г) Фазовый признак. Отличит. признаком является фаза импульса, q Ф £ ¥ (q Ф реал. » 2¸3)

д) Частотный признак. q Ч ³ 2 (q Ч реал. » 2¸3)

9. Сообщение и их виды

Величины, характеризующие тот или иной контролируемый процесс как правило имеют случайный характер, т.е. не м.б. известными. Если случайная величина может принимать конечное число значений, то ее наз. дискретной по множеству. Если же случайная величина может принимать бесконечное число своих значений, то ее называют непрерывной по множеству. В общем случае получаемое сообщение представляет собой функцию времени. По виду получающейся функции все сообщения можно классифицировать следующим образом:

1. Непр. по множеству и времени (просто непрерывные). В этом случае ф-я х(t), характеризующая передаваемые сообщения, имеет непрерывное множество значений и изменияется непрерывно во времени. Такого рода сообщения характерны для телеизмерений.

2. Непр. по времени и дискретные по множеству. В этом случае ф-я x(t) может принимать только вполне определенные заранее заданные значения и может изменять их в произвольный мом. вр.

3. Непр. по мн-ву и дискретные по времени. В этом случае ф-я x(t) может приниметь любые зн-я из области сущ-я, но только в фиксир. мом. вр.

4. Дискретный по мн-ву и времени. Ф-я может принимать только фиксир. зн-я в фиксир. мом. вр.

10. Квантование сигналов, назначение и виды

Передача информации в информационных управляющих системах может осуществляться, как с помощью непрерывных, так и дискретных сигналов.

Использование дискретных сигналов в некоторых случаях оказывается более предпочтительным, так как дискретные сигналы меньше подвержены искажениям при передаче, эти искажения легче обнаруживаются. А самое главное дискретные сигналы более удобны для использования и обработки цифровыми устройствами информационных систем.

С другой стороны большинство первичных сигналов, снимаемых с датчиков, являются непрерывными, в связи с этим возникает проблема эффективного преобразования непрерывных сигналов в дискретных и наоборот.

Процесс процедуры преобразования непрерывной физической величины в дискретную, называется квантованием.

виды квантования :

1) Квантование по уровню , при этом непрерывная функция, описывающая первичный сигнал заменяется ее отдельными значениями, отстоящим друг от друга на некоторый конечный интервал (уровень). Соответственно, мгновенные значения функции заменяются ее ближайшими дискретными значениями, называемыми уровнями квантования, интервал между двумя соседними значениями уровнями, называется шагом квантования. Шаг квантования может быть как постоянным (равномерное квантование), либо переменным (неравномерным квантованием). Точность преобразования непрерывного дискретного сигнала зависит от величины шага квантования. Эта точность оценивается расхождением между истинным значением функции и квантованным. Величина этого расхождения называется ошибкой (шум квантования).

При передаче сигнала по каналу связи на этот сигнал могут воздействовать те или иные помехи, искажающие этот первичный сигнал. Если при этом известно максимальное значение этой помехи , то можно выбрать шаг квантования и вторично проквантовать сигнал на приемной стороне, то можно очистить принятый сигнал от влияния помех, поскольку .

Таким образом, повторное квантование позволяет восстановить искаженный помехой сигнал. Однако надо иметь в виду, что при этом ошибка квантования сохраняется. Положительным моментом при этом является то, что ошибка квантования заранее известна. Таким образом, удается избежать накопления помех и качество передачи сигналов возрастает.

2) Квантование по времени (дискретизация). В этом случае непрерывная функция заменяется ее отдельными значениями времени в фиксированные моменты времени. Отчеты значений первичного сигнала производятся через некоторый промежуток , этот интервал называется шагом квантования. Чем меньше выбран интервал , тем больше точка на приемной стороне сможет быть восстановлена передаваемая функция. С другой стороны, при смешанном мелком шаге дискретизация снижается скорость передачи данных, также повышается требования к полосе пропускания канала связи.

, , , .


При смешанном крупном шаге квантования существенно уменьшается точность воспроизведения функции на приеме.

3) Квантование по уровню и времени . В ряде случаев, оказывается, целесообразно использовать смешанный вид квантования по уровню. В этом случае сигнал предварительно квантуется по уровню, а отчеты получившегося квантования сообщения производят через заданный промежуток времени. При этом:

11. Дискретизация сигналов и требования к ним.

Теорема Котельникова м ее практическое значение

Для использования преимуществ цифровых устройств в системах передачи и обработки информации возникает необходимость в преобразовании непрерывных сигналов в дискретные. С этой целью наиболее часто используется методы дискретизации, т.е. квантование по времени, при постоянном шаге дискретизации. Методы равномерной дискретизации получили наиболее широкое применение, поскольку неравномерная дискретизация является крайне неудобной и мало пригодной для технических целей. Поскольку не позволяет осуществлять синхронизацию отдельных устройств СПД и затрудняет процесс восстановления сигнала по приемной стороне.

В случае использования равномерной дискретизации возникает вопрос о выборе оптимального (предельного) шага дискретизации.

В 1933 г. академиком Котельниковом была доказана теорема, играющая важную роль в теории информации.

Теоремы: любая непрерывная функция , частный спектр, который ограничивается сверху некоторым значением частоты , может быть полностью и без ошибочно восстановлена по ее дискретным значениям (отчеты), взятым через интервал времени.

(*)

Передача информации в информационно – управляющих системах может осуществляться как с помощью непрерывных так и дискретных сигналов. Использование дискретных сигналов в некоторых случаях оказывается более предпочтительным, так как дискретные сигналы меньше подвержены искажениям при передачи и эти искажения легче обнаруживаются.

А самое главное дискретные сигналы более удобны для использования и обработки цифровыми устройствами. С другой стороны большинство первичных сигналов, снижаемых с датчиков являются непрерывными, из-за чего возникает проблема эффективного преобразования непрерывных сигналов в дискретные и наоборот. Процесс (процедура) преобразования непрерывной физической величины в дискретную называется квантованием.

Виды квантования

    Квантование по уровню – в этом случае непрерывная функция, описывающая первичный сигнал заменяется ее отдельными значениями, отстоящими друг от друга на некоторый конечный интервал (уровень). Соответственно мгновенное значение функции заменяется ее ближайшими дискретными значениями и называется уровнем квантования. Интервал между двумя соседними уровнями называется шагом квантования.

Шаг квантования может быть как постоянным (равномерное квантование ) так и переменным (неравномерное квантование ).

Точность преобразования непрерывного сигнала в дискретный зависит от величины шага квантования. Эта точность оценивается расхождением между истинным значением функции и квантованным. Величина этого расхождения называется ошибкой или «шумом» квантования .

При передачи сигнала по каналу связи на этот сигнал могут воздействовать те или иные помехи, искажающие этот первичный сигнал. Если при этом известно максимальное значение этой помехи (), то можно выбрать шаг квантованияq, превосходящий , то естьq>, и затем вторично проквантовать сигнал на приемной стороне, то можно очистить принятый сигнал от помех

Таким образом повторное квантование позволяет восстановить искаженный помехой сигнал и исключить накоплении е влияния помех.

    Квантование по времени (дискретизация) – в этом случае непрерывная функция x(t) заменяется ее отдельными значениями, взятыми в фиксированные моменты времени.

Отсчеты значений первичного сигнала производятся через фиксированные моменты времени -шаг квантования или шаг дискретизации. Чем меньше выбранный интервал , тем более точно на приемной стороне может быть воспринята функция. С другой стороны, при слишком мелком шаге дискретизацииснижается скорость передачи данных, а также повышаются требования к полосе пропускания канала связи:

При слишком крупном шаге дискретизации уменьшается точность воспроизведения функцией на приеме.

Лекция №5

В ряде случаев оказывается целесообразным использовать смешанный тип квантования, то есть квантование по уровню и времени. В этом случае сигнал предварительно квантуется по уровню, а отсчеты получившихся квантованных значений производят через заданные промежутки времени . При этом погрешность такого квантования определяется среднем геометрическим значением квантования по уровню и квантованием по времени

В некоторых случаях применяются более сложные виды квантования:

Квантованием по уровню называют дискретизацию множества значений непрерывного сигнала по уровню, то есть по амплитуде параметра. Идея квантования по уровню заключается в следующем. Весь диапазон возможных изменений сигнала (функции) разбивается на N различимых величин – уровней квантования . В результате квантования сигнала каждое из его значений данного интервала округляется до некоторого уровня. Порогами квантования называются величины, при сравнении с которыми исходного непрерывного сигнала в процессе квантования определяется его принадлежность к уровню квантования. Величина, представляющая собой разность между двумя соседними уровнями, называется шагом квантования . Замена исходных значений функции соответствующими дискретными значениями – уровнями квантования – вносит ошибку квантования, называемую шумом квантования .

Существует три способа квантования:

1-й способ квантования - путем соотнесения исходного значения сигнала с ближайшим значением уровня. Информационная система содержит устройство квантования, которое выполняет операцию квантования непрерывного сигнала по уровню. В процессе такой операции отдельное значение исходного непрерывного сигнала соотносится с одним из возможных значений уровней; если исходное значение оказывается в пределах двух соседних порогов квантования , то это значение заменяется уровнем квантования, заключенным между данными порогами. В этом случае квантование происходит по методу соотнесения с ближайшим значением уровня . Этот способ квантования аналогичен округлению чисел до ближайшего целого. При таком способе вместо исходного непрерывного сигнала мы получим квантованный сигнал, представленный временной диаграммой на рис.1.5.



f(t) - исходный непрерывный сигнал;

f * (t) - квантованный сигнал;

f i , f i+1 ,... - значения соседних порогов квантования (пунктир);

Df i - шаг квантования, Df i = f i+1 - f i ;

- значения уровней квантования (сплошные линии).

Таким образом, очевидно, что в процессе квантования неизбежно возникает принципиальная или методическая ошибка квантования - шум квантования ; ее величина для момента времени t определяется в виде



Для этого способа ошибка квантования не превышает половины шага квантования

2-й способ квантования - путем соотнесения исходного значения с ближайшим ²снизу² значением уровня. В этом случае i -е пороговое значение совпадает со значением (i +1)-го уровня. Данный способ аналогичен округлению числа до ближайшего целого снизу. Соответствующая временная диаграмма представлена на рис.1.6.

Ошибка квантования всегда положительна (Df(t) > 0) и не превышает величинушага квантования ( ¦).

3-й способ квантования - путем соотнесения исходного значения с ближайшим ²сверху² значением уровня. Пороги и уровни совпадают по номерам и значениям. Шум квантования всегда отрицательный (Df(t)< 0) и не превышает величину шага квантования ( ¦ i). Этот способ аналогичен округлению числа до ближайшего целого сверху.

Соответствующая временная диаграмма представлена на рис.1.7.

Равномерным квантованием называется такое квантование, при котором шаг квантования есть постоянная величина. В большинстве случаев применяется равномерное квантование.

Шаг квантования выбирается исходя из необходимой точности передачи сигнала. Если же при этом существуют внешние помехи, то необходимо, чтобы амплитуда помех не превышала половины шага квантования, тогда возможно будет восстановить заданный уровень, так как воздействие помехи не выведет значение сообщения за зону, соответствующую данному уровню квантования. Кроме уровней выделяют пороги квантования. При равномерном квантовании расстояние между двумя соседними порогами равняется шагу квантования.

Из трех способов квантования первый дает минимальную среднюю ошибку квантования при одном и том же шаге квантования, поэтому на практике часто используется именно этот способ.

Для более точного отображения исходного сигнала необходимо увеличивать число уровней, т. е. уменьшать шаг квантования (рис. 1.8-1.9).



Однако бесконечное уменьшение шага квантования физически невозможно, а формально не имеет смысла, так как мы опять возвращаемся к непрерывному сигналу. Уменьшать шаг до бесконечности невозможно также из-за влияния помех. Сообщения по мере передачи по каналам связи или по мере хранения в памяти искажаются под воздействием помех, поэтому на приемной стороне или при считывании сигнала должен находиться еще один квантователь. Этот квантователь, как и исходный квантователь сигналов, для опознавания сигнала должен соотносить реальный сигнал с возможными значениями уровней. Для некоторых значений это соответствие может быть неправильным и на приемной стороне могут быть ложные восприятия соседних уровней. Таким образом, исходный сигнал, поступающий от источника непрерывных сигналов, в системе квантования по уровню искажается из-за самого квантования и, кроме того, под воздействием помех, как показано на рис.1.10.

Временные диаграммы:



Увеличение шага квантования в системе квантования, при неизменном уровне помех, приводит к подавлению помех, поэтому самый простой способ защиты квантованного сигнала от помех - увеличение шага квантования. Однако при этом мы увеличиваем шум квантования, т.е. вносим погрешность за счет грубого квантования.

Различают следующие две модели помех (два типа помех):

a) аддитивные помехи формируют смесь сигнала с помехой путем алгебраического суммирования их амплитуд:

fсп(t)= f*(t) ± fп(t) , где f n (t) - амплитуда помехи;

б) мультипликативные помехи формируют смесь сигнала с помехой путем перемножения их значений:

fсп(t)=k · f*(t) ·fп(t) , где k - масштабный коэффициент.

(При имитации работы системы квантования на лабораторных работах моделируются аддитивные помехи.)

Кроме равномерного квантования, в некоторых случаях используют неравномерное квантование, при котором шаг квантования ∆f i - переменная величина в зависимости от номера уровня: ∆f i = f i+1 - f i . В некоторых диапазонах изменения сигнала, для уточнения его значений, шаг квантования делают меньше.

Такая система применяется тогда, когда возникает необходимость отображать значения сигнала в некоторых диапазонах точнее, чем за их пределами, как это показано на рис.1.11.


n max = (f max - f min) / ∆f , где f max , f min – максимальное и минимальное возможные значения сигнала в данной информационной системе.

Если известен характер изменения помех, то минимальную величину шага квантования можно определить численно. При моделировании часто имитируется случайная помеха с нормальным (гауссовым) распределением, закон которого характеризуется двумя параметрами m и б , где m - математическое ожидание (величина постоянной составляющей помехи); б - среднеквадратическое отклонение - СКО (интенсивность случайной составляющей помехи).



Изображенная на рис. 1.12. гауссова помеха имеет постоянную составляющую со знаком ²+². Обычно в системах передачи данных помеха бывает именно нормально распределенной с нулевым математическим ожиданием. Помеха может быть рассеяна более или менее сильно, но площадь под кривой распределения должна быть одинаковой и соответствовать вероятности достоверного события - единице. Степень рассеивания случайной величины (помехи) определяется значением среднеквадратического отклонения б .

При наложении такой помехи на квантованный сигнал последний становится случайной величиной f сп (t) с математическим ожиданием, равным его уровню

(m = ), и среднеквадратическим отклонением помехи (б = б n ), как показано на рис.1.13.



Рис.1.13. Плотность распределения смеси f сп квантованного сигнала с гауссовой помехой: _ __ __

f i , f i-1 , f i+1 - данный, нижний и верхний соседние уровни квантования;

f i , f i+1 - соседние пороги квантования

Площади под кривой распределения за пределами пороговых значений f i и f i+1 данного уровня составляют вероятность искажения квантованного сигнала (ВИКС). Предположим, что допустимая ВИКС = 0,01 и нам нужно определить шаг квантования. Если известен закон распределения или характер помехи и его параметры, то можно решить обратную задачу - определить значения порогов квантования. Таким образом, шаг квантования подбирается с учетом помех двумя разными способами:

Экспериментально (или методом подбора);

Численно, аналитически, если известен характер помех.

Итак, система квантования должна содержать один квантователь на выходе источника непрерывных сигналов, а другой - на входе приемника сигналов; между ними располагается канал связи, где на передаваемый сигнал воздействуют помехи.

(В составе лабораторного программного пакета функцию источника непрерывного сигнала и функцию квантователя имитируют специальные подпрограммы. Подпрограмма источника формирует сразу весь массив значений, а подпрограмма-квантователь обрабатывает сигнал поэлементно. События в канале связи имитируются не полностью - квантованный сигнал деформируется только помехами. Помехи аддитивные, случайные и нормально распределенные).

Эффективность работы системы квантования определяется степенью искажения формы исходного сигнала. Если передается не непрерывный сигнал, а сразу квантованный или дискретный, то эффективность работы системы может определяться также частотой правильной передачи отсчетных сообщений.

Целью квантования по уровню является замена бесконечного множества непрерывных сообщений (значений параметра) конечным множеством дискретных значений. При этом становится возможным кодирование конечного множества дискретных сообщений, которое осуществляется кодовыми словами на основе алфавита меньшего объема. Значительным преимуществом системы квантования по уровню является возможность применения ее на протяженных линиях связи с промежуточными приемными пунктами. В этом случае применение такой системы позволяет избежать накопления помехи в процессе передачи сигнала по участкам, так как на каждом промежуточном пункте производится приведение сигнала к первоначальному квантованному уровню. В результате этого единственная помеха, которая остается в сигнале к моменту его прихода на конечный пункт - это шум квантования, который принципиально не устраним. Квантование сообщений позволяет обеспечить их длительное хранение без искажений в аналоговых запоминающих устройствах путем периодического считывания, квантования и записи данного сообщения на прежнее место с помощью одного и того же блока квантования.

Контрольные вопросы к пп. 1.1. и 1.2

1. Цель и суть любой дискретизации.

2. Представление сигналов функциями; понятие квантованного по уровню сигнала.

3. Цель и суть квантования сообщений по уровню; функции АЦП.

4. Определения неравномерного и равномерного квантования, уровней, порогов, шага и шума квантования.

5. Три способа квантования и соответствующая им величина шума квантования.

6. Структуры систем передачи сообщений:

· системы, передающей непрерывный сигнал квантованными сообщениями;

· системы, передающей квантованные сообщения;

· системы, передающей дискретные сообщения в форме квантованных по уровню сигналов.

7. От чего зависит и как оценивается эффективность работы этих систем?

8. Типы (модели) помех.

9. Влияние помех на квантованный по уровню сигнал.

10. Какие факторы определяют величину шага квантования для каждой системы; каково влияние этих факторов?

11. Чем ограничено минимальное значение ошибки восстановления сигнала?

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХПІ»

Кафедра «Обчислювальна техніка та програмування»

з курсу «Теорія інформації та кодування»

«Квантование сигналов»

Введение

Передача дискретных сигналов по каналам связи удобней и надежней, чем передача непрерывных сигналов, т. к. дискретные сигналы обладают лучшей помехозащищенностью, позволяют проще организовать многоканальную связь, кроме того, дискретные сигналы можно непосредственно обрабатывать с помощью ЭВМ.

Квантование (дискретизация) - процесс преобразования непрерывного сигнала в дискретный. При этом используются следующие виды квантования: по времени; по амплитуде (уровню); комбинированное; специальные виды квантования.

1. Квантование по времени

При квантовании по времени функция x(t) непрерывного аргумента преобразуется в функцию дискретного аргумента - решетчатую функцию, представляющую совокупность значений непрерывной функции в дискретные моменты времени.

Рис. 1. Квантование по времени

Шаг квантования -временной интервал между двумя фиксированными моментами времени

Частота квантования f k = 1/t должна быть такой, чтобы по значениям решетчатой функции- x(t i ) можно было восстановить исходную непрерывную функцию с заданной точностью. Восстановленную функцию x(t) называют воспроизводящей. При временном квантовании возникает задача выбора частоты квантования, при этом, могут быть использованы различные критерии. Чаще всего, дискретизацию осуществляют на основании теоремы Котельникова.

Формулировка теоремы Котельникова: Функцию x(t) удовлетворяющую условиям Дирихле (ограниченную, кусочно-непрерывную и имеющую конечное число экстремумов), можно достаточно точно восстановить по ее отсчетам взятым через интервал времени t = 1/2f c =/ c , где - верхняя частота спектра функции а- круговая частота.

Значения функции x(t) в любой момент времени t определяется рядом Котельникова:

где - отсчеты (значения) функцииx(t) в дискретные моменты времени t = nt ; - функция отсчетов, которая представляет собой СБФ.

Для доказательства теоремы рассмотрим формулы Фурье

, , (2)

где- комплексный частотный спектр функцииx(t) .

В пределах диапазона [- c , ; + c ], сигнал x(t) можно представить интегралом Фурье через его частотный спектр

. (3)

Комплексный спектр можно отобразить рядом Фурье

. (4)

Где коэффициенты разложения равны

. (5)

Подставляя (5) в (4), а затем полученное выражение в (3) получим

Ряд Котельникова для x(t) с ограниченным спектром на конечном интервале T может быть представлен:

, (6)

где B = T/t = 2fT - база сигнала.

Рассмотрим функцию отсчетов сигналов

. (7)

Эта функция равна 1 при Z = 0, т. е. , и 0 при, где

Функция отсчета sinz/z представляет собой реакцию идеального фильтра НЧ на единичный импульс.

Если на приемной стороне поместить фильтр и пропустить через него квантованный сигнал, представляющий последовательность импульсов, амплитуды которых пропорциональны отсчетам непрерывной функции с частотой .

Если эти сигналы выхода фильтра просуммировать, то получим воспроизводящую функцию.

Рис. 2. Функция отсчетов

Недостатки квантования с использованием метода Котельникова:

1. Теорема сформулирована для сигналов с ограниченным спектром и неограниченным временем - на практике наоборот спектр неограничен, а время ограничено. Спектр можно ограничить, пропустив сигнал через фильтр НЧ или полосовой фильтр.

2. При передаче импульсных сигналов шаг квантования выбирается для самых крутых участков, т. к. квантование равномерное, то канал будет перегружен, и обладать большой избыточностью. Трудно реализовать схему восстановления сигнала, т. к. необходимо много сумматоров.

Существуют другие принципы дискретизации: критерий Железнова, который использует неравномерное квантование, при этом шаг квантования выбирается, в зависимости от корреляция между значениями сигнала; критерий Темникова, который также использует неравномерное квантование, при этом, пока производная постоянна сигнал не квантуется.

2. Квантование по уровню

При квантовании по уровню (амплитуде) бесконечное множество возможных значений непрерывного сигнала x(t) заменяется конечным множеством дискретных значений x*(t) .

В результате квантования образуется ступенчатая функция (рис. 3).

Может быть использовано два способа квантования, при этом, мгновенное значение непрерывной функции заменятся меньшим дискретным значением или ближайшим.

x(t), x*(t) x(t), x*(t)

Рис.6.3. Квантование по уровню

Различают равномерное квантование, при котором диапазон изменения x(t) от x min до x max разбивается на N уровней с шагом ,называемых шагом квантования

При неравномерном квантовании шаг не постоянный. При замене действительных мгновенных значений функции на дискретные появляются методические погрешности, называемые шумом квантования (погрешность квантования по уровню). Эта погрешность носит случайный характер и для ее оценки необходимо использовать статические характеристики

При этом точку переключения необходимо выбирать так, чтобы эти характеристики были минимальными.

Рис. 4. Погрешности квантования

Плотность распределений, при большом числе уровней квантования, подчинятся закону равной плотности вероятности имеют вид, приведенный на рис. 4, и определяется соотношением:

В зависимости от используемого способа квантования, плотность вероятности и статистические характеристики погрешностей имеют вид:

Математическое ожидание погрешностей

(11)

Дисперсия погрешности

Среднеквадратическая ошибка

.

Если в результате квантования по уровню, значение сигнала выдается в двоичном коде с ценой младшего разряда, равного шагу квантования, то число двоичных разрядов и уровней квантования будет равно:

; ,

где добавление 1 соответствует учету первого уровня.

3. Комбинированное квантование

При комбинированном квантовании сигнал квантуется по времени и кроме того, в тактовых точках квантуется по уровню.

Рис. 5. Комбинированное квантование

При комбинированном квантовании амплитуда импульса равна ближайшему значению уровня, при этом величина ошибки квантования равна

то математическое ожидание ошибки равно

а среднеквадратичная ошибка за счет квантования по уровню уменьшается с увеличением частоты квантования

.

Недостаток комбинированного квантования заключается в сложности реализации дешифрующих устройств. При этом вместо комбинированного квантования чаще всего используют кодоимпульсную модуляцию.

Пример 1. В измерительном приборе расстояние между метками шкалы постоянно и равно x = a . При округлении отсчета до ближайшего целого деления погрешность по абсолютной величине не превышает половины расстояния между делением шкалы.

Найти плотность распределения вероятности, математическое ожидание и дисперсию округления.

Решение: Погрешность округления можно рассматривать как случайную величину x , принимающую с равной вероятностью любые значения в пределах от -x/2 до x/2 . Следовательно, плотность вероятности на этом интервале постоянна и равна нулю за этими пределами (10).

Математическое ожидание равно:

Дисперсия ошибки округления равна:

.

Среднеквадратическая ошибка равна:

Список литературы

    А.В. Власенко, В.И. Ключко - Теория информации и сигналов. Учебное пособие / Краснодар: Изд-во КубГТУ, 2003.- 97 с.

    Баскаков С.И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. "Радиотехника". - М.: Высш. шк., 2000.

    Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.

    Куприянов М.С., Матюшкин Б.Д. - Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. - СПб.: Политехника, 1999.

    Сиберт У.М. Цепи, сигналы, системы: В 2-х ч. / Пер. с англ. - М.: Мир, 1988.

    Теория передачи сигналов: Учебник для вузов / А.Г. Зюко, Д.Д. Кловский

    Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра. Пер. с англ. - М.: Радио и связь, 2000.

    Хемминг Р.В. Цифровые фильтры: Пер. с англ. / Под ред. А.М. Трахтмана. - М.: Сов. радио, 1980.

    Цифровая обработка сигналов: Учебник для вузов / А.Б. Сергиенко – СПб.: Питер, 2003. – 604 с.: ил.

Квантование (англ. quantization) - в информатике разбиение диапазона значений непрерывной или дискретной величины на конечное число интервалов. Существует также векторное квантование - разбиение пространства возможных значений векторной величины на конечное число областей. Простейшим видом квантования является деление целочисленного значения на натуральное число, называемое коэффициентом квантования.

Проще говоря, квантование – это округление дискретных значений сигнала до ближайших целых чисел из набора фиксированных уровней, на которые разбивается весь диапазон изменения сигнала, число этих уровней конечно и они называются уровнями квантования.

Не следует путать квантование с дискретизацией (и, соответственно, шаг квантования с частотой дискретизации). При дискретизации изменяющаяся во времени величина (сигнал) замеряется с заданной частотой (частотой дискретизации), таким образом, дискретизация разбивает сигнал по временной составляющей. Квантование же приводит сигнал к заданным значениям, то есть, разбивает сигнал по уровню. Сигнал, к которому применены дискретизация и квантование, называется цифровым.

Квантование часто используется при обработке сигналов, в том числе при сжатии звука и изображений.

При оцифровке сигнала уровень квантования называют также глубиной дискретизации или битностью. Глубина дискретизации измеряется в битах и обозначает количество бит, выражающих амплитуду сигнала. Чем больше глубина дискретизации, тем точнее цифровой сигнал соответствует аналоговому. В случае равномерного квантования глубину дискретизации называют также динамическим диапазоном и измеряют в децибелах (1 бит ≈ 6 дБ).

Шаг квантования определяется разрядностью АЦП.

Виды квантования.

Равномерное (линейное) квантование - разбиение диапазона значений на отрезки равной длины. Его можно представлять как деление исходного значения на постоянную величину (шаг квантования) и взятие целой части от частного, характеристика квантования в этом случае носит линейный характер (рис. 1 а)):

Рисунок 1. Характеристики квантования: а) линейная; б) нелинейная

Нелинейное квантование – квантование с переменным шагом. Оно позволяет обеспечить достаточно большой динамический диапазон при снижении разрядности АЦП. При этом характеристика квантования имеет вид кривой, близкой к логарифмической. При квантовании малых сигналов шаг квантования оказывается малым, а точность передачи сигнала – достаточно высокой. При больших значениях сигнала шаг квантования увеличивается, что приводит к возрастанию ошибки. Но так как сигнал в этом случае имеет достаточно большой вес, шум квантования может быть эффективно замаскирован.

Преобразователи с нелинейной характеристикой квантования обеспечивают уменьшение разрядности и, как следствие, уменьшение скорости цифрового потока, но они могут являться источником нежелательных искажений. Слабые сигналы в присутствии сигнала с большой амплитудой из-за большой ошибки квантования могут подавляться на верхнем поддиапазоне.

Квантование по уровню - представление величины отсчётов цифровыми сигналами. Для квантования в двоичном коде диапазон напряжения сигнала от Umin до Umax делится на 2n интервалов. Величина получившегося интервала (шага квантования):

Каждому интервалу присваивается n - разрядный двоичный код - номер интервала, записанный двоичным числом. Каждому отсчёту сигнала присваивается код того интервала, в который попадает значение напряжения этого отсчёта. Таким образом, аналоговый сигнал представляется последовательностью двоичных чисел, соответствующих величине сигнала в определённые моменты времени, то есть цифровым сигналом. При этом каждое двоичное число представляется последовательностью импульсов высокого (1) и низкого (0) уровня.

Число уровней квантования n и число двоичных разрядов АЦП определяют динамический диапазон преобразования. Динамический диапазон (в дБ) от числа разрядов АЦП или ЦАП определяется выражением:

где n – число двоичных разрядов.