую разность напряжений между входами, поэтому падение напряжения на диоде также равно нулю. Это обстоятельство позволяет схеме преобразователя тока в напряжение, показанной на рис. 3, б), обеспечивать входное сопротивление, равное R 1 /K u , где K u -- это коэффициент усиления операционного усилителя с разомкнутой петлей обратной связи. Несмотря на то, что сопротивление R 1 обычно очень велико, результирующее входное сопротивление остается пренебрежимо малым по сравнению с выходным сопротивлением фотодиодов.

Ток диода в схеме преобразователя практически не течет через вход операционного усилителя, целиком направляясь к обратной связи R 1: потому что на выходе усилителя напряжение равняется произведению тока фотодиода на сопротивление R 1 . Для получения наибольшего коэффициента преобразования тока в напряжение это сопротивление должно иметь высокое номинальное значение. Недостатком является то, что оно провоцирует появление значительного температурного дрейфа напряжения (из-за температурной нестабильности входного тока усилителя). Чтобы компенсировать его, обычно к неинвертирующему входу усилителя подключают резистор R 2 с таким же сопротивлением, как у R 1 , и добавляют емкостную развязку для устранения большей части его помех. Недостатком такого способа является падение напряжения на диоде и возникающий в результате него ток утечки, который может оказаться даже больше, чем входные токи усилителя.

Сопротивление резистора обратной связи в преобразователе почти полностью определяет уровень шума и границы полосы пропускания усилителя, а также коэффициент усиления. Шум, вносимый резистором, имеет спектральную плотность и появляется на выходе преобразователя без усиления. Отношение увеличения выходного сигнала к увеличению шума пропорционально квадратному корню из сопротивления R 1 Проектирование и применение операционных усилителей: Дж. Грэм, Дж, Тоби и Л. Хыолсман. . Шум операционного усилителя также влияет на выходной шум, действуя через сопротивление обратной связи и емкость диода.

Источники шума в усилителе представлены на рис. 4 как входной шумовой ток I n и входное шумовое напряжение (на схеме - e n). Шумовой ток протекает через резистор обратной связи, усиливаясь так же, как и ток сигнала. Если выбрать операционный усилитель с входным током порядка пикоампер, то эта составляющая шума будет пренебрежимо мала для используемых значений сопротивления обратной связи.

Рис. 4 . Влияние емкости диода на работу цепи обратной связи в базовой схеме преобразователя Шум операционного усилителя усиливается больше и в более широкой полосе, чем сигнал.

На первый взгляд, входное шумовое напряжение усилителя передается на выход с небольшим усилением. Это справедливо для постоянного тока, когда усиление, равное 1+R 1 /R D , сохраняется на малом уровне благодаря большому сопротивлению диода R D . Емкость диода C D , изменяя работу цепи обратной связи на высоких частотах, усиливает шумовое напряжение. Так как эта емкость и сопротивление обратной связи обычно достаточно велики, эффект может проявляться на довольно низких частотах. Иллюстрация к этому приведена на рис. 4, б).

С помощью вносимого ею полюса усиление устанавливается на уровне 1+C D /C S . Для больших фотодиодов C D может составлять сотни пикофарад, провоцируя возникновение шумового усиления, соответственно, в сотни раз. Это усиление распространяется в область высоких частот и ограничивается полосой пропускания операционного усилителя.

При слишком высоком коэффициенте передачи операционный усилитель самовозбуждается из-за взаимодействия с обратной связью, что приводит к возникновению искажений: выбросам на переходной характеристике, увеличению постоянной времени. Чтобы избежать этого явления, обычно применяют емкостной фильтр, ограничивающий полосу частот.

По мере увеличения сопротивления обратной связи в преобразователе тока в общем шуме сначала доминирует вклад шумового напряжения операционного усилителя, затем вклад резистора обратной связи и, наконец, происходит максимальное усиление на высоких частотах. Такие варианты оптимизации схемы, как использование большого фотодиода, должны рассматриваться с учетом его емкости и ее влияния на выходной шум и общую чувствительность схемы. Большой размер фотодиода фактически может ухудшить общую точность, и добиваться улучшения светочувствительности следует, в первую очередь, оптическими способами, например, встраивая линзу в корпус фотодиода.

2. Управление частотным шумом, возникающим при работе усилителя

Рис. 5 . а) Т-образная конденсаторная схема; б) развязка одним элементом в Т-образной резистивной цепи обратной связи

Другая возможность добавления емкости существует при использовании Т-образной резисторной цепи в обратной схеме, которой обычно заменяют резисторы с очень большим сопротивлением. Последний заменен на рис. 5, б) элементами с более приемлемыми номиналами, но при этом увеличился низкочастотный шум. Эта конфигурация похожа на Т-образную конденсаторную цепь. Здесь R 2 и R 3 ослабляют сигнал на R 1 , поэтому последний со стороны входного узла представляется как резистор с гораздо бoльшим сопротивлением. Здесь не существует удобной возможности компенсации постоянного смещения из-за входных токов. Поэтому на неинвертирующем входе необходим резистор с очень большим сопротивлением.

Одним из положительных свойств ослабляющей цепи обратной связи является возможность использовать конденсаторы приемлемых номиналов. Установка конденсатора параллельно R 2 устраняет ослабление на высоких частотах, сводя сопротивление цепи обратной связи к R 1 .

Уменьшение высокочастотных шумов при шунтировании Т-образной схемы сопровождается их усилением на низких частотах из-за ослабления сигнала обратной связи в цепи. Бороться с этим можно при помощи резисторов с небольшим сопротивлением, так, чтобы этот эффект увеличивался только пропорционально квадратному корню из нового шумового усиления.

Добавление емкости в обратную связь -- это эффективный способ уменьшения шумового усиления, но оно так же эффективно уменьшает полосу пропускания сигнала. Эта полоса и так невелика из-за большого сопротивления обратной связи, и в результате может получиться полоса пропускания не больше 1 кГц. Более рационально решить проблему шумов можно, ограничив полосу усилителя именно в точке неизбежного ограничения полосы сигнала. Тогда высокочастотное усиление, которое усиливает только шумы, будет удалено.

Чтобы получить нужное ограничение полосы с подходящими операционными усилителями, в составном усилителе используются два операционных усилителя, один из которых снабжен цепью управления фазовой компенсацией, как показано на рис. 6, а).

Для управления полосой пропускания в составной схеме к усилителю А 2 добавляется внутренняя обратная связь. На постоянном токе эта обратная связь блокируется С 1 , и общее усиление с разомкнутой обратной связью будет равно произведению этих усилений для каждого усилителя, или, в данном случае, 225 дБ. Спад частотной характеристики этого усиления происходит под действием полюса в усилении усилителя А 1 с разомкнутой связью и отклика интегратора, задаваемого для усилителя А 1 элементами С 1 и R 3 . Так как этот спад вызван действием двух полюсов, он должен быть ограничен перед пересечением кривой шумового усиления, чтобы обеспечить устойчивость. Ноль добавляется включением R 4 . Выше частоты этого нуля вследствие влияния R 4 прекращается интегрирование, и передаточная функция А 2 становится равной коэффициенту усиления инвертирующего усилителя -- R 4 /R 3 . В результате спад усиления становится больше, чем у одиночного усилителя на высоких частотах. В графическом отображении полоса шумового усиления на рис. 6б заметно сузилась, как если бы сократилась полоса пропускания операционного усилителя.

Рис. 6 . а) Уменьшение шумов в схеме составного усилителя; б) сокращение полосы шумов без уменьшения полосы сигнала

Сокращение полосы шумов показано на рис. 6, б) затененной областью. Визуально оно не выглядит существенным из-за логарифмического масштаба. В действительности уменьшение шумов получается весьма значительное, потому что на верхнем частотном участке логарифмического графика представлена бoльшая часть полосы пропускания усилителя. Перемещение точки единичного усиления шумов с 2 МГц до 200 кГц снижает выходной шум А 1 примерно в три раза. Чтобы получить тот же результат при помощи шунтирования обратной связи, придется уменьшить полосу пропускания сигнала в 10 раз. При подходе, показанном на рис. 6, а), эта полоса не изменяется. Усилитель А 2 не добавляет ни шумов, ни постоянного смещения, так как он включен после усилителя с большим усилением А 2 .

Показанная на рис. 6 технология обычно используется при низких уровнях сигнала, когда система особенно чувствительна к шумам. При большом значении сигнала становится важным ограничение скорости нарастания сигнала, но при использовании второго усилителя также можно добиться значительного улучшения ситуации. Ограничение скорости нарастания вызвано ограничением максимального выходного напряжения А 1 и его ослаблением в А 2 . Если максимальный размах напряжения на выходе А1 составляет 12 В и усиление А 2 равно -- 1/10, как показано на рис. 6, то итоговое выходное напряжение ограничено размахом 1,2 В. Для малых сигналов это будет приемлемо, так максимальные практически используемые значения сопротивления обратной связи сами по себе ограничивают выходной размах.

Высокоуровневые сигналы не столь чувствительны к шуму и лучше переносят более прямой подход к фильтрации. Активный фильтр после обычного преобразователя тока в напряжение также устраняет высокочастотный шум. Установка полюса фильтра на границе полосы сигнала приводит к тому, что полоса пропускания системы практически не простирается дальше полосы полезной информации. Такой фильтр не включается в контур обратной связи преобразователя, поэтому входной шум и смещение второго усилителя добавляются к сигналу.

3. Полоса пропускания усилителя и методы ее регулирования

Требования к полосе пропускания являются неотъемлемой частью обсуждения преобразователя тока в напряжение по нескольким причинам. Общий выходной шум увеличивается пропорционально квадратному корню из полосы пропускания системы, потому что охватывается более широкий спектр шумов. Появляется конфликт между оптимальным соотношением сигнал/шум и полосой сигнала.

Последнее ограничение, влияющее на измерение таких величин, -- емкостная связь через воздух вокруг корпуса резистора -- всегда остается. Расширение полосы за пределы, обусловленные такими ограничениями, требует уменьшения сопротивления обратной связи и, следовательно, меньшего усиления преобразователя. Некоторые возможности для восстановления усиления показаны на рис. 7, а). После преобразователя тока в напряжение просто добавляется второй усилитель, который доводит итоговое выходное сопротивление до величины R T = A V R 1 . Таким образом, большое сопротивление уменьшается во столько раз, во сколько раз усиливает усилитель, и во столько же раз увеличивается полоса пропускания.

Рис. 7 . а) Добавление усиления напряжения для увеличения полосы при сохранении общего сопротивления; б) графики зависимости полосы пропускания и входного шума (полоса пропускания увеличивается быстрее, чем шум)

Параметры, влияющие на этот максимум, -- это итоговое R T и полоса единичного усиления второго усилителя, f C . Взаимосвязь факторов, влияющих на выбор оптимальной полосы пропускания, описывается выражением для расчета R 1:

При использовании второго усилителя (А 1) полоса расширяется до 100 кГц от исходных 3 кГц. У него наибольший общий выходной шум, но это происходит, опять-таки, из-за большой полосы пропускания. Если требуется еще бoльшая полоса пропускания, то надо выбирать между более быстрым операционным усилителем, с худшими, как правило, шумовыми параметрами, и уменьшением сопротивления. Для меньшей полосы пропускания на место А 1 требуется поставить усилитель с меньшей полосой единичного усиления, поэтому можно использовать усилитель с малым шумом.

При условии, что допускается ухудшение шума при замене сопротивления на усиление напряжения, достоинства схемы в целом увеличиваются. Если же учитывать полосу пропускания, то это улучшение может компенсировать падение соотношения сигнал/ шум. Ранее упоминалось, что простой преобразователь тока в напряжение больше страдает от излишней полосы пропускания при усилении напряжения шума усилителя, чем при усилении токового сигнала. Эта тенденция устранена в схеме на рис. 7, так как усиление напряжения возрастает, и А 2 начинает фильтровать более высокие частоты. В подтверждение этому шумовые кривые, которые нарастают плавно (в отличие от кривых полосы пропускания) до точки оптимальной полосы пропускания. В этой оптимальной точке полоса пропускания шума совпадает с полосой пропускания сигнала. В результате А теперь работает как выходной активный фильтр, обсуждавшийся ранее.

В некоторых случаях серьезным недостатком приведенной схемы является необходимость использования двух операционных усилителей на каждый фотодатчик: часто сотни датчиков работают в одном массиве. Можно применять и один ОУ для получения того же усиления, но без резисторов с очень большим сопротивлением, если окажется приемлемым некоторое ухудшение полосы пропускания и шумов. Один и тот же ОУ может одновременно выполнять преобразование тока в напряжение и последующее усиление напряжения. Согласно традиционной технике, эта задача решается так, как показано на рис. 8, a), где R 2 необходим для преобразования тока в напряжение, а R 3 и R 4 -- для установки усиления по напряжению. Ток из диода D 1 течет через резистор R 2 , в результате чего на неинвертирующем входе операционного усилителя появляется напряжение сигнала. Однако это напряжение также приложено к фотодиоду, и из-за этого возникает нелинейность, как было описано ранее.

Рис. 8 . Одновременное преобразование тока в напряжение и усиление по напряжению на одном операционном усилителе: a) влияние нежелательного напряжения на диоде; б) устранение влияния при помощи подключения диода между входами операционного усилителя

Вместо этого фотодиод подключается непосредственно между входами операционного усилителя, и тогда на нем поддерживается нулевое напряжение. Как показано на рис. 8, б), резисторы выполняют те же функции, что и в предыдущей схеме, но передаточная функция схемы будет линейной. Ток из фотодиода также течет через R 2 , создавая такое же сигнальное напряжение. Этот ток течет и в цепь обратной связи, но дает меньший эффект из-за меньшего сопротивления резисторов.

Итоговый выходной шум от резистора в базовой схеме увеличивается пропорционально квадратному корню из усиления напряжения. Здесь добавляется небольшая составляющая, возникающая из-за того, что удален операционный усилитель как источник повышения усиления. Однако новый источник включен на рис. 8, б), снова из-за емкости диода, как показано на рис. 9, а). Напряжение шума усилителя действует непосредственно через емкость, порождая шумовой ток, который течет через R 2 . Цепь емкостной обратной связи, состоящая из C D и C ICM , создает шумовое усиление, максимум которого равен 1 + C D / C ICM и которое существует дополнительно к нормальному шумовому усилению неинвертирующего усилителя.

Рис. 9 . а) Схема с емкостью фотодиода, добавляющего обратную связь к схеме на рис. 7б; б) график усиления

Влияние на частотную характеристику изображено на рис. 9б, и оно также вызывает подъем шумового усиления на высоких частотах. Это происходит на более высоких частотах, чем в базовой схеме преобразователя тока в напряжение, потому что применяется меньшее сопротивление, и этот подъем быстрее прекращается из-за спада частотной характеристики операционного усилителя. Для диода с малой емкостью, использованного в обоих примерах схем, он теперь охватывает небольшую область на графике, что, соответственно, уменьшает влияние шума. Для больших диодов, тем не менее, этот эффект тоже присутствует, как показано штриховой линией для емкости около 200 пФ. Часть спектра, охватываемая подъемом, не находится на верхнем краю полосы пропускания усилителя, как это было в базовой схеме. Следовательно, шум операционного усилителя не стал основным источником.

4. Борьба с помехами, вызванными внешними воздействиями

Так как уменьшение шумов, возникающих в схеме, имеет пределы, необходимо рассмотреть и внешние источники шумов. Преобразователь тока в напряжение крайне чувствителен к помехам от электростатических, магнитных и радиочастотных источников. Эти источники требуют внимания при экранировании, заземлении и физическом расположении компонентов Моррисон, Р. Методы заземления и экранирования (2-ое издание, Нью-Йорк, 1986). , иначе их вклад в шум устройства будет основным..

Так как электростатическая связь наиболее часто возникает на частоте питающей сети и тогда одинакова для всех точек схемы, она является естественным «кандидатом» на устранение при помощи подавления синфазного сигнала в операционном усилителе. На этой частоте коэффициент ослабления синфазного сигнала очень велик, но в обычной схеме преобразователя тока в напряжение он не используется. Это следствие несимметричной конфигурации входа вместо дифференциальной, но последнюю вполне можно применять для улучшения подавления шумов, а также уменьшения ошибки по постоянному току.

Усилитель с дифференциальным входом на операционном усилителе очень хорошо подходит для сигнала фотодиода. Так как фотодиод генерирует токовый сигнал, он доступен на обоих выводах этого датчика и может подключаться к обоим входам усилителя, как показано на рис. 10а. Здесь ток диода больше не возвращается по «земле», а подается на неинвертирующий вход усилителя. Тем самым создается второе напряжение сигнала, которое удваивает усиление схемы, когда R 1 = R 2 для компенсации. Для данного значения усиления сопротивления резисторов должны составлять только половину от нормального для аналогичного уменьшения ошибки от входных токов усилителя. Здесь также отсутствует постоянное напряжение на фотодиоде, так как он включен между входами операционного усилителя. А так как напряжение между входами практически равно нулю, то отсутствует и ток утечки фотодиода.

Рис. 10 . Использование коэффициента ослабления синфазного сигнала операционного усилителя: а) подача сигнала на дифференциальный вход; б) ослабление электростатической связи

Для большинства случаев электростатической связи с силовыми проводами на частоте питающей сети описанное емкостное шунтирование дает лишь незначительный эффект. Для лучшего подавления высоких частот надо или добавить конденсатор параллельно R 1 , или же обеспечить постоянный сигнал на входной емкости. Последний вариант освобождает от ограничения полосы пропускания - так же, как и при использовании второго дифференциального подключения. Как показано на рис. 11, фотодиод подключается между входами двух преобразователей тока в напряжение, выходы которых соединены со входами дифференциального усилителя. Ток фотодиода течет через два одинаковых сопротивления, на которые действует одинаковая электростатическая шумовая связь. Ток диода создает дифференциальный сигнал на сопротивлениях, а шумовая связь генерирует синфазный сигнал. При прохождении через блок с усилителем А 3 (выделенного желтой областью) эти сигналы разделяются: сигнал диода проходит на выход, а шумовой сигнал подавляется.

Рис. 1 1 . Усилитель с дифференциальными входами, имеющий широкую полосу усиления (входные синфазные емкости усилителей соединены с виртуальной «землей»)

Неинвертирующие входы обоих преобразователей тока в напряжение заземлены, поэтому на обоих выводах диода устанавливается нулевое напряжение. Кроме того, в такой схеме исключается появление сигнала на синфазных входных емкостях, поэтому увеличивается полоса усиления сигнала и подавления электростатических помех. Неинвертирующие входы не подключаются через высокое сопротивление для коррекции ошибок от входного тока, так как А 1 и А 2 формируют согласованные напряжения на своих выходах. Эти напряжения являются синфазным входным сигналом для конечного блока, и поэтому они подавляются.

Другая функция, которую может выполнять дифференциальная схема на рис. 11, -- это дифференциальное измерение сигналов от двух фотодиодов. Вместо D 1 к входу каждого преобразователя тока в напряжение подключается по отдельному диоду. Эти диоды показаны на рис. 11 штриховыми линиями. Их токи порождают независимые напряжения на выходах A 1 и А 2 , после чего они проходят через дифференциальный усилитель для устранения синфазной составляющей. Оставшееся выходное напряжение пропорционально разности между двумя входными фототоками как мера относительной освещенности. Такой сигнал используется в датчиках положения или слежения за оптической дорожкой в качестве сигнала обратной связи.

Может оказаться, что магнитную шумовую связь труднее устранить, чем электростатическую, но ее влияние также уменьшается при использовании дифференциальных входов. В этом случае возникает связь через взаимную индуктивность, поэтому основной задачей является минимизация размеров петель проводников вместе с экранированием и максимальным разделением источника и приемника помех. Ее влияние не устраняется электростатическим экраном, поэтому первым шагом должно быть подавление помех непосредственно на их источнике. Силовые трансформаторы, которые невозможно удалить на достаточное расстояние, должны иметь экранирование, чтобы бoльшая часть их магнитных полей оставалась внутри трансформатора. Оставшиеся магнитные связи воздействуют через физическую и схемотехническую конфигурации. Резисторы с большим сопротивлением, используемые в трансимпедансных усилителях, чувствительны к этому воздействию, и соединения между этими резисторами и высокоимпедансными входами операционных усилителей должны быть как можно короче. Оставшиеся помехи делаются синфазными за счет согласования формы и размеров проводников, чтобы операционный усилитель мог их подавить. На рис. 10, 11 большое сопротивление разделено между двумя одинаковыми элементами, которые физически монтируются с одинаковой ориентацией и на одинаковом расстоянии относительно источника магнитных помех. Помехи, наведенные на два резистора, в этом случае создают одинаковые сигналы, которые подавляются на выходе усилителя.

Третья разновидность помех -- радиочастотные -- хуже ослабляются усилителями, поэтому основными способами борьбы с ними являются экранирование и фильтрация. Источники радиочастотных помех могут оказаться поблизости от схемы с фотодиодом (например, цифровые схемы, которые наиболее часто присутствуют в системе). На высоких частотах операционные усилители имеют небольшое усиление и слабое подавление синфазных сигналов, и поэтому они не могут подавлять радиочастотные сигналы. Из-за этих ограничений операционных усилителей и ограничения полосы в основной схеме преобразователя тока в напряжение исследуемые сигналы не могут находиться в радиочастотном диапазоне. Для удаления нежелательных сигналов можно использовать фильтрацию, если ее удастся применить на входе усилителя. Фильтрация после усилителя менее эффективна, так как операционный усилитель может работать подобно радиочастотному детектору, отделяющему более низкие частоты от несущей. Дальнейшее уменьшение этих видов шумов можно получить при помощи радиочастотных экранов и «земляных» слоев на печатной плате.

Список используемой литературы

1. Перевод статьи по операционным усилителям “Photodiode Monitoring with Op Amps”, автор -- ведущий специалист фирмы Burr-Brown (Texas Instruments): http://www.kit-e.ru/articles/usil/2009_02_46.php

2. Дж. Грэм, Дж. Тоби и Л. Хьюлсман. Проектирование и применение операционных усилителей: http://www.znvo.kz/books/42-pnpnpn/549-grema.html

3. Хоровиц П., Хилл У. - Искусство схемотехники. Том 1, 3-е издание:

http://publ.lib.ru/ARCHIVES/H/HOROVIC_Paul%27,_HILL_Uinfild

4. Преснухин Л., Воробьев Н., Шишкевич А. - Расчет элементов цифровых устройств: http://www.toroid.ru/presnuhinLN.html

Подобные документы

    Исследование работы интегрального усилителя в различных режимах. Подключение усилителя как повторителя. Измерение входящего и выходящего напряжения. Определение частоты пропускания усилителя. Анализ способов получения большого усиления на высокой частоте.

    лабораторная работа , добавлен 18.06.2015

    Разработка электрической схемы резистивного усилителя. Построение гиперболы рассеивания при статическом режиме. Формула расчета уравнения нагрузочной прямой. Определение параметров тока, полосы пропускания и полосы усиления при динамическом режиме.

    контрольная работа , добавлен 14.05.2014

    Расчет параметров усилителя, на вход которого подается напряжение сигнала с заданной амплитудой от источника с известным внутренним сопротивлением. Определение КПД усилителя с общей параллельной отрицательной обратной связью по току и полного тока.

    задача , добавлен 04.01.2011

    Анализ схемотехнической реализации усилителя. Формирование математической модели параметрического синтеза усилителя. Характеристики коэффициента передачи напряжения. Исследование влияния на частотные характеристики варьируемых параметров усилителя.

    курсовая работа , добавлен 16.09.2017

    Изучение работы усилителей постоянного тока на транзисторах и интегральных микросхемах. Определение коэффициента усиления по напряжению. Амплитудная характеристика усилителя. Зависимость выходного напряжения от напряжения питания сети для усилителя тока.

    лабораторная работа , добавлен 31.08.2013

    Разработка усилителя электрических сигналов, состоящего из каскадов предварительного усилителя. Расчет двухтактного бестрансформаторного усилителя мощности. Определение каскада с ОЭ графоаналитическим методом. Балансные (дифференциальные) усилители.

    курсовая работа , добавлен 09.03.2013

    Определение параметров работы двухкаскадного усилителя тока с непосредственной связью, выполненного на германиевых (Ge) транзисторах структуры n-p-n по заданным показателям. Основные расчеты показателей преобразования напряжения, коэффициентов усиления.

    практическая работа , добавлен 04.01.2011

    Разработка усилителя тока с помощью средств систем автоматизированного проектирования. Моделирование усилителя тока в Multisim. Расчет размеров, размещение радиоэлектронных компонентов на печатной плате, ее трассировка с помощью волнового алгоритма.

    курсовая работа , добавлен 21.10.2015

    Назначение и описание выводов инвертирующего усилителя постоянного тока К140УД8. Рассмотрение справочных параметров и основной схемы включения операционного усилителя. Расчет погрешностей дрейфа напряжения смещения от температуры и входного тока.

    реферат , добавлен 28.05.2012

    Характеристика усилителя как основного узла в устройствах автоматики, телемеханики, вычислительной и информационно-измерительной техники. Принцип работы многокаскадного усилителя с расчетом каждого каскада и построением выходных и входных характеристик.

Сигнал фотоприемника, собранного по схеме на рис.10, обычно требует преобразования для последующей обработки и регистрации.

Причина состоит в том, что сигнал формируется на сопротивлении и зависит от его величины. Но если говорить о последующей работе с ним, то рост сопротивления удаляет нас от эквивалентной схемы источника напряжения. Последний должен иметь как можно меньшее сопротивление.

Сам фотодиод представляет собой источник тока, но тоже не идеальный. Эквивалентная схема должна содержать наряду с ним параллельно сопротивление, величина которого будет зависеть от мощности регистрируемого излучения.

Выйти из этой ситуации позволяет схема, показанная на рис. 11. Это базовая схема, обычно предлагаемая для фотоприемника. Она построена на основе операционного усилителя и опирается на его свойства. При этом надо иметь ввиду, что входное сопротивление используемых для этих целей микросхем должно быть очень велики. Их входные токи составляют пико и даже фемтоамперы.

Поскольку положительный вход микросхемы соединен с землей (0 В), то и на отрицательном входе будет поддерживаться 0 В. Из-за большого входного сопротивления микросхемы сумма токов в узле, связанном с отрицательным входом микросхемы будет равна 0. Поэтому выходное напряжение U микросхемы будет выражаться формулой

U = I Ф · R ОС,

где R ОС – сопротивление обратной связи.

Рис.11. Схема фотоприемника с отрицательным смещение на фотодиоде. Операционный усилитель AD8615 .

Частотные свойства фотоприемника определяются постоянной времени τ = R ОС · C. В состав конденсатора следует включить не только емкость диода, но и монтажа.

Стоит обратить внимание на то, что многие микросхемы работают и по входу и по выходу, как rail-to-rail, то есть в диапазоне входных и выходных напряжений от одного питания до другого. Кроме того, они часто ориентированы на работу с пониженным, батарейным питанием, что создает дополнительные удобства и для работы, и для защиты от помех.

Если говорить о представленном схемотехническом решении в целом, то речь по сути идет о преобразовании сопротивления. Специально разработанные микросхемы решающие данную задачу получили название трансимпедансных усилителей.

Другая, часто встречающаяся схема для преобразования тока фотодиода в напряжение, приведена на рис.12. В этом случае на фотодиоде поддерживается напряжение равное 0 В. Так как темновой ток при этом компенсируется диффузным, он не влияет на регистрируемый сигнал, и наблюдается только фототок. Таким образом, данное решение позволяет устранить влияние на выходное напряжение темнового тока. Однако, как и прежде, частотные свойства фотоприемника, построенного по этой схеме, будут существенно хуже, чем у схемы на рис.11 .

Рис.12. Схема фотоприемника с нулевым напряжением на фотодиоде AD8541 .

4.4. Шумовые свойства фотоприемников на основе фотодиодов

Поскольку фотодиод является датчиком излучения, он и определяет исходный уровень шумов в системе регистрации.

Ток на выходе фотодиода I Ф складывается из трех составляющих.

I Ф = I ФОН + I ДЕТ + I Т,

где I ФОН – ток фонового сигнала, I ДЕТ – детектируемого ток, I Т – темновой ток.

Пренебрегая фоновой засветкой, имеем только две составляющие тока. Фундаментальным источником шумов, связанным с током, является дробовый шум (i ДР) 2 .

Его величина может быть оценена из соотношения

(i ДР) 2 = 2 · e · I · Δf,

где e - заряд электрона, I - ток, Δf - полоса приема.

Таким образом, в случае малого сигнала роль шумов темнового тока становится определяющей в определении чувствительности схемы.

Если ток протекает через активную нагрузку фотодиода величиной R L , к дробовому току добавляется тепловой шум

(U Т) 2 = 4 · k · T · R L · Δf,

где k - постоянная Больцмана, T- температура Кельвина.

Наконец, надо иметь в виду, что шумы последующих за фотодиодом устройств могут быть выше шумов фотодиода, например, шум трансимпедансного усилителя, преобразующего токовый сигнал в сигнал напряжения .

Введение

Передаточная функция трансимпедансного операционного усилителя (ТИОУ) представляет собой зависимость выходного напряжения от входного тока и имеет размерность сопротивления. К ТИОУ относятся ОУ с токовой обратной связью. Когда к входу ОУ с обратной связью по напряжению подключен источник тока, например фотодиод (в обратную связь в этом случае включает резистор с большим сопротивлением), ОУ также можно считать ТИОУ. Для стабилизации схемы параллельно этому резистору ставится конденсатор достаточно большой емкости. В статье рассматривается расчет конденсатора для получения наибольшей полосы пропускания с сохранением устойчивости схемы.

Основные расчетные соотношения

На рисунке 1 показана полная схема ТИОУ, используемого для усиления тока фотодиода VD. В большинстве случаев для смещения Vсмещ используется шина питания +V.

Рис. 1.

Рис. 2. Эквивалентная схема фотодиода. C J — емкость обедненной области диода; I PH — ток диода

Эта схема удобна для нахождения передаточной характеристики ТИОУ. Примем, что усилитель идеален, поэтому на инвертирующем входе виртуальный ноль. Емкости С СМ и С J не влияют на передаточную функцию, поэтому мы их не учитываем. Таким образом, выражение для передаточной характеристики имеет следующий вид:

(1)

(2)

Таким образом, появляется полюс на частоте fp = 1/2pR F C F , который стабилизирует схему (этот эффект будет рассмотрен позже). Для нахождения коэффициента передачи ОС обозначим: С IN = C J + C CM . Таким образом получаем простую дифференцирующую схему с заземленной входной емкостью С IN . Коэффициент передачи сигнала ОС характеризует величину напряжения, которое передается с выхода ОУ на вход.

После некоторых упрощений получаем окончательное выражение для коэффициента обратной связи F:

(3)

Таким образом, коэффициент F для ТИОУ выражается так же, как и для дифференцирующей цепочки. Разница заключается только в добавлении емкости C IN , которая представляет собой сумму емкости фотодиода и входной емкости усилителя. Заметим, что для низких частот F = 1. Коэффициент усиления с ОУ обратной связью ОУ равен 1/F. Для устойчивости в схему добавляют стабилизирующий конденсатор C F . Однако включение дополнительной емкости уменьшает полосу пропускания, поэтому следует искать компромисс.

На рисунке 3 показаны частотные зависимости коэффициента усиления А без обратной связи и коэффициента усиления 1/F с ОС при оптимальном значении C F .

Рис. 3.

Полюс 1/F находится на графике А, другими словами, значение C F оптимально при A = 1/F или А F = 1. В отсутствие C F 1/F = 0, что вызывает сдвиг фаз почти на 180° в точке пересечения графиков А и 1/F.Появление полюса на частоте fp обеспечивает компенсацию с опережением или запаздыванием, при этом фазовый сдвиг в точке пересечения составляет 135°, таким образом, запас по фазе составит 45°. При недостаточной компенсации усилителя точка пересечения будет лежать выше второго полюса ТИОУ.

Из выражения для F найдем значение полюса 1/F:

Частота, до которой 1/F = 0, выражается следующим образом:

(5)

При частоте fz наклон графика 1/F меняется с 0 дБ на +20 дБ. Для стабильности работы усилителя наклон снова должен стать равным нулю. Это достигается как раз на втором полюсе, обусловленным конденсатором C F .

На рисунке 3 пунктиром изображен случай перекомпенсации, когда величина C F слишком большая. В этом случае полюс сдвигается на более низкую частоту. Более того, влияние слагаемого С IN в знаменателе выражения (5) уменьшается, поэтому частота fz также уменьшается. Перекомпенсацию следует применять тогда, когда усилитель недостаточно компенсирован и точка пересечения графиков А и 1/F находится рядом со вторым полюсом характеристики А.

Коэффициент усиления без ОС находится из простого соотношения:

, (6)

где f GBW — частота единичного усиления.

Учитывая, что A F = 1, опуская промежуточные преобразования и упрощая полученные выражения, в конечном итоге получаем выражение:

(7)

Это уравнение довольно сложно решить относительно C F . Для большинства случаев справедливо допущение C IN ; CF. Принимая его, получаем окончательное выражение для C F:

(8)

Это формула для нахождения оптимальной величины емкости C F . Если C F требуется слишком большая и вызывает звон в схеме, то следует использовать перекомпенсацию. Однако перекомпенсация уменьшит полосу пропускания ТИОУ

Практический пример

Рассмотрим схему (см. рис. 4) на операционном усилителе LMV793 фирмы National Semiconductor.

Рис. 4.

Это средний по быстродействию усилитель с недостаточной компенсацией, полосой пропускания 88 МГц и входной емкостью 15 пФ. В качестве датчика выбран фотодиод PIN-HR040 фирмы OSI Optoelectronics с полосой пропускания 300 МГц, чтобы он не ограничивал полосу пропускания усилителя. Емкость фотодиода 7 пФ. В качестве источника света используются лазерные диоды с короткими фронтами и срезами (5 нс). Сопротивление в цепи обратной связи R F = 100 кОм для получения большого коэффициент усиления.

Развязывающие конденсаторы источников питания не показаны, однако следует учитывать, что на каждой шине питания установлен танталовый конденсатор емкостью 6,8 мкФ для фильтрации низких частот и керамический конденсатор емкостью 0,1 мкФ для фильтрации высоких частот. Керамический конденсатор следует размещать как можно ближе к выводам питания операционного усилителя.

Емкость фотодиода C J = 7 пФ, входная емкость усилителя С CM = 15 пФ, значит, суммарная входная емкость составляет С IN 22 пФ. Используя выражение (8), получаем С F = 0,53 пФ. Это очень маленькое значение. В схему включен конденсатор с номинальной емкостью 0,5 пФ, однако его измеренное значение оказалось 0,64 пФ, таким образом, ТИОУ немного перекомпенсирован. Полосу пропускания можно найти исходя из постоянной времени R F C F или по временам фронта. В первом случае получаем 2,5 МГц, а во втором 3,2 МГц. Наличие выброса говорит о том, что запаса по фазе 45° не хватает. Выходная реакция усилителя показана на рисунке 5а и 5б.

Рис. 5. Выходной сигнал ТИОУ при R F = 100 кОм

Теперь рассмотрим ТИОУ с маленьким коэффициентом усиления. Для этого в схему на рисунке 4 включим R F = 10 кОм, при этом коэффициент усиления уменьшится в 10 раз, а полоса пропускания расширится. Однако излучение светодиода теперь должен быть в десять раз ярче для получения того же уровня выходного сигнала. Расчетное значение стабилизирующей емкости C F = 1,7 пФ, а номинальная емкость конденсатора в схеме равна 1,8 пФ. При данных параметрах полюс располагается на частоте 8,8 МГц, а коэффициент усиления с ОС 1/F = 10, это минимально допустимый коэффициент усиления для стабильной работы LMV793.

Таким образом, все условия стабильности работы двухполюсной схемы выполнены, однако при испытаниях в лаборатории выявляется довольно сильный звон схемы. Это могло быть вызвано наличием дополнительных полюсов и нулей, близко расположенных ко второму полюсу. Потребовалась перекомпенсация схемы. Примем C F = 2,7 пФ. На рисунке 6 показана выходная реакция ТИОУ при R F = 10 кОм C F = 2,7 пФ. Времена фронта и среза для данной схемы равны приблизительно 33 нс, отсюда полоса пропускания составляет 10,6 МГц. Полюс располагается на частоте 5,9 МГц. Выходной сигнал ТИОУ для этого случая показан на рисунке 6.

Рис. 6. Выходной сигнал ТИОУ при R F = 10 кОм

Заключение

Устойчивость ТИОУ рассчитывается так же, как и для дифференциального усилителя. Единственная разница между ними заключается в использовании фотодиода в качестве источника входного тока. Фотодиод не влияет на расчет стабильности, его емкость учитывается во входной емкости усилителя.

В лаборатории были протестированы две схемы с разными коэффициентами усиления. Результаты экспериментов сходятся с теоретическими. Выражение (8) для С F применимо для всех видов дифференциальных усилителей, более того, несмотря на различие передаточных характеристик ТИОУ и дифференциального усилителя, выражения для коэффициента передачи сигнала ОС в расчете стабильности обоих усилителей совпадают.

Получение технической информации, заказ образцов, поставка —
e-mail:

LPC3200 — новое семейство 32-разрядных микроконтроллеров

NXP Semiconductors объявила о расширении линейки своей продукции на базе архитектур ARM7TM и ARM9TM, представив семейство микроконтроллеров LPC3200. Микроконтроллеры NXP семейства LPC3200 построены на основе популярного процессора ARM926EJTM и предназначены для использования в бытовых, промышленных, медицинских и автомобильных устройствах. В семейство LPC3200 входят LPC3220, LPC3230, LPC3240 и LPC3250.

Семейство разработано по 90-нм производственному процессу на основе высокопроизводительного ядра ARM926EJ, содержит векторный блок вычислений с плавающей запятой (Vector Floating Point, VFP), контроллер ЖК-монитора, Ethernet MAC, On-The-Go USB, эффективную матрицу шины и поддерживает широкий диапазон стандартных периферийных устройств.

Микроконтроллеры семейства LPC3000 разработаны для обеспечения гибкости в применениях, требующих быстрой и одновременной передачи данных и сочетают в себе высокую производительность, низкое энергопотребление и поддержку большого количества периферийных устройств. В этих устройствах реализованы интерфейсы I 2 C, I 2 S, SPI, SSP, UART, USB, OTG, SD, PWM, A/D для сенсорных экранов, имеется адаптер 10/100 Ethernet MAC и 24-разрядный контроллер ЖК-монитора с поддержкой панелей STN и TFT. Семейство поддерживает модули памяти DDR, SDR, SRAM, а также флэш-память. Возможна загрузка с устройств флэш-памяти NAND, памяти SPI, UART или SRAM.

Поставка опытных образцов микроконтроллеров NXP семейства LPC3200 начнется в апреле 2008 года, начало массовых поставок планируется на третий квартал 2008 года.

О компании National Semiconductor (от Texas Instruments)