• Tutorial

Хотите прокачать ваши Arduino проекты? Заставить их работать быстрее, измерения и регулировку сделать точнее, ну и добавить баги(с новыми девайсами они неизбежны). Тогда эта статья для Вас.

Arduino тема всё больше захватывает умы человечества, но рано или поздно мы встречаемся с тем, что нам чего-то не хватает, например бюджета/размеров/ пинов портов/разрядности/производительности… Как говорил один мудрый человек - «Кто хочет, тот ищет возможности, кто не хочет - ищет причины».

Хорошие люди это понимают, и потихоньку начинают приобщать STM32 к ардуино теме , ибо восьмибитные AVR микроконтроллеры, на которых основано немало ардуино плат, не всегда могут справиться с поставленными задачами.

Краткое изложение данной статьи в видео формате:



Ладно, меньше лирики и ближе к теме. В этой статье, я буду рассматривать дешёвую отладочную плату, которая основана на базе микроконтроллера :

Для начала, сравним основные параметры STM32 платы, и её аналога по цене - Arduino Nano V3.0:

  • Рабочая частота 72 МГц, против 16 у ардуино;
  • Объем Flash памяти 64 Кбайта, против 32;
  • Оперативной памяти, она же RAM(где хранятся переменные), у STM32 целых 20 Кбайт, у ардуинки всего лишь 2;
  • Быстрый 12-ти битный АЦП, в то время как у Arduino плат, что на базе AVR микроконтроллеров(это как правило большинство) используется 10-ти битный. Это означает, что в случае STM32, функция analogRead(*); будет возвращать 0..4095 против 0..1023, что в первом случае ведёт к более точным измерениям;
  • 16-ти битный аппаратный ШИМ, против 8-ми у Arduino плат, то есть, функция analogWrite(*); pwmWrite(*); может принимать значение 0..65535, против убогих 0..255. Это позволит ещё точнее управлять нашими двигателями, сервами и прочими девайсами, которые рулятся при помощи ШИМ;
  • Аппаратная работа с USB, чем не может похвастаться не одна Arduino плата стоимостью менее 2 долларов;
  • Напряжение питания - от 2 до 3.6В(прямо таки заточено под 2 AA батарейки), против 2.7...5В у ардуино плат;
  • Цены на момент написания статьи - 1.9 доллара против 1.8(алиэкспресс).
Очевидно, что отладочная плата на базе STM32 выигрывает по всём параметрам у Arduino Nano, исключением является разве что стоимость, но согласитесь 10 центов - хорошая цена за большую производительность, а про периферию, которой нафарширован STM32, так я вообще молчу, чего только стоят DMA или интегрированные в микроконтроллер часы реального времени.

Всё это в сумме делает данную плату крайне привлекательной во всём, кроме одного - новичку, как например мне, тема STM32 кажется слишком затратной по времени, есть целые сайты посвящённые программированию этих микроконтроллеров. А вот если подружить STM32 с Arduino IDE, то порог вхождения опускается до крайне низкого уровня. Хотя, как говориться, «В каждой бочке мёда, есть ложка дёгтя», но об этом чуть ниже.

Приступим к подготовке платы, для работы с Arduino IDE. Первое что необходимо сделать - залить в микроконтроллер специальный загрузчик, который позволит прошивать плату через аппаратный USB, причём прямо из среды разработки. Для этого необходимо перевести верхний джампер(он же «BOOT0»), в положение «1»:

Для чего нужны BOOT0 и BOOT1 джамперы

Дело в том, что в STM32 с завода прошит, в так называемую системную память(system memory), специальный загрузчик, который позволяет прошивать плату через самый обычный USB to UART переходник, не прибегая к специфическим программаторам типа ST-Link V2 .


Дальше нам понадобиться переходник с USB на UART. Стоит помнить, что STM32, это 3.3 В логика , совместимость с 5-ти вольтовой не гарантируется, поэтому рекомендовано использовать USB to UART, у которого есть возможность выбора режимов работы с 3.3/5В логикой. Я использовал дешёвый переходник на базе CH340G:


* как видно, производитель не стал заворачиваться со смывкой флюса, на работу, конечно, никак не влияет.

Плату подключил к USB to UART переходнику следующим образом:

G <-> GND;
5V <-> 5V;
PA10 <-> TXD;
PA9 <-> RXD.


* PA10/PA9 на плате подписаны просто как A10/A9 - эти порты являются первым аппаратным USART"ом, всего их на плате 3, так же тут 2 аппаратных I2C и 2 SPI.

Ради удобства запитал плату от 5 В, для питания от 3.3 В на плате есть пин «3.3». Внимание, 5 В может запросто вывести микроконтроллер из строя , так что уделите должное внимание подключению.

Качаем, устанавливаем и запускаем Flash Loader Demonstrator (есть в архиве к статье):

Выбираем номер COM-порта нашего переходника, в моём случае это COM43, потом нажимаем «Next»:

Так как у меня микроконтроллер новый, ещё муха не сидела на него никто ничего не записывал(разумеется кроме самого производителя), то тут по умолчанию стоит защита от чтения, программа нас предупреждает, что если нажать кнопку «Remove protection», Flash память будет очищена, то есть если бы там была какая-то прошивка - она удалится. В моём случае там ничего полезного нет, так что смело жму. Далее вижу следующее:

Жмём «OK»:

Так как моя отладочная плата основана на микроконтроллере STM32F103C8 - здесь 64 Кбайт Flash памяти, есть ещё STM32F103CB микроконтроллер, где в два раза больше Flash.

Опять «Next», и видим следующее окно:

Выбираем «Download to device» и жмём на "...":

Меняем тип файлов на *.bin и открываем файл «generic_boot20_pc13.bin»(тоже присутствует в архиве) который можно взять из проекта STM32duino-bootloader .

Потом надо скачать, для среды разработки Arduino IDE, специальное STM32 ядро (так же есть в архиве к статье). Тут есть один нюанс, на момент написания статьи, ядро не работает на версиях среды разработки свыше 1.6.5 , у меня стоит 1.6.5-r5 которую .
Проверенна работоспособность ядра на .

В моём случае полный путь выглядит вот так - «C:\Users\RSK\Documents\Arduino\hardware»

Разумеется, что система устройство определить не сумеет, поэтому надо ещё установить драйвера на плату. Заходим в папку «Мои Документы\Arduino\hardware\Arduino_STM32\drivers\win»(или «drivers\win», в случае архива к статье), и запускаем от имени администратора файл «install_drivers.bat»:

После этого верхний джампер(тот что «BOOT0»), переводим в положение «0» и подключаем плату к компьютеру через microUSB кабель:

Она должна в диспетчере устройств определиться или как «Maple DFU» или «Maple Serial (COM*)»:

Не совсем понятно почему после первого подключения плата определяется по-разному, на разных компьютерах, но не суть, приступаем к настройке Arduino IDE.

Здесь нужно установить ядро для платы Arduino Due. Выбираем последнюю версию и нажимаем «Install»:

Потом Инструменты -> Плата -> «Generic STM32F103C», дальше Variant: «STM32F103C8 (20k RAM. 64k Flash)», Upload Method: «STM32duino bootloader», Порт - номер COM-порта платы, вообщем всё как на скрине:

Всё, плата готова к прошивке и программированию в среде разработки Arduino IDE. Давайте прошьём какой-то скетч из примеров, которые «вшиты» в ядро, заходим Файл -> Папка со скетчами -> hardware -> Arduino_STM32 -> STM32F1 -> libraries -> A_STM32_Examples -> Digital -> Blink:

Классический «Hello World» в мире микроконтроллеров. Изменяем PB1 на PC13, так как светодиод, что на плате, подключен к этому порту:


* К стати, загорается он по низкому уровню на ножке PC13.

Нажимаем кнопку «Вгрузить», после прошивки среда разработки выдаст что-то типа:

«Done!
Resetting USB to switch back to runtime mode
error resetting after download: usb_reset: could not reset device, win error: Не удается найти указанный файл.».

Но прошивка то загрузилась успешно, хотя не всегда так, иногда Arduino IDE выдаёт другие сообщения.

Couldn"t find the DFU device

Когда видите, сообщение типа:

«dfu-util - © 2007-2008 by OpenMoko Inc.
Couldn"t find the DFU device:
This program is Free Software and has ABSOLUTELY NO WARRANTY»

Это означает, что плату прошить не удалось.

Searching for DFU device ...

Когда среда разработки выдаёт:

«Searching for DFU device …
Assuming the board is in perpetual bootloader mode and continuing to attempt dfu programming...»

И больше ничего не происходит, попробуйте в этот момент перезагрузить плату клацнув кнопку ресет. По аналогии это как с Arduino Pro Mini.

А теперь про «ложку дёгтя», о которой я писал вначале статьи, почему-то не всегда получается прошить плату в среде разработки, даже больше, она не всегда определяется компьютером. Я для себя это решил следующим образом, перед тем как загрузить прошивку(перед нажатием кнопки «Вгрузить»), клацаю «Reset» на плате, и после прошивки, ещё раз перезагружаю плату. В этом случае процент вероятности, что плата прошьется, равен 99%. Непонятно почему работает именно так, но факт. Думаю, что рано или поздно этот косяк поправят, и всё будет автоматом перезагружаться как нужно. А чтобы это быстрее поправили, надо чтобы комьюнити этой замечательной STM32 отладочной платы росла, поэтому делитесь этой статьей с друзьями, особенно с друзьями программистами.

По поводу распиновки:

Кликабельно

Лучшее что мне удалось найти, это распиновка самого микроконтроллера(открывайте в новой вкладке):


(с) www.stm32duino.com/viewtopic.php?p=11137

К порту нужно обращаться по полному имени, например:

digitalWrite(PB0, LOW);
analogWrite(PA8, 65535); pwmWrite(PA8, 65535);
analogRead(PA0);
LiquidCrystal lcd(PB0, PA7, PA6, PA5, PA4, PA3);

Ещё рекомендую зайти на сайт docs.leaflabs.com/docs.leaflabs.com/index.html там есть много чего интересного по теме программирования в Arduino IDE, правда на английском языке.

Я порылся в файлах ядра, и нашёл один интересный файл:
Documents\Arduino\hardware\Arduino_STM32\STM32F1\variants\generic_stm32f103c\board.cpp

Там прописаны все порты, которые поддерживают:

  • ШИМ, то есть функция analogWrite(); pwmWrite(); - PB0, PA7, PA6, PA3, PA2, PA1, PA0, PB7, PB6, PA10, PA9, PA8, а это далеко не все, которые размечены на распиновке чипа;
  • АЦП, аля analogRead(); - PB0, PA7, PA6, PA5, PA4, PA3, PA2, PA1, PA0.

Так что имейте это ввиду. Хотя этого более чем достаточно от платы, стоимостью в 1.9 доллара.

Ещё заметил, что пины PA12/PA11 подключены к D+/D- USB, их лишний раз лучше вообще не трогать, ибо чуть что, на кону не 2-х долларовый кусок стеклотекстолита с чипом, а материнская плата компьютера.

Схема отладочной платы:

Ну и на последок:


Отладочные платы STM32F103/F446

Здравствуйте!

Представляю 2 отладочные платы которые можно сделать ЛУТ-ом на 1-стор. ПП:

STM32F446RE(LQFP-64)

STM32F103CB(LQFP-48)

В скорем времени будет еще одна, F405, она и на фото.

П.С. В реальности не так страшно выглядит)

Не буду расписывать х-ки самих МК, скажу лишь что 103-тий - довольно простенький, но вполне хороший МК, а 446-ой уже напичканный до отвалу(есть и по старше конечно...). Вся более конкретная информация находится в ДШ(тоже прилагаются)

Оговорюсь сразу, если есть возможность купить Discovery или, к примеру, NUCLEO - то безоговорочно лучше так и сделать!

Так вот, обе отладки идентичные с одной лишь разницей - размер LCD.

Одну я делал дабы по играться с СТМ пока не дошел до игрушки nrf24l01(радиомодуль 2,4GHz, кстати стоит копейки, а штука классная), и тут я понял что надо делать вторую, ибо с одного SPI на другой SPI в одном МК отправлять вроде как не интересно:D

В общем, характеристики отладочных плат:

МК STM32F103CB/STM32F446RE

LCD HD44780 1602/2004 + PCF8574(переходник на I2C)

На борту I2C EEPROM 24Cxx(на той же линии что и LCD)

Кнопка ресет

Батарейка CR2032 для Backup регистров

Кварцевые резонаторы 32768 и HSE(тактирование самого ядра)

USB разъем подключен на USB FS МК(+ USB enable на порте PA15(!!!Внимание, надо ремапить, GPIO_Remap_SWJ_JTAGDisable(отключаем JTAG, шьемся через SWD)))

Питание от программатора или от USB(стоит LDO AMS1117).

Схемы не привожу, так как ничего особенного там нет, обвязка по питанию и всякие разные мелочи.

ВСЕ НОМИНАЛЫ деталек отмечены на ПП в Sprint Layout.

По деталькам:

Резисторы/конденсаторы 0805 и 1206

Разъемы: USB type B, держатель под батарейку стандартный взят из мат. платы, все гребенки - PLS с шагом 2.54мм

Транзистор на USB EN - BC808/BC858 или что угодно тому подобное в корпусе SOT23-3

EEPROM 24Cxx в корпусе SO-8

LDO 1117-ADJ с впаянными номиналами как в Sprint layout или 1117-3.3 но 200R не впаивать, а вместо 330R - перемычку.

Кварцы - 32768 - часовой(мелкий), HSE(HC49) 4-16MHz для STM32F103CB и 4-26Mhz для STM32F446RE

Светики 0805 на ваше усмотрение)))

По поводу ПП:

Ну когда я говорил что ПП односторонняя я немного соврал. На верхней стороне довольно колхозные перемычки нарисованные в SL слоем K2, хотя если есть желание - можете и 2-ым слоем сделать, но я не стал заморачиваться ради соединения 5 точек.

Для крепления LCD я чуть-чуть напильником сточил плату по бокам ПП(напротив отверстий LCD) и стянул стяжками.(на STM32F446RE чуть текстолита не хватило и садил на термоклей верхнюю часть)). Хотя как и что крепить - это тоже решать вам)

Далее привожу 2 "легенды" самих отладок(вордовские документы, снизу всего лишь пример), советую распечатать их, и в процессе работы рисовать ручкой/маркером любые пометки что да как. Когда же место закончится - все свои пометки перенести в вордовский док. и снова распечатать)

Я очередной выпускник некоего московского вуза (не буду уточнять какого, но средненького). Полгода назад нам сообщили, что пора писать диплом. На тот момент я только-только начал осваивать микроконтроллеры и давалось мне это не то, чтобы нелегко, но со скрипом, который производит холодильник, когда ты, в одиночку, пытаешься аккуратно сдвинуть его, не повредив драгоценный ламинат (в моем случае линолеум).

Мое обучение началось, когда я два года назад заинтересовался темой микроконтроллеров и инженер, у которого поинтересовался насчет них, выдал мне плату 300х200мм и сказал, что в ней стоит контроллер STM32F217ZGT6 и на этой плате есть все необходимое для обучения. «В общем, освоишь ее - все остальное покажется фигней» (он, правда, не сказал, что для моргания светодиодом надо настроить SPI, о котором на тот момент я даже не слышал). Спустя три не очень напряженных месяца бесплотных попыток, осознания слабости навыков программирования и огромного количества прочитанных статей пришлось все же раскошелится на STM32VLDISCOVERY и способом копирования программ и экспериментов с ними дело наконец-то пошло, но все равно медленно.

За полтора года успел поработать разработчиком, искал вакансии, где работают с STM32 (так как считаю, что сейчас это наиболее перспективные микроконтроллеры своего класса), нахватался опыта и когда дело дошло до диплома, вспомнил о своих наболевших мозолях. Идея с темой пришла мгновенно: «Отладочная плата на STM32 и (полноценный) обучающий курс (для самых маленьких) к ней».

Именно по этому захотел написать цельный и законченный курс, чтобы так сказать другие не мучились и самому разобраться. Так что придя в институт и понимая, что для быстрого освоения и понимания нужен стимул (а точнее - хороший такой пинчище), я стал бить себя пяткой в грудь (рыть себе могилу), что не только напишу обучающий курс (в нашем универе пришлось назвать его методическим пособием), но и макет работающий предоставлю. Тему приняли, задание написал (могилу вырыл, надгробие заказал), дело было за малым, все написать и разработать (лечь в могилу, закопаться и поставить надгробие).

Жизнь показала, что времени у меня было отнюдь не полгода, но все же все время, отведенное на диплом, почти закончилось, совсем скоро защита, но как не удивительно все не только готово, но и почти на 100% протестировано (на живых людях в том числе).

На выходе получилось следующее:

1. Сам курс (методическое пособие по-научному)

Вкратце о нем можно сказать, что на мой взгляд и по отзывам тестировщиков он полноценный, но немного суровый и не доработанный. Так как я решил, что не буду писать учебник по программированию на СИ, следовательно, и в курсе отсутствуют объяснения операторов, оттого и сказали, что местами курс суров. По поводу недоработанности честно скажу, я не все успел отладить к сдаче, чтобы об этом писать не только здесь, но и в методическом пособии к сдаче. Так же считаю, что можно лучше, но об этом чуть позже.

2. Отладочная плата на контроллере STM32F103RET6

Здесь все немного лучше, чем в первом пункте, плата разработана, заказана (из-за обстоятельств заказывать пришлось срочно) в Резоните, компоненты заказаны, спаяна ручками (честно скажу, никакое видео не передаст ощущения первой пайки LQFP64) и протестирована (большее ее часть заработала сразу же). Но это макет и, конечно, не обошлось без накладок: проводков, переходников и других различных «костылей», но заказать вторую ревизию я, к несчастью, не успею, да наверно и не стал бы, для защиты диплома, уверен и этого хватит. Так что ниже я расскажу более подробно об этой отладочной плате.

Придя на первую работу в качестве разработчика электроники, я столкнулся с одним интересным мнением и, как оказалось, оно весьма распространено. Это мнение звучало примерно так: «Вот я программист и программирую микроконтроллеры, схемотехнику не знаю и знать не хочу, паять, кстати, тоже не умею». Пообщавшись с группой программистов вне фирмы, понял, что человек с моей работы далеко не одинок в своем мнении и хоть я его и не поддерживаю, понять и уважать мнение окружающих стоит, тем более это отлично вписывалось в тогдашнюю концепцию отладочной платы «все на борту». В связи с этим плата получилось достаточно «жирненькая», получила название STM32SB (SB-StudyBoard) V1.0b. Ниже разберем, что в нее вошло.

1. Микроконтроллер
Исходя из того, что я работал с микроконтроллером STM32F103RET6, он и был выбран для проекта.

2. Схема питания и аппаратный USB контроллера
В этом микроконтроллере есть встроенный USB, который было решено вывести на отдельный разъем.

3. Спикер
Было решено ввести для освоения ШИМ модуляции и обучению написанию мелодий.

4. Цифровой индикатор и сдвиговый резистор
Для одновременного освоения динамической индикацией и сдвиговым регистром было решено их совместить.

5. Светодиоды
Светодиоды, что может быть лучше? Только трехцветные светодиоды, на которых можно освоить плавную смену цветов.

6. ЖК-дисплей
Стандартный ЖК-дисплей на 2 строки по 16 символов для освоения параллельного интерфейса.

7. Клавиатура
Матричная клавиатура, это нужно знать и уметь.

8. Расширитель портов ввода-вывода
Много портов ввода-вывода не бывает, а тут еще и I2C освоить можно.

9. Электронный термометр
Датчик температуры по 1-Wire, полезная вещь и ценный опыт работы с ним может пригодиться.

10. Электронный потенциометр
На этой вещице можно освоить полноценный SPI и попробовать сделать замеры изменения напряжения через АЦП.

11. Реле
Хоть это и на уровне поморгать светодиодом, но все же приятно услышать знакомый щелчок, правда?

12. Ключевые транзисторы
Так же на уровне моргания светодиодом, но вдруг кому принцип не понятен.

13. Дублирование свободных пинов на внешних выводах
Ну это естественная конструкция для любой отладочной платы, вдруг все, что в ней есть никому не пригодилось, а подключить, что то свое все же нужно.

14. Преобразователь WIFI-UART(esp8266)
В схеме преобразователь участвует как разъем, также он указан и здесь. Используется уже довольно нашумевший модуль esp8266.

15. Преобразователь USB-UART
USB это всегда круто, сдесь используется чип CP2102.

16. JTAG и SWD
Ну куда же без этих вещей.

Такой широкий набор внешних устройств даст возможность освоить большинство приемов и попробовать поработать с большинством интерфейсов, не заморачиваясь закупкой элементов и не отходя от стола, что согласуется с концепцией не только «все на борту», но и «для самых маленьких» (не умеющих паять).

Конечно, не обошлось без накладок, но, как говорит один знакомый инженер, «мастерство инженера измеряется в количестве перерезанных дорожек на первой итерации платы».

Вот список моих «косяков», того, чего я не заметил, забыл или даже не знал при разработке этой платы:

1. Понял, что пины SWD расположены с странном порядке и хоть работе платы это не мешает. Услышал, на мой взгляд, правильное мнение, что их стоит располагать так, как они расположены на STM32VLDISCOVERY, чтобы избежать недоразумений у нового пользователя.

2. Так подключать одноцветные светодиоды, как на данной плате, не стоит, по причине того, что для моргания ими необходимо отремапить JTAG, но получился неожиданный для меня эффект индикации процесса загрузки прошивки.

3. Я разработал свой логотип для этой платы, который хотел перевести в PCB и разместить на плате, но забыл.

4. Для экономии места во второй ревизии платы я бы разместил некоторые не используемые пользователем SMD компоненты на нижней стороне платы.

5. Понял, что для более удобной разводки цепей с кварцевыми резонаторами было бы удобно заменить их на SMD.

6. Забыл подписать, где JTAG и SWD, так же у них не показано, как их подключать и если для JTAG и его разъемом BH-20 все не так сложно, то с SWD ситуация несколько опасней.

7. При разработке футпринта ЖК-дисплея вышел казус и отверстия оказались слишком малы для болтов М3.

8. У преобразователя CP2102 перепутаны выводы RX и TX. Так как я привык, что в документации приводится пример подключения относительно микроконтроллера, а не внешнего устройства, пришлось перерезать таки 2 дорожки.

9. На данной плате расстояние между гребенками выводов не нормировано по дюймам, в связи с этим есть проблема для подключения к беспаечной макетной плате методом втыкания в нее.

10. Вышла накладка с резисторами ограничения тока в цепи индикации включения реле, номинал оказался слишком большой для того, чтобы реле могло коммутироваться.

11. Ну и, как водится, «хорошая мысля приходит опосля». Так, уже после получения платы я понял, что стоило сделать размер ее подходящий хоть под какой-нибудь корпус - видимо придется доработать во второй ревизии.

12. Изначально был заложен маленький цифровой индикатор, так как занимал не большую площадь и был доступен в магазинах, однако оказалось, что на самом деле он везде доступен при заказе от 520 штук, так что пришлось ваять переходник на стандартный цифровой индикатор.

Напоследок покажу вам 3D модель этой платы:

И для сравнения фотографии ее же, как она получилась «в живую», вид с верху:

И вид с боку, чтоб было видно побольше «костылей»:

Извините, но весь проект до сдачи диплома выкладывать мне бы не хотелось, но после этой работы у меня встал вопрос, а стоит ли данный проект развивать? Меня посетила идея написать цикл статей, посвященных обучению, где был бы представлен такой вот полноценный курс по этой отладочной плате, где все написано простыми словами и объяснено на пальцах. Хотелось бы услышать от вас в комментариях насколько это было бы полезно и необходимо на настоящее время.

Спасибо за внимание!