Радиорелейная связь (РРЛ) – вид радиосвязи, образующийся в результате работы цепочки принимающих и передающих радиостанций. Наземная радиорелейная связь функционирует на миллиметровых, сантиметровых и дециметровых волнах. РРЛ-сети играют важную роль в сотовой связи, поскольку позволяют передавать очень большие объемы трафика при минимальных затратах. В будущем эта технология способна покрыть потребности сотовых операторов в пропускной способности на все 100%, а значит обеспечить качественную работу множества различных услуг и приложений, подключение к интернету устройств и вещей.


Возможности РРЛ


Главное преимущество РРЛ связано с возможностью увеличить пропускную способность как backhaul-, так и fronthaul-сетей. РРЛ позволяет использовать сразу несколько частотных диапазонов и таким образом увеличить емкость сети при минимальных расходах. Например, используя частоты в диапазоне E-band (70/80 ГГц), можно увеличить пропускную способность в семь раз и при этом разгрузить традиционные для сотовой связи частоты. Это имеет большое значение в свете запуска в коммерческую эксплуатацию сетей пятого поколения (5G), запланированного на 2020 год.

Для модернизации существующих сетей в процессе развертывания 5G будет использоваться комбинация технологий радиорелейной и оптоволоконной связи. Выбирая между РРЛ и оптоволокном как технологией развития транспортной сети, операторы принимают решение исходя из наличия оптоволокна в том или ином районе и стоимости владения сетью (показатель ТСО). «В России не везде можно и целесообразно прокладывать ВОЛС, поэтому мы не планируем отказываться от использования РРЛ. В каждом конкретном случае мы изучаем все возможные способы строительства и модернизации сети и выбираем тот, который является оптимальным», - поясняет представитель компании «МегаФон» Юлия Дорохина. Аналогичной стратегии придерживается Tele2. «Мы используем радиорелейное оборудование там, где это экономически целесообразно», - говорит представитель Tele2 Константин Прокшин.

Оптоволокно в силу надежности обеспечиваемых соединений все чаще применяется для государственных услуг и фиксированной связи, например, при развертывании FTTH-решений в домене доступа. РРЛ, в свою очередь, является основной технологией для соединения базовых станций, ее преимущества – быстрота, невысокая стоимость развертывания и серьезный рост пропускной способности. «Радиорелейная связь - это основной способ подключения базовых станций на нашей сети наряду с ВОЛС. Мы используем этот способ подключения сейчас и планируем использовать его в будущем. При этом мы строим ВОЛС до позиций в городах и на узловых позициях, что обеспечивает эффективную целевую архитектуру транспортной сети», -

комментирует директор по развитию сети ПАО «ВымпелКом» Сергей Кнышев.

По прогнозам Ericsson к 2020 году около 65% всех типов базовых станций в мире в качестве среды передачи будут использовать РРЛ (исключение составят Китай, Япония, Южная Корея и Тайвань, где высока степень проникновения оптического волокна). При этом активней всего будет осваиваться частотный диапазон E-band, на который в 2020 году будет приходиться около 20% вновь развертываемых РРЛ систем. К этому времени доля традиционных частотных диапазонов 6-42 ГГц составит 70% для вновь развертываемых РРС. Впрочем, популярность РРЛ будет сильно варьироваться от региона к региону. Например, в Северной Америке к 2020 году число подключенных через РРЛ базовых станций достигнет 20%, а в Индии этот показатель составит 70%. Столь существенная разница сложилась исторически и связана, в основном, со степенью зрелости телекоммуникационных рынков и доступностью услуг фиксированной связи.

Используемые частотные диапазоны


В настоящее время, для радиорелейной связи используется полоса шириной около 40 ГГц, однако она доступна целиком не во всех странах мира. В РРЛ выделяется 5 диапазонов, каждый из которых имеет свои характеристики:

6–13 ГГц Это низкие частотные диапазоны, они менее чувствительны к дождю, и по этой причине применяются в дождливых регионах на протяженных транзитных участках.

Пропускная способность в этом диапазоне ограничена, однако проблема решается агрегацией нескольких каналов. Чаще всего используется полоса 7 ГГц, менее популярны 6 ГГц и 8 ГГц. Что касается более высоких участков этого спектра, в большей части стран мира используется 13 ГГц, а в Северной Америке – 11 ГГц. Полоса 10 ГГц эксплуатируется в основном на Ближнем Востоке.

15–23 ГГц Эти частоты сейчас используются во многих странах мира, и они продолжат играть важную роль в ближайшие годы. С недавних пор в данных диапазонах используются более широкие каналы, и это при сочетании с технологиями, повышающими эффективность использования спектра, позволит увеличить пропускную способность сетей в будущем.

26–42 ГГц В этих диапазонах существуют как широко используемые частоты, так и не используемые вовсе. В Европе операторы активно работают в диапазоне 38 ГГц, и в дальнейшем ситуация не изменится. Также операторами занят диапазон 26 ГГц, и растет интерес к частотам в диапазонах 28 ГГц и 32 ГГц. Большие перспективы у частотных каналов шириной 56 МГц и 112 МГц, поскольку они способны обеспечить гигабитные скорости передачи данных.

60 ГГц Диапазон V-band (58,25-63,25 ГГц) идеально подходит для приложений малых сот, так как обеспечивает высокую пропускную способность из-за большой ширины каналов и низкий уровень интерференции из-за большого затухания. До настоящего времени диапазон 60 ГГц активно не использовался, поскольку уличные сети из малых сот не развертывались в больших масштабах. В ряде стран операторы уже начали строить РРЛ сети в этом диапазоне, однако в во многих уголках мира его статус остается неясным. Сейчас важно определиться с регулированием совместного использования данного диапазона, для того, чтобы операторы и разные службы не создавали помех для работы друг друга.

70/80 ГГц В последние годы растет число развертываний в диапазоне E-band, главным преимуществом которого является возможность обеспечить очень высокую пропускную способность. Эти частоты применяются для передачи данных на сравнительно короткое расстояние в 2-5км, однако этого достаточно для городских условий. Во многих странах существует упрощенный режим лицензирования в данном диапазоне, который стимулирует интерес к нему со стороны операторов.

«При новом строительстве достаточно популярным в городских условиях решением является использование оборудования нелицензионных диапазонов частот 60, 70/80 ГГц (V-band, E-band) в силу ряда факторов: относительная простота самого оборудования, оперативность, универсальность, уведомительных характер использования», - поясняет представитель компании «Ростелеком» Андрей Поляков.

«Мы используем самые современные типы оборудования РРЛ на базе IP и новые технологии: широкополосные РРЛ и РРЛ в высокочастотных диапазонах - Eband, Vband, которые обеспечивают большие скорости при использовании нелицензируемых диапазонов», - говорит директор по развитию сети ПАО «ВымпелКом» Сергей Кнышев.

На данный момент в диапазоне E-band оборудование РРЛ способно обеспечивать передачу данных на скорости до 5 Гбит/сек. В частности, с февраля этого года такие скорости доступны в сети египетского оператора Mobinil, входящего в Orange Group. Оператор использует системы Ericsson MINI-LINK 6352. «Ширина диапазона E-band обеспечивает высокую пропускную способность сети, - поясняет глава Ericsson в регионе Ближний Восток и Африка Рафия Ибрагим (Rafiah Ibrahim). - Использование систем MINI-LINK 6352 позволило улучшить LTE-покрытие и существенно увеличить скорость передачи данных в сети Mobinil».

В целом, каждый из пяти диапазонов радиорелейной связи имеет большой потенциал, для использования которого в полной мере требуется внести коррективы в законодательство. При использовании V- и Е-диапазонов и технологий XPIC, MIMO, а также антенн со сверхвысокой производительностью, таких как ETSI class 4, можно добиться более эффективного использования имеющегося частотного спектра и повысить пропускную способность сетей. «В традиционных диапазонах мы стали использовать адаптивную модуляцию, XPIC, и другие технологии, увеличивающие пропускную способность и надежность сети», - говорит Сергей Кнышев.

Кроме того, сейчас ведутся дискуссии об использовании диапазонов W-band (92-114,5 ГГц) и D-band (141–174,8 ГГц). В частности, компания Ericsson и Технический университет Чалмерса недавно продемонстрировали работу чипсета, обеспечивающего передачу данных на скорости 40 Гбит/сек в диапазоне 140 ГГц.

Перспективы РРЛ


Простота использования, быстрота развертывания и высокая пропускная способность сетей востребованы во всех отраслях промышленности. РРЛ используется в секторе ЖКХ для передачи трафика SCA DA, для которого важна высокая пропускная способность. Благодаря надежности и гибкости РРЛ применяется в работе государственных служб, в частности, полиции. Также РРЛ используется в корпоративных сетях в качестве технологии, дополняющей оптоволокно. Интернет-провайдеры применяют радиорелейную связь для оказания услуг домашним хозяйствам, поскольку такие сети строятся в короткие сроки и позволяют быстро начать получать доход от предоставления услуг доступа в интернет. РРЛ все чаще используется для трансляции эфирного телевидения, особенно больше значение данная технология приобрела в связи с переходом с аналогового на цифровое вещание. Кроме того, РРЛ применяется в создании мультисервисных сетей, в которых требуется обеспечить стабильность передачи и защиту данных.

«Сфера применения РРЛ трансформируется, всё более смещаясь в сегмент региональных и городских линий связи, а также в сегмент линий доступа. Традиционные магистральные РРЛ продолжают использоваться в основном в северных регионах, но постепенно их роль снижается в пользу оптических технологий там, где такая замена возможна и экономически целесообразна, - говорит представитель компании «Ростелеком» Андрей Поляков. - РРЛ, на мой взгляд, могут иметь перспективы развития в северных регионах с низкой плотностью населения и, соответственно, незначительным прогнозируемым ростом трафика, а также, в силу природных особенностей территорий (горы, вечная мерзлота, нестабильные грунты), удорожающих прокладку ВОЛП по сравнению со средней полосой РФ. Также РРЛ могут быть востребованы в местах, где прокладка ВОЛП практически невозможна- различные природоохранные территории и заповедники».

Варианты развертывания РРЛ-сетей


Существует множество вариантов развертывания радиорелейных сетей. При этом выбранный сценарий развертывания влияет на все аспекты работы, начиная от базовых станций и расходов на поддержание работы сети, заканчивая производительностью и возможностями для модернизации. Один из путей – пошаговое развертывание (hop-by-hop) по аналогии с коробками для пиццы с фиксированной конфигурацией, которая создается постепенно, исходя из текущих потребностей. Сетевые узлы при этом представляют из себя модули, что позволяет с легкостью расширять их, увеличивая пропускную способность. Ценность такого подхода - гарантия минимальной цены каждого шага и как следствие – наилучший показатель TCO. Недостаток данной модели заключается в том, что в итоге можно получить сеть, сплошь состоящую из оборудования разных вендоров.

Для того, чтобы в полной мере оценить преимущества концепции сетевых узлов, специалисты компании Ericsson изучили типичный сетевой кластер из узлов, состоящих из 109 транзитных сегментов, построенных на базе радиорелейного оборудования шести различных вендоров. При проектировании сети использовалась звездная топология, в которой центральный узел агрегирует весь трафик со всех узлов РРЛ. При этом для кластера был предусмотрен план модернизации, рассчитанный на пять лет и учитывающий поддержку растущего 3G- и 4G-трафика.

Было разработано три модели:

Пошаговая (hop-by-hop) модель,

Модель с использованием сетевых узлов,

Модель, комбинирующая оба варианта.

План развития сети состоял из следующих этапов:

Рост скорости передачи данных по сети 3G: 30 Мбит/сек в первый год с дальнейшим ростом на 10% в год;

Расширение сети 4G: 10 МГц в первый год, 10+10 МГц во второй и третий годы, 10+20 МГц в четвертый и пятый годы.

В результате проведенных исследований выяснилось, что использование сетевых узлов является наиболее эффективным и наименее затратным способом увеличения пропускной способности, при котором новый функционал внедряется шаг за шагом. После пяти лет использования сети, состоящей из узлов, затраты сократились на 40%. Это было достигнуто за счет повторного использования оборудования, обеспечивающего экономию на расходах, связанных с покупкой нового оборудования и комплектующих. В то же время, по мере развития сети пошаговая модель потребовала полной замены всего оборудования, а также апгрейда базовых станций и кабелей. Совместное использование коммутаторов, вентиляторов, блоков питания и процессоров позволило снизить потребление энергии и, следовательно, сократить расходы на оборудование при расширении существующих сайтов.

Модель на базе сетевых узлов обеспечила сокращение количества оборудования в три раза. Это привело к упрощению операций и процессов поддержки работы сети, что в конечном итоге вылилось в снижение трудозатрат и издержек. Также удалось добиться снижения затрат за счет сокращения времени, требующегося для решения проблем с производительностью и отказами оборудования. Кроме того, активно применялся апгрейд действующего оборудования, который также уменьшил возможные расходы. В придачу к этому сокращение количества элементов оборудования позволило улучшить процессы мониторинга и минимизировать время, требующееся для восстановления сети после отказов и время, необходимое для принятия мер для улучшения пользовательских характеристик.

Помимо всего перечисленного, в ходе испытаний специалисты Ericsson выяснили, что при применении модели с сетевыми узлами требуется в три раза меньшая площадь, чем при использовании пошаговой модели. Сокращение количества стоек при узловой модели позволяет сэкономить на покупке шкафов. Дело в том, что на многих сайтах расходы на шкафы и соответсвующую инфраструктуру могут превышать расходы на транспортное оборудование, а при строительстве сети на основе узлового подхода можно избежать этих расходов. Также при такой модели в пятилетней перспективе значительно сокращается показатель OPEX, поскольку установка меньшего количества оборудования требует меньше места, что ведет к уменьшению затрат на аренду и меньшему энергопотреблению.

Главная Радиорелейная связь РАДИОРЕЛЕЙНая СВЯЗь

1.1. ПРИНЦИПЫ РАДИОРЕЛЕЙНОЙ СВЯЗИ. КЛАССИФИКАЦИЯ РАДИОРЕЛЕЙНЫХ СИСТЕМ

В самом общем виде радиорелейную линию (РРЛ) связи можно определить как цепочку приемопередающих радиостанций. Приемник каждой станции принимает сигнал, посылаемый передатчиком предыдущей станции, и усилива-ет его. Усиленный сигнал поступает на передатчик данной станции и далее излучается в направлении следующей станции. Построенная таким образом цепочка станций обеспечивает высококачественную и надежную передачу различных сообщений па больщие расстояния.

В зависимости от используемого вида распространения радиоволи РРЛ можно разделить иа два класса: радиорелейные линии прямой видимости, в которых существует прямая видимость между антеннами соседних станций, и тропосферные радиорелейные линии, в которых нет прямой видимости между антеннами соседних станций.

Наиболее распространены РРЛ прямой видимости, которые работают в диапазонах дециметровых и сантиметровых волн. В этих диапазонах возможно построение щирокополосных приемников и передатчиков. Поэтому РРЛ обеспечивают передачу широкополосных сигналов и, в первую очередь, сигналов многоканальной телефонии и телевидения. В диапазонах дециметровых и особенно сантиметровых воли возможно применение остронаправлеиных антенн, так как благодаря малой длине волиы оказывается возможным построение таких антенн приемлемых габаритных размеров. Использование остронаправлеиных антенн, имеющих больщой коэффициент усиления (1000-10 000 и более по мощности) позволяет обходиться небольщимн мощностями передатчиков (от долей ватт до 10-20 Вт) и, следовательно, иметь компактную и экономичную аппаратуру. Для линий этого класса выделены соответствующие полосы частот в диапазонах 2, 4, 6, 8, 11 и 13 ГГц и в более высокочастотных диапазонах.

Необходимость прямой видимости между антеннами соседних станций требует поднятия антенн над уровнем земли и, следовательно, строительства соответствующих антенных опор - бащеи или мачт. Высота подвеса антеии определяется расстоянием между соседними станциями, а также характером рельефа местности между ними. В зависимости от этих факторов высота оцор может доходить до 100 м, а иногда и более. В ряде случаев, при благопринтном рельефе местности, антенны могут располагаться на небольщой высоте, например иа крыще здания, в котором установлена аппаратура.

Расстояние между соседними станциями обычно находится в пределах 40-70 км. В отдельных случаях эти интервалы сокращаются до 20-30 км из-за необходимости подведения линии в конкретно заданный пункт, а также в случае особо неблагоприятного рельефа местности.

По пропускной способности радиорелейные системы прямой видимости разделяются на три основных вида:

Радиорелейные системы больщой емкости. Емкость радиоствола таких систем составляет 600-2700 иногда и более каналов ТЧ или канал передачи сигналов изображения телевидения с одним или несколькими каналами передачи звуковых сигналов телевидения и звукового вещания. Эти системы используются для организации магистральных радиорелейных линий большой протиженности.

Построение радиорелейной линии. Система резервироеания

Радиорелейные системы средней емкости. Емкость радиоствола этих систем составляет 60-600 каналов ТЧ или канал передачи сигналов изображения телевидения с одним или несколькими каналами передачи звуковых сигналов телевидения и звукового вещания. В отдельных случаях системы этого класса не рассчитаны иа передачу сигналов изображения телевидения. Такие системы используются для организации внутризоновых соединительных линий.

Малоканальные радиорелейные системы с числом каналов ТЧ в радиостволе от 6 до 60. Эти системы не рассчитаны на передачу телевизионных сигналов, они используются для организации местных соединительных линий.

Приведенная классификация радиорелейных систем иосит условный характер: она отражает в основном то положение, которое имеет место на стационарных радиорелейных линиях Министерства связи СССР и министерств связи союзных республик. Радиорелейные системы для технологических связей (иа железнодорожном транспорте, газопроводах, линиях электропередач и т. п.) имеют свою специфику и не всегда укладываются в выще приведенную классификацию. То же относится и к радиорелейным телевизионным системам для репортажных целей.

При передаче сигналов многоканальной телефонии в радиорелейных системах больщой и средней емкостей применяется, как правило, аппаратура кабельных систем передачи с частотным разделением каналов.

В малоканальных радиорелейных системах применяется как аппаратура с частотным, так и с временным разделением каналов.

В настоящем Справочнике рассматриваются радиорелейные системы, в которых используются аппаратура кабельных систем передачи с частотным разделением каналов и частотная модуляция радиосигнала.

1.2. ПОСТРОЕНИЕ РАДИОРЕЛЕЙНОЙ ЛИНИИ. СИСТЕМА РЕЗЕРВИРОВАНИЯ

Стои.мость бащеи или,мачт, аитеиио-фидериых сооружений, технических зданий и систем электроснабжения значительно превыщает стоимость приемопередатчиков. Поэтому для повыщення экономической эффективности п пропускной способности радиорелейные системы, как правило, делают многоствольны-

"с. 1.1. Структурная схема станций многоканальной радиорелейной линии

МИ, в которых на каждой станции работают на различных частотах несколько приемо-передатчиков на общую антенно-фндерную систему, используя одну в ту же антенную опору, техническое здание и систему энергоснабжения.

Упрощенная структурная схема многоствольной радиорелейной линии приведена на рис. 1.1. Работа нескольких приемопередатчиков Пм-Пд на общую антенную систему осуществляется с помощью систем СВЧ уплотнения (разделительных фильтров н устройств сложения сигналов приема и передачи).

Для обеспечения высокой надежности работы на РРЛ применяетси резервирование оборудования. Различают две основные системы резервирования: постанциоиную и поучастковую.

Постанционнаи система резервирования (рис. 1.2) предусматривает на каждый рабочий приемопередатчик наличие резервного, имеющего те же ра- бочие частоты. При аварии рабочего приемопередатчика происходит автоматическая замена его резервным. Система, управляющая автоматическим резервированием (СУР), работает самостоятельно на каждой станции..

Недостатки систем: большой объем приемопередающего оборудования (100-процентный резерв); отсутствие какой-либо защиты от замираний сигналов; сложность устройств СВЧ коммутации и большое времи коммутации в случае использования механических переключателей. В современных радиорелейных системах постанционное резервирование не применяется.

При поучастковой системе резервирования каждое направление между двумя узловыми (или узловой и оконечной) станциями свизываются в единую

систему (рис. 1.3). Дли целей ре-

зрвироваипя выделяется отдельный резервный ствол, работающий на своих частотах. Аппаратура резервного ствола постоянно включена. При отсутствии аварии в рабочих стволах резервный ствол не загружен передачей. Для коитроли за качеством работы стволов по ним непрерывно передаются спе-:и:алы1ые пилот-сигналы.

Пплот-сигпал вводится в ствол через модулятор первой станции участка резервирования, а выделя-

Рис. 1.2. Структурная схема постапцпонного ре- ется специальным демОДуЛЯТО-

зсрвироваипя ром ИЗ последней станцип этого

участка. Выделенный пилот-сигнал сравнивается с величиной шума в специальном измерительном канале. Если отношение шума к пилот-сигналу превышает заданную величину или уровень пилот-сигнала падает ниже нормы, то начинается проиесс переключения на резервный ствол. Для этого на станции, находящейся на конце участка, включается генератор обратных аварийных сигналов (ГОАС). Для каждого рабочего ствола имеется отдельный ГОАС, работающий на своей частоте. Обратный аварийный сигнал по специальному каналу в системе служебной связи подается на первую станцию участка резервирования, где он воздействует на переключающее устройство, которое производит подключение резервного ствола параллельно поврежденному. В результате этого сообщение н пилот-сигнал начинают передаваться также и по резервному стволу. Выделенный на выходе резервного ствола (на последней станции участка резервирования) пилот-сигнал преобразуется в сигнал команды, который производит дальнейшее переключение тракта передачи с выхода поврежденного рабочего ствола на выход резервного ствола. Время перерыва связи при поучастковом резервировании определяется параметрами аппаратуры резервирования п характером аварии.

При так называемой «мгновенно")» аварии (например, нарушении контакта или замыкании в приемопередающем тракте какой-либо станции участка резервирования) время перерыва связи слагается из времени пробега обратного

Построеиие радиореяейиой линии. Система резервирования

аварийного сигнала от приемного конца до передающего конца участка, времена пробега полезного сообщения по резервному стволу от передающего конца участка до приемного, времени пробега управляющих сигналов в аппаратуре

Пилош-сигиал

РаЪочий стШ

пилот-Г*1 сигнала. Анализ.

Пшт-сигиал

Радот cmSon

Резервный стВол

сл1/шонШ~ с Вязи

Рис. 1.3. Структурная схема поучасткового резервирования

резервирования и времени срабатывания переключающих устройств. Время перерыва связи при «мгновенной» аварии обычно находится в пределах 10- 40 мс.

При так называемой «медленной» аварии (например, глубоком замирании сигнала), когда параметр, по которому определяется состояние аварии (отношение уровня шума к пилот-сигналу), изменяется со скоростью, не превышающей 100 дБ/с, время перерыва связи определяется только временем, необходимым для срабатывания переключающего устройства на премном конце участка резервированпя. Это время при современном уровне техники может быть сведено к единицам микросекунд.

Достоинство поучастковой системы резервирования - меньший, чем при по-стаиционной системе резервирования, объем приемопередающего оборудования (один резервный ствол на несколько рабочих стволов); малое времи переключения на резерв; определения защита от глубоких замирений сигнала интерференционного характера из-за слабой корреляции глубоких замираний сигнала в стволах, работающих на различных частотах. Эта защита тем эффективнее, чем больше разница между частотами, на которых работают рабочий н резервный стволы. Но эта разница иногда может быть недостаточной, так как для работы радиорелейной системы выделены конкретные полосы частот, выходить за пределы которых недопустимо.

Следует также иметь в виду, что система поучасткового резервирования дает определенную защиту от замираний сигнала только в то время, когда резервный ствол не используется для резервирования вышедшего из строи оборудования рабочего ствола.

Систему поучасткового резервирования радиорелейных систем принято сокращенно обозначать суммой двух цифр, из которых первая обозначает число рабочих стволов, а вторая - число резервных стволов. Так, система 3-1-1 означает радиорелейную систему, имеющую три рабочих ствола и одни резервный ствол.

1.3. ПЛАНЫ РАСПРЕДЕЛЕНИЯ ЧАСТОТ

В РАДИОРЕЛЕЙНЫХ СИСТЕМАХ СВЯЗИ ПРЯМОЙ

ВИДИМОСТИ

Двухчастотная система (рис. 1.4) экономична с точки зрения использования полосы частот, выделенной для радиорелейной связи в данном диапазоне, но требует высоких защитных свойств антенн от приема сигналов с обратного направления. При двух частотной системе используются рупорно-параболиче-ские, высококачественные осесимметричные антенны и другие типы антенн, имеющие защитное действие -60-70 дБ.

Четырехчастотная система (рис. 1.5) допускает использование более простых и дешевых антенных систем. Однако количество дуплексных радиостволов, которое может быть образовано в данной полосе частот при четырехчастотной системе, в 2 раза меньше, чем при двухчастотной системе. Как правило, в современной радиорелейной аппаратуре применяется двухчастотная система. Четырехчастотная система обычно использовалась на РРЛ с перископическими антеннами в диапазоне 2 ГГц.

Частоты приема и передачи в одном радиостволе РРЛ чередуются от станции к станции. Станции, на которых прием осуществляется на более низкой частоте, а передача на более высокой частоте, обозначаются символом «НВ>, а

Передача

Передача

Передача

Рис. 1.4. Двухчастотная система

Рис. 1.5. Четырехчастотная система

Планы распределения частот для многоствольных РРЛ разработаны таким образом, чтобы свести к минимуму интерференционные помехи, возникающие при одновременной работе нескольких приемников и передатчиков на общий антенио-фидериый тракт.

Планы распределеиня частот

Во всех современных радиорелейных системах применяются планы радиочастот, в которых частоты приема размещаются в одной половине отведенной полосы частот, а частоты передачи - в другой половине.

Станция N-

Станция N°3

Рис. 1.6. Схема участка т;)ассы РРЛ

Puc. 1.7. Система с разнесенными частотами приема и передачи

Структурная схема радиорелейной станции, использующей данный принцип приведена на рис. 1.7. Для приема и передачи сигналов используется одна общая антенна. Система разделительных фильтров рассчитана на работу только в половине полосы частот, отведенной для радиорелейной системы. Тракты приема и передачи объединяются в общий тракт с помощью поляризационного фильтра или ферритового циркулятора (УС) (см. рис 17)

План распределения частот радиорелейной системы кУРС-2М в диапазоне Иц приведен на рис. 1.8. Он соответствует Рекомендации 382-2МККР и ооеспечивает оганизацию шести дуплексных стволов по двухчастотной системе зЛ\ дуплексных стволов по четырехчастотной системе). Номинальные по формуле нижней половине диапазона определяются

/» = /, -208 + 29 п,

а в верхней половине диапазона f„ - no формуле /„«/,+ 5+29 п

1. Общие принципы построения радиорелейных линий. Спутниковые и радиорелейные системы передачи

1. Общие принципы построения радиорелейных линий

1.1. Принципы радиорелейной связи

Используемые на РРЛ и ТРЛ диапазоны радиочастот обладают рядом достоинств. В каждом из этих широкополосных диапазонов можно передавать много широкополосных сигналов. В этих диапазонах антенны с большими коэффициентами усиления имеют сравнительно небольшие размеры. Применение таких антенн позволяет получить устойчивую связь при малой мощности передатчика. Спектр внешних помех атмосферного и промышленного происхождения лежит в более низкочастотной области, чем УВЧ. Поэтому в диапазонах УВЧ и более высокочастотных таких помех практически нет. Наибольшее распространение на магистральных РРЛ нашли АРРС, работающие в сантиметровом диапазоне волн.

Радиорелейную линию связи строят в виде цепочки приемопередающих РРС. На РРЛ устанавливают передатчики мощностью 0,1...10 Вт, приемники с коэффициентом шума около 10 дБ, антенны с коэффициентом усиления около 40 дБ (площадь раскрыва около 10 м2).

На такой РРЛ между антеннами соседних РРС должна быть прямая видимость. Для этого антенны устанавливают на опорах, чаще всего на высоте 40...100 м. Расстояние между соседними РРС магистральных РРЛ обычно около 50 км. На ТРЛ среднее расстояние между соседними станциями около 250 км. На ТРЛ применяют передатчики мощностью 1...10 кВт, приемники с малошумящими усилителями (МШУ), имеющими эффективную шумовую температуру 150... 200 К, антенны с коэффициентом усиления около 40 дБ

Типы станций . Основные типы РРС: оконечная (ОРС), узловая (УРС) и промежуточная (ПРС). На ОРС и УРС устанавливают радиопередатчики и радиоприемники (рис. 1.1). В составе радиопередатчика - модулятор Мд и передатчик СВЧ сигнала П, в составе радиоприемника - приемник СВЧ сигналов Пр и демодулятор Дм (ср. с рис. В.1). В передатчике СВЧ модулированный сигнал промежуточной частоты (ПЧ) преобразуется в сигнал СВЧ либо УВЧ диапазона, в приемнике СВЧ происходит обратное преобразование принятого СВЧ сигнала в сигнал ПЧ. Приемник СВЧ и передатчик, СВЧ вместе образуют приемопередатчик СВЧ, устанавливаемый на ПРС.

На ОРС, располагаемых на концах РРЛ, происходит ввод и выделение передаваемых сигналов, например МТС.

На ПРС происходит ретрансляция радиосигнала: прием, усиление, сдвиг по частоте и передача в направлении следующей РРС. При передаче радиосигналов вещательного телевидения по РРЛ на каждой ПРС предусмотрена возможность выделения телевизионной программы. Станция, на которой такая возможность реализована, называется ПРС с выделением телевидения (ПРСВ).

На УРС имеет место ретрансляция радиосигнала и разветвление РРЛ. От УРС часто берут начало новые РРЛ или кабельные линии связи. На УРС всегда происходит выделение из МТС части ТФ сигналов и ввод новых, поэтому там всегда устанавливают модуляторы и демодуляторы. Конструктивно их часто объединяют в устройстве, получившем название модем. Рекомендуемое для нашей страны среднее расстояние между соседними УРС составляет 250 км.

На УРС, как правило, имеет место разветвление радиосигналов вещательного телевидения, так называемый транзит по ПЧ. Поскольку модемы вносят шумы, то исключение их из схемы позволяет улучшить отношение сигнал-шум в канале на конце РРЛ. На крупных УРС, где сходятся несколько РРЛ, устанавливают специальные коммутаторы по ПЧ сигналов вещательного телевидения, позволяющие оперативно выбирать ту или иную программу. Модуляторы устанавливают лишь на тех УРС, где необходимо ввести новую ТВ программу. Рекомендуемое расстояние между такими УРС в нашей стране - 2500 км.

Радиорелейный пролет и радиорелейный участок . Часть радиорелейной линии связи между соседними РРС, включающую аппаратуру и среду распространения радиосигнала, называют радиорелейным пролетом. Часть радиорелейной линии связи, ограниченную двумя близлежащими радиорелейными станциями, которые являются оконечными или узловыми, называют радиорелейным участком.

Сдвиг по частоте . Разность уровней сигналов на выходе и входе приемопередатчика ПРС превышает 100 дБ. Чтобы предотвратить самовозбуждение этого устройства, радиосигналы одного направления связи на ПРС (УРС) принимают и передают на разных частотах f1 и f2. Частотным сдвигом называют величину fсдв = |fа -f1|. Обычно на магистральных РРЛ fсдв=266 МГц.

Особенности обслуживания. На РРЛ обслуживающий персонал постоянно присутствует только на ОРС и УРС. Для контроля за состоянием аппаратуры на ПРС и управления ею используют систему телеобслуживания (ТО), при организации которой всю РРЛ разбивают на эксплуатационные участки, содержащие до 10 РРС. В середине такого участка находится УРС, с которой управляют работой ПРС участка, расположенных по обе стороны от УРС. Оконечные РРС обслуживают близлежащие ПРС. Для повышения надежности и устойчивости работы аппаратуру РРЛ резервируют. Распространены два способа автоматического резервирования: постанционное и поучастковое. При постанционном резервировании в случае неисправности рабочего комплекта аппаратуры на данной станции происходит автоматическая замена его на резервный, работающий на тех же частотах.

При поучастковом резервировании на каждой станции устанавливают рабочие и резервные комплекты приемопередатчиков СВЧ, причем рабочие частоты этих комплектов не совпадают. При повреждении аппаратуры на любой ПРС происходит автоматическое переключение модемов на концах радиорелейного участка, после чего передача сигналов на всем участке происходит с помощью резервных СВЧ приемопередатчиков. На РРС с поучастковым резервированием на концах участка устанавливают аппаратуру резервирования, с помощью которой контролируют состояние аппаратуры ВЧ стволов и переключают модемы. Команду переключения с конца участка к началу передают по каналам служебной связи. Каналы служебной связи предназначены также для передачи сигналов ТО и переговоров обслуживающего персонала.

1.2. Многоствольные радиорелейные линии

Стволы РРЛ . На всех станциях одной РРЛ, как правило, устанавливают однотипные приемники и передатчики СВЧ. В большинстве радиорелейных систем Пр и П на ПРС соединяют по ПЧ. Цепочка таких передатчиков и приемников СВЧ на радиорелейном участке образует высокочастотный (ВЧ) ствол. Этот ствол является универсальным, так как по нему можно организовать передачу различных сообщений. Для чего на ОРС и УРС к ВЧ стволу подключают Мд и Дм и соответствующие оконечные устройства. Последние входят в состав модема. Если по ВЧ стволу передают МТС методом аналоговой модуляции, то такой ствол называют телефонным (ТФ). Кроме него методом аналоговой ЧМ организуют телевизионные (ТВ) стволы, по которым передают ТВ программы. Цифровой (ЦФ) ствол организуют, подавая на модулятор РРС цифровой сигнал.

Сигнал, подаваемый на модулятор, называют групповым сигналом ствола , а спектр его - линейным спектром , В аналого-цифровых (АЦФ) стволах ГС составляют из МТС и цифрового сигнала.

Структурная схема трехствольной РРЛ . Для повышения пропускной способности на РРЛ, как правило, организуют одновременную работу нескольких ВЧ стволов на различных частотах на общие антенно-фидерный тракт (АФТ) и антенну. Такую РРЛ называют многоствольной. Она имеет более высокую экономическую эффективность, чем одноствольная, поскольку стоимость антенны, антенных опор, а также общих для всех стволов - технического здания и системы электропитания, значительно выше, чем стоимость аппаратуры ВЧ ствола.

Для подключения нескольких приемопередатчиков к одной антенне (рис. 1.2) служат устройства совмещения (УС) и разделительные фильтры (РФ). Устройства совмещения нужны для разделения волн приема и передачи. В качестве УС используют поляризационные селекторы или ферритовые циркуляторы. Разделительные фильтры приема (РФ1) служат для разделения сигналов различных стволов на приеме на частотах f1, f3, f5. Разделительные фильтры передачи (РФ2) служат для объединения на передаче сигналов на частотах f1", f3", f5".

На рис. 1.2 показаны ТФ и ТВ стволы, а также резервный - Рез. Аппаратура резервирования установлена на концах радиорелейного участка: приемном - Рез. пр и передающем - Рез. П. В точку 3 может поступать сигнал об аварии, который должен быть передан к началу участка на предыдущую УРС, аналогичный сигнал от последующей УРС поступает в т. 4. В ТВ стволе организован транзит по ПЧ. Выбор ответвляемой программы осуществляют с помощью коммутатора по ПЧ-Км ПЧ, к которому также подводят (в т. 5) сигнал ТВ ствола обратного направления.

Пропускная способность ствола. В современных магистральных РРЛ с ЧМ для ВЧ ствола выделена полоса частот 28 МГц. Следовательно, ЧМ сигналы, передаваемые по стволу, должны иметь спектр не шире 28 МГц. Напомним, что ширина спектра ЧМ сигнала

(1.1)

где - максимальная девиация частоты, FB - верхняя модулирующая частота. Поскольку на РРЛ девиация частоты задана, то и величина FB, а следовательно, и пропускная способность ствола ограничены. Ориентировочно F<9 МГц

1.3. Планы распределения частот

Для работы РРЛ выделены полосы частот шириной 400 МГц в диапазоне1 2 ГГц (1,7...2,1 ГГц), 500 МГц в диапазонах 4 (3,4... 3,9), 6 (5,67 ...6,17) и 8 (7,9... 8,4) ГГц и шириной 1 ГГц в диапазонах 11 и 13 ГГц и более высокочастотных. Эти полосы распределяют между ВЧ стволами радиорелейной системы по определенному плану, называемому планом распределения частот. Планы частот составляют так, чтобы обеспечить минимальные взаимные помехи между стволами, работающими на общую антенну.

В полосе 400 МГц может быть организовано 6, в полосе 500 МГц - 8 и в полосе 1 ГГц-12 дуплексных ВЧ стволов.

В плане частот (рис. 1.3) обычно указывают среднюю частоту f0. Частоты приема стволов располагают в одной половине выделенной полосы, а частоты передачи - в другой. При таком делении получают достаточно большую частоту сдвига, чем обеспечивают достаточную развязку между сигналами приема и передачи, поскольку РФ приема (или РФ передачи) будут работать только в половине всей полосы частот системы. При этом можно использовать общую антенну для приема и передачи сигналов. В случае необходимости получают дополнительную развязку между волнами приема и передачи в одной антенне за счет применения разной поляризации. На РРЛ используют волны с линейной поляризацией: вертикальной или горизонтальной. Применяют два варианта распределения поляризаций. В первом варианте на каждой ПРС и УРС происходит изменение поляризации так, что принимают и передают волны разной поляризации. Во втором варианте в направлении "туда" используют одну поляризацию волн, а в направлении "обратно"- другую.

Рисунок 1.3. План распределения частот для радиорелейной системы КУРС для станции типа НВ в диапазонах 4 (f0=3,6536), 6(f0=5,92) и 8(f0=8,157)

Станцию, на которой частоты приема расположены в нижней (Н) части выделенной полосы, а частоты передачи в верхней (В) - обозначают индексом "НВ". На следующей станции частота приема окажется выше частоты передачи и такую станцию обозначают индексом "ВН".

Для обратного направления связи данного ствола можно взять или ту же пару частот, что и для прямого, или другую. Соответственно говорят, что план частот позволяет организовать работу по двухчастотной (рис. 1.4) или четырехчастотной (рис. 1.5) системам. На этих рисунках через f1н, f1в,…f5н, f5в обозначены средние частоты стволов. Индексы частот соответствуют обозначениям стволов на рис. 1.3. При двухчастотной системе на ПРС и У PC для приема с противоположных направлений обязательно должна быть взята одинаковая частота. Антенна WA1 (рис. 1.4,а) будет принимать радиоволны на частоте f1н с двух направлений: главного А и обратного В. Радиоволна, приходящая с направления В, создает помеху. Степень ослабления этой помехи антенной зависит от защитных свойств антенны. Если антенна ослабляет волну обратного направления не менее, чем на 65 дБ по сравнению с волной, приходящей с главного направления, то такую антенну можно использовать при двухчастотной системе. Двухчастотная система имеет то преимущество, что позволяет в выделенной полосе частот организовать в 2 раза больше ВЧ стволов, чем четырехчастотная, однако она требует более дорогих антенн.

На магистральных РРЛ, как правило, применяют двухчастотные системы. В плане частот не предусмотрены защитные частотные интервалы между соседними стволами приема (передачи). Поэтому сигналы соседних стволов трудно разделить с помощью РФ. Чтобы избежать взаимных помех между соседними стволами, на одну антенну работают либо четные, либо нечетные стволы. В плане частот указывают минимальный частотный разнос между стволами приема и передачи, подключенными к одной антенне (98 МГц на рис. 1.3). Как правило, четные стволы используются на магистральных РРЛ, а нечетные - на ответвлениях от них. В таком случае частоты приема и передачи между стволами магистральной РРЛ распределяют согласно рис. 1.4,в, а между стволами зоновой РРЛ при четырехчастотной системе - согласно рис. 1.5,в.

На практике план частот, реализованный на РРЛ на основе двухчастотной (четырехчастотной) системы, называют двухчастотным (четырехчастотным) планом.

На РРЛ имеет место повторение частот передачи через пролет (см. рис. 1.1). При этом для того, чтобы снизить взаимные помехи между РРС, работающими на одинаковых частотах, станции располагают зигзагообразно относительно направления между оконечными пунктами (рис. 1.6). При нормальных условиях распространения сигнал от РРС1 на расстоянии в 150 км сильно ослаблен и практически не может быть принят на РРС4. Однако в отдельных случаях возникают благоприятные условия для era распространения. В целях надежного ослабления такой помехи используют направленные свойства антенн. На трассе между направлением максимального излучения передающей антенны РРС1,т. е. направлением на РРС2, и направлением на РРС4 (направление АС на рис. 1.6) предусматривают защитный угол изгиба трассы a1 в несколько градусов, так чтобы в направлении АС коэффициент усиления передающей антенны на РРС1 был достаточно мал.

Вопросы для самоконтроля

  1. Назовите энергетические параметры радиорелейной аппаратуры. Приведите их значения для РРЛ и ТРЛ.
  2. В каких диапазонах радиоволн и частот работают РРЛ и ТРЛ? Каковы особенности этих диапазонов?
  3. Назовите типы станций на РРЛ, основные функции этих станций.
  4. Что такое ВЧ ствол? По каким признакам различают ВЧ, ТФ и ТВ стволы?
  5. Поясните назначение элементов структурной схемы ОРС трехствольной РРЛ.
  6. Поясните принципы построения плана распределения частот РРЛ. Сопоставьте планы, организованные по двух- и четырехчастотным системам.

Отечественной радиорелейной промышленности более 50 лет. За время своего развития отрасль вышла на ожидаемые позиции. Сегодня радиорелейные каналы (РРЛ) отлично зарекомендовали себя в обеспечении удаленных районов с низкой инфраструктурой, охвате больших пространств и местностей со сложной структурой геологии. К числу заметных отличий от проводной технологии добавился более низкий бюджет оснащения.

Радиорелейная связь относится к беспроводным каналам связи, но их не нужно путать с известным WI —FI . Отличия следующие:

  • В РРЛ создаются резервные каналы и применяется агрегирование. Теоретически, понятие дальности связи к радиорелейным станциям не применяется, так как расстояние ретрансляции зависит от количества вышек;
  • Высокая пропускная способность;
  • Работа в полном канальном дуплексе;
  • Использование собственных (локальных) диапазонов и высокоэффективных модуляций.

Применение радиорелейных линий связи

Радиорелейные линии связи находят широкое применение в различных отраслях промышленности. В общем случае беспроводные каналы заменяют проводные сети многоканальной телефонной связи. Лидером по протяженности радиорелейных линий связи остается Киргизия. Использование РРЛ обусловлено преобладанием горного рельефа на всей территории Республики. Вторым направлением оснащения современными линиями передачи остается телевидение. Учитывая, что средний радиус распространения вещания составляет 100 километров, федеральные каналы все чаще осваивают строительство так называемых беспрограммных телецентров.

Беспроводная связь РРЛ активно используется провайдерами интернета, сотовыми операторами. Известно применение радиорелейных каналов для организации корпоративной связи. Ввиду большего чем у WI —FI бюджета и необходимости получения лицензии, РЛЛ остается недоступным для малого и среднего бизнеса, частных лиц. Срок службы оборудования достигает 30 лет с учетом того, что комплексы могут работать даже в суровых условиях климата.

Традиционные РРЛ магистрального типа постепенно переходит в сегмент городских линий, уступая место оптоволоконным линиям. Однако такие шаги требуют согласования бюджета проекта. Безусловным остается применение РРЛ в северных, малозаселенных районах, где нет необходимости в прогнозировании трафика.

В практике развертывания РРЛ сегодня используются два типа технологии. Первый – PDH – плезиохронная цифровая иерархия. При такой организации передачи сигнала обеспечивается скорость в режимах 32 каналов или мультиплексирования на скорости от 2 до 139 Мбит в секунду. Считается устаревшей технологией радиорелейной связи. На смену предыдущему поколению пришел стандарт SDH . Иерархия цифровой синхронизации обеспечивает более устойчивые каналы связи посредством транспортных модулей STM . Скорость потоков в этом диапазоне варьируется от 155 Мбит в секунду до 160 Гбит. По утверждениям разработчиков стандарта, скорость передачи данных совместимой с PDH технологии может быть и выше.

В практике применения РРЛ-сетей используется несколько вариантов развертывания. Самый популярный сценарий размещения станций – пошаговое размещение вышек на маршруте оснащения. Применение технологии hop-by-hop обеспечивает возможность оперативного внесения изменений в действующие конфигурации или модернизацию устаревшего оборудования.

Принцип построения, используемое оборудование, применение

Основными компонентами, обеспечивающими передачу сигналов на большие расстояния, являются радиорелейные линии прямой видимости. В их задачи входит обеспечение устойчивой связи при передаче до потребителя сообщений в цифровом формате, вещания телевидения и звуковых эфиров. В состав волнового спектра входят диапазоны сантиметровых и дециметровых волн.

В используемых диапазонах прямой видимости не наблюдаются помехи атмосферного и техногенного происхождений. Расстояние между ближайшими станциями, работающих в ширине спектра 30 ГГц является расчетным, зависит от высоты вышек и рельефа в местности размещения.

Для передачи информации на одной частоте или дуплексе используется комплекс аппаратуры. Это радиоствол (канал с широкой пропускной способностью), телефонный ствол и ТВ ствол, предназначенные для передачи сигналов соответствующего типа. Топология построения комплекса оборудования представлена трехуровневой системой:

Радиорелейная связь нашла широкое применение в областях народного хозяйства. Принцип ретрансляции активно используется для организации и построения локальных сетей крупных корпораций. Надежность и достоверность передаваемых сигналов применяется для управления войсками и организации коммерческой связи.

Преимущества технологии РРЛ успешно внедряются в инфраструктуру производств, имеющих большое количество удаленных объектов. Это аэропорты, железнодорожные и морские министерства сообщений. Единственным недостатком, который остается ощутимым при возведении систем передачи данных остается необходимость обеспечения прямой видимости между ретрансляторами. Это требование ставит целый ряд условий перед службами технического оснащения, повышает бюджет проекта за счет необходимости увеличения числа промежуточных станций.

Радиорелейные линии (РРЛ) представляют собой цепочку приемо-передающих радиостанций (оконечных, промежуточных, узловых), которые осуществляют последовательную многократную ретрансляцию (прием, преобразование, усиление и передачу) передаваемых сигналов.

В зависимости от используемого вида распространения радиоволн РРЛ можно разделить на две группы: прямой видимости и тропосферные .

РРЛ прямой видимости являются одним из основных назем-ных средств передачи сигналов телефонной связи , программ звукового и ТВ вещания, цифровых данных и других сообщений на большие расстояния. Ширина полосы частот сигналов многоканальной телефонии и ТВ составляет несколько десятков мегагерц, поэтому для их передачи практически могут быть использованы диапазоны только дециметровых и сантиметровых волн, общая ширина спектра которых составляет 30 ГРц.

Кроме того, в этих диапазонах почти полностью отсутствуют атмосферные и промышленные помехи. Расстояние между соседними станциями (протяженность пролета) R зависит от рельефа местности и высоты подъема антенн. Обычно его выбирают близким или равным расстоянию прямой видимости R o . Для сферической поверхности Земли с учетом атмосферной рефракции

где h 1 и h 2 - высоты подвеса соответственно передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности 40 - 70 км при высоте антенных мачт 60-100м.

Рис. 11.1. Условное изображение РРЛ.

Комплекс приемопередающей аппаратуры РРЛ для передачи информации на одной несущей частоте (или на двух несущих частотах при организации дуплексных связей) образует широкополосный канал, называемый стволом (радиостволом). Оборудование, предназначенное для передачи телефонных сообщений и включающее в себя кроме радиоствола модемы и аппаратуру объединения и разъединения каналов, называют телефонным стволом.

Соответствующий комплекс аппаратуры для передачи полных ТВ сигналов (вместе с сигналами звукового сопровождения, а часто и звукового вещания) называют ТВ стволом. Большинство современных РРЛ являются многоствольными. При этом, кроме рабочих стволов, могут быть один или два резервных ствола, а иногда и отдельный ствол служебной связи. С увеличением числа стволов возрастает соответственно и объем оборудования (число передатчиков и приемников) на станциях РРЛ.

Часть РРЛ (один из возможных вариантов) условно изображена на рис. 11.1, где непосредственно отмечены радиорелейные станции трех типов: оконечная (ОРС), промежуточная (ПРС) и узловая (УРС).

На ОРС производится преобразование сообщений, поступающих по соединительным линиям от междугородных телефонных станций (МТС), междугородных ТВ аппаратных (МТА) и междугородных вещательных аппаратных (МВА), в сигналы, передаваемые по РРЛ, а также обратное преобразование. На ОРС начинается и заканчивается линейный тракт передачи сигналов.


С помощью УРС разветвляются и объединяются потоки информации, передаваемые по разным РРЛ, на пересечении которых и располагается УРС. К УРС относят также станции РРЛ, на которых осуществляется ввод и вывод телефонных, ТВ и других сигналов, посредством которых расположенный вблизи от УРС населенный пункт связывается с другими пунктами данной линии.

Рис. 11.2. Структурная схема одноствольного ретранслятора РРЛ.

1 , 10 - антенны; 2,6 - фидерные тракты; 3,7 - приемо-передатчики; 4,9 - приемники;
5,8 - передатчики.

На ОРС или УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛ (300-500 км) между соседними обслуживаемыми станциями делится примерно пополам так, что одна часть ПРС входит в зону телеобслуживания одной УРС (ОРС), а другая часть ПРС обслуживается другой УРС (ОРС).

ПРС выполняют функции активных ретрансляторов без выделения передаваемых сигналов электросвязи и введения новых и, как правило, работают без постоянного обслуживающего персонала. Структурная схема ретранслятора ПРС приведена на рис. 11.2. При активной ретрансляции сигналов на ПРС используют две антенны, расположенные на одной и той же мачте. В этих условиях трудно предотвратить попадание части мощности усиленного сигнала, излучаемого передающей антенной, на вход приемной антенны. Если не принять специальных мер, то указанная связь выхода и входа усилителя ретранслятора может привести к его само-возбуждению, при котором он перестает выполнять свои функции.



Рис. 11.3. Схемы распределения частот в РРЛ.

Эффективным способом устранения опасности самовозбуждения является разнесение по частоте сигналов на входе и выходе ретранслятора. При этом на ретрансляторе приходится устанавливать приемники и передатчики, работающие на разных частотах. Если на РРЛ предусматривается одновременная связь в прямом и обратном направлениях, то число приемников и передатчиков удваивается, и такой ствол называется дуплексным (см. рис. 11.2). В этом случае каждая антенна на станциях используется как для передачи, так и для приема высокочастотных сигналов на каждом направлении связи.

Одновременная работа нескольких радиосредств на станциях и на РРЛ в целом возможна лишь при устранении взаимовлияния между ними. С этой целью создаются частотные планы, т.е. планы распределения частот передачи, приема и гетеродинов на РРЛ.

Исследования показали, что в предельном случае для двусторонней связи по РРЛ (дуплексный режим) можно использовать лишь две рабочие частоты ƒ 1 и ƒ 2 . Пример РРЛ с таким двухчастотным планом условно изображен на рис. 11.3, а. Чем меньше на линии используется рабочих частот, тем сложнее устранить взаимовлияние сигналов, совпадающих по частоте, но предназначенных разным приемникам. Во избежание подобных ситуаций на РРЛ стараются использовать антенны с узкой диаграммой направленности, с возможно меньшим уровнем боковых и задних лепестков; применяют для разных направлений связи волны с различным типом поляризации; располагают отдельные станции так, чтобы трасса представляла собой некоторую ломаную линию.

Применение указанных мер не вызывает сложностей, если связь осуществляется в диапазоне сантиметровых волн. Реальные антенные устройства, работающие на менее высоких частотах, обладают меньшим направленным действием. Поэтому на РРЛ дециметрового диапазона приходится разносить частоты приема на каждой станции. В этом случае для прямого и обратного направлений связи выбирают различные пары частот ƒ 1 , ƒ 2 и ƒ 3 , ƒ 4 (четырехчастотный план) (см. рис. 11.3, б), и необходимая для системы связи полоса частот возрастет вдвое. Четырехчастотный план не требует указанных выше мер защиты, однако он неэкономичен с точки зрения использования полосы частот. Число радиостволов, которое может быть образовано в выделенном диапазоне частот, при четырехчастотном плане вдвое меньше, чем при двухчастотном.

Для радиорелейной связи в основном используются сантиметровые волны, поэтому двухчастотный план получил наибольшее распространение.