• Системное администрирование ,
  • Стандарты связи
  • Предположим, что вы плохо владеете сетевыми технологиями, и даже не знаете элементарных основ. Но вам поставили задачу: в быстрые сроки построить информационную сеть на небольшом предприятии. У вас нет ни времени, ни желания изучать толстые талмуды по проектированию сетей, инструкции по использованию сетевого оборудования и вникать в сетевую безопасность. И, главное, в дальнейшем у вас нет никакого желания становиться профессионалом в этой области. Тогда эта статья для вас.


    Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ:

    Понятие о стеке протоколов

    Задача - передать информацию от пункта А в пункт В. Её можно передавать непрерывно. Но задача усложняется, если надо передавать информацию между пунктами A<-->B и A<-->C по одному и тому же физическому каналу. Если информация будет передаваться непрерывно, то когда С захочет передать информацию в А - ему придётся дождаться, пока В закончит передачу и освободит канал связи. Такой механизм передачи информации очень неудобен и непрактичен. И для решения этой проблемы было решено разделять информацию на порции.

    На получателе эти порции требуется составить в единое целое, получить ту информацию, которая вышла от отправителя. Но на получателе А теперь мы видим порции информации как от В так и от С вперемешку. Значит, к каждой порции надо вписать идентификационный номер, что бы получатель А мог отличить порции информации с В от порций информации с С и собрать эти порции в изначальное сообщение. Очевидно, получатель должен знать, куда и в каком виде отправитель приписал идентификационные данные к исходной порции информации. И для этого они должны разработать определённые правила формирования и написания идентификационной информации. Далее слово «правило» будет заменяться словом «протокол».

    Для соответствия запросам современных потребителей, необходимо указывать сразу несколько видов идентификационной информации. А так же требуется защита передаваемых порций информации как от случайных помех (при передаче по линиям связи), так и от умышленных вредительств (взлома). Для этого порция передаваемой информации дополняется значительным количеством специальной, служебной информацией.

    В протоколе Ethernet находятся номер сетевого адаптера отправителя (MAC-адрес), номер сетевого адаптера получателя, тип передаваемых данных и непосредственно передаваемые данные. Порция информации, составленная в соответствии с протоколом Ethernet, называется кадром. Считается, что сетевых адаптеров с одинаковым номером не существует. Сетевое оборудование извлекает передаваемые данные из кадра (аппаратно или программно), и производит дальнейшую обработку.

    Как правило, извлечённые данные в свою очередь сформированы в соответствии с протоколом IP и имеют другой вид идентификационной информации - ip адрес получателя (число размером в 4 байта), ip адрес отправителя и данные. А так же много другой необходимой служебной информации. Данные, сформированные в соответствии с IP протоколом, называются пакетами.

    Далее извлекаются данные из пакета. Но и эти данные, как правило, ещё не являются изначально отправляемыми данными. Этот кусок информации тоже составлен в соответствии определённому протоколу. Наиболее широко используется TCP протокол. В нём содержится такая идентификационная информация, как порт отправителя (число размером в два байта) и порт источника, а так же данные и служебная информация. Извлечённые данные из TCP, как правило, и есть те данные, которые программа, работающая на компьютере В, отправляла «программе-приёмнику» на компьютере A.

    Вложность протоколов (в данном случае TCP поверх IP поверх Ethernet) называется стеком протоколов.

    ARP: протокол определения адреса

    Существуют сети классов A, B, C, D и E. Они различаются по количеству компьютеров и по количеству возможных сетей/подсетей в них. Для простоты, и как наиболее часто встречающийся случай, будем рассматривать лишь сеть класса C, ip-адрес которой начинается на 192.168. Следующее число будет номером подсети, а за ним - номер сетевого оборудования. К примеру, компьютер с ip адресом 192.168.30.110 хочет отправить информацию другому компьютеру с номером 3, находящемуся в той же логической подсети. Это значит, что ip адрес получателя будет такой: 192.168.30.3

    Важно понимать, что узел информационной сети - это компьютер, соединённый одним физическим каналом с коммутирующим оборудованием. Т.е. если мы отправим данные с сетевого адаптера «на волю», то у них одна дорога - они выйдут с другого конца витой пары. Мы можем послать совершенно любые данные, сформированные по любому, выдуманному нами правилу, ни указывая ни ip адреса, ни mac адреса ни других атрибутов. И, если этот другой конец присоединён к другому компьютеру, мы можем принять их там и интерпретировать как нам надо. Но если этот другой конец присоединён к коммутатору, то в таком случае пакет информации должен быть сформирован по строго определённым правилам, как бы давая коммутатору указания, что делать дальше с этим пакетом. Если пакет будет сформирован правильно, то коммутатор отправит его дальше, другому компьютеру, как было указано в пакете. После чего коммутатор удалит этот пакет из своей оперативной памяти. Но если пакет был сформирован не правильно, т.е. указания в нём были некорректны, то пакет «умрёт», т.е. коммутатор не будет отсылать его куда либо, а сразу удалит из своей оперативной памяти.

    Для передачи информации другому компьютеру, в отправляемом пакете информации надо указать три идентификационных значения - mac адрес, ip адрес и порт. Условно говоря, порт - это номер, который, выдаёт операционная система каждой программе, которая хочет отослать данные в сеть. Ip адрес получателя вводит пользователь, либо программа сама получает его, в зависимости от специфики программы. Остаётся неизвестным mac адрес, т.е. номер сетевого адаптера компьютера получателя. Для получения необходимой данной, отправляется «широковещательный» запрос, составленный по так называемому «протоколу разрешения адресов ARP». Ниже приведена структура ARP пакета.

    Сейчас нам не надо знать значения всех полей на приведённой картинке. Остановимся лишь на основных.

    В поля записываются ip адрес источника и ip адрес назначения, а так же mac адрес источника.

    Поле «адрес назначения Ethernet» заполняется единицами (ff:ff:ff:ff:ff:ff). Такой адрес называется широковещательным, и такой фрейм будер разослан всем «интерфейсам на кабеле», т.е. всем компьютерам, подключённым к коммутатору.

    Коммутатор, получив такой широковещательный фрейм, отправляет его всем компьютерам сети, как бы обращаясь ко всем с вопросом: «если Вы владелец этого ip адреса (ip адреса назначения), пожалуйста сообщите мне Ваш mac адрес». Когда другой компьютер получает такой ARP запрос, он сверяет ip адрес назначения со своим собственным. И если он совпадает, то компьютер, на место единиц вставляет свой mac адрес, меняет местами ip и mac адреса источника и назначения, изменяет некоторую служебную информацию и отсылает пакет обратно коммутатору, а тот обратно - изначальному компьютеру, инициатору ARP запроса.

    Таким образом ваш компьютер узнаёт mac адрес другого компьютера, которому вы хотите отправить данные. Если в сети находится сразу несколько компьютеров, отвечающих на этот ARP запрос, то мы получаем «конфликт ip адресов». В таком случае необходимо изменить ip адрес на компьютерах, что бы в сети не было одинаковых ip адресов.

    Построение сетей

    Задача построения сетей

    На практике, как правило, требуется построить сети, число компьютеров в которой будет не менее ста. И кроме функций файлообмена, наша сеть должна быть безопасной и простой в управлении. Таким образом, при построении сети, можно выделить три требования:
    1. Простота в управлении. Если бухгалтера Лиду переведут в другой кабинет, ей по-прежнему понадобится доступ к компьютерам бухгалтеров Анны и Юлии. И при неправильном построении своей информационной сети, у администратора могут возникнуть трудности в выдаче Лиде доступа к компьютерам других бухгалтеров на её новом месте.
    2. Обеспечение безопасности. Для обеспечения безопасности нашей сети, права доступа к информационным ресурсам должны быть разграничены. Так же сеть должна быть защищена от угроз раскрытия, целостности и отказа в обслуживании. Подробнее читайте в книге «Атака на Internet» автора Илья Давидович Медведовский, глава «Основные понятия компьютерной безопасности» .
    3. Быстродействие сети. При построении сетей есть техническая проблема - зависимость скорости передачи от количества компьютеров в сети. Чем больше компьютеров - тем ниже скорость. При большом количестве компьютеров, быстродействие сети может стать настолько низким, что она станет неприемлемой заказчику.
    Из-за чего при большом количестве компьютеров снижается скорость сети? - причина проста: из-за большого количества широковещательных сообщений (ШС). ШС - это сообщение, которое, приходя на коммутатор, отправляется всем хостам сети. Или, грубо говоря, всем компьютерам, находящимся в вашей подсети. Если компьютеров в сети 5, то каждый компьютер будет принимать по 4 ШС. Если их будет 200, то каждый компьютер в такой большой сети будет принимать по 199 ШС.

    Существует большое множество приложений, программных модулей и сервисов, которые, для своей работы отправляют в сеть широковещательные сообщения. Описанный в пункте ARP: протокол определения адреса лишь один из множества ШС, отправляемый вашим компьютером в сеть. Например, когда вы заходите в «Сетевое окружение» (ОС Windows), ваш компьютер посылает ещё несколько ШС со специальной информацией, сформированной по протоколу NetBios, что бы просканировать сеть на наличие компьютеров, находящихся в той же рабочей группе. После чего ОС рисует найденные компьютеры в окне «Сетевое окружение» и вы их видите.

    Так же стоит заметить, что во время процесса сканирования той или иной программой, ваш компьютер отсылает ни одно широковещательное сообщение, а несколько, к примеру для того, что бы установить с удалёнными компьютерами виртуальные сессии или ещё для каких либо системных нужд, вызванных проблемами программной реализации этого приложения. Таким образом, каждый компьютер в сети для взаимодействия с другими компьютерами вынужден посылать множество различных ШС, тем самым загружая канал связи не нужной конечному пользователю информацией. Как показывает практика, в больших сетях широковещательные сообщения могут составить значительную часть трафика, тем самым замедляя видимую для пользователя работу сети.

    Виртуальные локальные сети

    Для решения первой и третьей проблем, а так же в помощь решения второй проблемы, повсеместно используют механизм разбиения локальной сети на более маленькие сети, как бы отдельные локальные сети (Virtual Local Area Network). Грубо говоря, VLAN - это список портов на коммутаторе, принадлежащих одной сети. «Одной» в том смысле, что другой VLAN будет содержать список портов, принадлежащих другой сети.

    Фактически, создание двух VLAN-ов на одном коммутаторе эквивалентно покупке двух коммутаторов, т.е. создание двух VLAN-ов - это всё равно, что один коммутатор разделить на два. Таким образом происходит разбиение сети из ста компьютеров на более маленькие сети, из 5-20 компьютеров - как правило именно такое количество соответствует физическому местонахождению компьютеров по надобности файлообмена.

    • При разбиении сети на VLAN-ы достигается простота управления. Так, при переходе бухгалтера Лиды в другой кабинет, администратору достаточно удалить порт из одного VLAN-а и добавить в другой. Подробнее это рассмотрено в пункте VLAN-ы, теория.
    • VLAN-ы помогают решить одно из требований к безопасности сети, а именно разграничение сетевых ресурсов. Так, студен из одной аудитории не сможет проникнуть на компьютеры другой аудитории или компьютер ректора, т.к. они находятся в фактически разных сетях.
    • Т.к. наша сеть разбита на VLAN-ы, т.е. на маленькие «как бы сети», пропадает проблема с широковещательными сообщениями.

    VLAN-ы, теория

    Возможно, фраза «администратору достаточно удалить порт из одного VLAN-а и добавить в другой» могла оказаться непонятной, поэтому поясню её подробнее. Порт в данном случае - это не номер, выдаваемый ОС приложению, как было рассказано в пункте Стек протоколов, а гнездо (место) куда можно присоединить (вставить) коннектор формата RJ-45. Такой коннектор (т.е. наконечник к проводу) прикрепляется к обоим концам 8-ми жильного провода, называемого «витая пара». На рисунке изображён коммутатор Cisco Catalyst 2950C-24 на 24 порта:
    Как было сказано в пункте ARP: протокол определения адреса каждый компьютер соединён с сетью одним физическим каналом. Т.е. к коммутатору на 24 порта можно присоединить 24 компьютера. Витая пара физически пронизывает все помещения предприятия - все 24 провода от этого коммутатора тянутся в разные кабинеты. Пусть, к примеру, 17 проводов идут и подсоединяются к 17-ти компьютерам в аудитории, 4 провода идут в кабинет спецотдела и оставшиеся 3 провода идут в только что отремонтированный, новый кабинет бухгалтерии. И бухгалтера Лиду, за особые заслуги, перевели в этот самый кабинет.

    Как сказано выше, VLAN можно представлять в виде списка принадлежащих сети портов. К примеру, на нашем коммутаторе было три VLAN-а, т.е. три списка, хранящиеся во flash-памяти коммутатора. В одном списке были записаны цифры 1, 2, 3… 17, в другом 18, 19, 20, 21 и в третьем 22, 23 и 24. Лидин компьютер раньше был присоединён к 20-ому порту. И вот она перешла в другой кабинет. Перетащили её старый компьютер в новый кабинет, или она села за новый компьютер - без разницы. Главное, что её компьютер присоединили витой парой, другой конец которой вставлен в порт 23 нашего коммутатора. И для того, что бы она со своего нового места могла по прежнему пересылать файлы своим коллегам, администратор должен удалить из второго списка число 20 и добавить число 23. Замечу, что один порт может принадлежать только одному VLAN-у, но мы нарушим это правило в конце этого пункта.

    Замечу так же, что при смене членства порта в VLAN, администратору нет никакой нужды «перетыкать» провода в коммутаторе. Более того, ему даже не надо вставать с места. Потому что компьютер администратора присоединён к 22-ому порту, с помощью чего он может управлять коммутатором удалённо. Конечно, благодаря специальным настройкам, о которых будет рассказано позже, лишь администратор может управлять коммутатором. О том, как настраивать VLAN-ы, читайте в пункте VLAN-ы, практика [в следующей статье].

    Как вы, наверное, заметили, изначально (в пункте Построение сетей) я говорил, что компьютеров в нашей сети будет не менее 100. Но к коммутатору можно присоединить лишь 24 компьютера. Конечно, есть коммутаторы с большим количеством портов. Но компьютеров в корпоративной сети/сети предприятия всё равно больше. И для соединения бесконечно большого числа компьютеров в сеть, соединяют между собой коммутаторы по так называемому транк-порту (trunk). При настройки коммутатора, любой из 24-портов можно определить как транк-порт. И транк-портов на коммутаторе может быть любое количество (но разумно делать не более двух). Если один из портов определён как trunk, то коммутатор формирует всю пришедшую на него информацию в особые пакеты, по протоколу ISL или 802.1Q, и отправляет эти пакеты на транк-порт.

    Всю пришедшую информацию - имеется в виду, всю информацию, что пришла на него с остальных портов. А протокол 802.1Q вставляется в стек протоколов между Ethernet и тем протоколом, по которому были сформированные данные, что несёт этот кадр.

    В данном примере, как вы, наверное, заметили, администратор сидит в одном кабинете вместе с Лидой, т.к. витая пора от портов 22, 23 и 24 ведёт в один и тот же кабинет. 24-ый порт настроен как транк-порт. А сам коммутатор стоит в подсобном помещении, рядом со старым кабинетом бухгалтеров и с аудиторией, в которой 17 компьютеров.

    Витая пара, которая идёт от 24-ого порта в кабинет к администратору, подключается к ещё одному коммутатору, который в свою очередь, подключён к роутеру, о котором будет рассказано в следующих главах. Другие коммутаторы, которые соединяют другие 75 компьютеров и стоят в других подсобных помещениях предприятия - все они имеют, как правило, один транк-порт, соединённый витой парой или по оптоволокну с главным коммутатором, что стоит в кабинете с администратором.

    Выше было сказано, что иногда разумно делать два транк-порта. Второй транк-порт в таком случае используется для анализа сетевого трафика.

    Примерно так выглядело построение сетей больших предприятий во времена коммутатора Cisco Catalyst 1900. Вы, наверное, заметили два больших неудобства таких сетей. Во первых, использование транк-порта вызывает некоторые сложности и создаёт лишнюю работу при конфигурировании оборудования. А во вторых, и в самых главных - предположим, что наши «как бы сети» бухгалтеров, экономистов и диспетчеров хотят иметь одну на троих базу данных. Они хотят, что бы та же бухгалтерша смогла увидеть изменения в базе, которые сделала экономистка или диспетчер пару минут назад. Для этого нам надо сделать сервер, который будет доступен всем трём сетям.

    Как говорилось в середине этого пункта, порт может находиться лишь в одном VLAN-е. И это действительно так, однако, лишь для коммутаторов серии Cisco Catalyst 1900 и старше и у некоторых младших моделей, таких как Cisco Catalyst 2950. У остальных коммутаторов, в частности Cisco Catalyst 2900XL это правило можно нарушить. При настройке портов в таких коммутаторах, каждый пор может иметь пять режимов работы: Static Access, Multi-VLAN, Dynamic Access, ISL Trunk и 802.1Q Trunk. Второй режим работы именно то, что нам нужно для выше поставленной задачи - дать доступ к серверу сразу с трёх сетей, т.е. сделать сервер принадлежащим к трём сетям одновременно. Так же это называется пересечением или таггированием VLAN-ов. В таком случае схема подключения может быть такой.

    Основное, что отличает Интернет от других сетей - это ее протоколы — TCP/IP . Вообще, термин TCP/IP обычно означает все, что связано с протоколами взаимодействия между компьютерами в Интернете. Он охватывает целое семейство протоколов, прикладные программы, и даже саму сеть. TCP/IP - это технология межсетевого взаимодействия. Сеть, которая использует технологию TCP/IP, называется «internet» . Если речь идет о глобальной сети, объединяющей множество сетей с технологией TCP/IP, то ее называют Интернет.

    Свое название протокол TCP/IP получил от двух коммуникационных протоколов (или протоколов связи). Это Transmission Control Protocol (TCP) и Internet Protocol (IP). Несмотря на то, что в сети Интернет используется большое число других протоколов, сеть Интернет часто называют ТСР/1Р-сетью , так как эти два протокола, безусловно, являются важнейшими.

    Протокол IP (Internet Protocol) заведует непосредственной передачей информации по сети. Вся информация разбивается на части - пакеты и пересылается от отправителя получателю. Для того чтобы точно адресовать пакет, необходимо задать четкие координаты получателя или его адрес.

    Адрес в Интернете состоит из 4 байт. При записи байты отделяются друг от друга точками: 123.45.67.89 или 3.33.33.3. В действительности адрес состоит из нескольких частей. Так как Интернет есть сеть сетей, начало адреса говорит узлам Интернета, частью какой из сетей является адрес. Правый конец адреса говорит этой сети, какой компьютер или хост должен получить пакет. Каждый компьютер в Интернете имеет в этой схеме уникальный адрес.

    Числовой адрес компьютера в Интернете аналогичен почтовому индексу отделения связи. Существует несколько типов адресов Интернета (типы: А, В, С, D, Е), которые по-разному делят адрес на поля номера сети и номера узла, от типа такого деления зависит количество возможных сетей и машин в таких сетях.

    Из-за ограничений оборудования информация, пересылаемая по сетям IP, делится на части (по границам байтов), раскладываемые в отдельные пакеты . Длина информации внутри пакета обычно составляет от 1 до 1500 байт. Это защищает сеть от монополизирования каким-либо пользователем и предоставляет всем примерно равные права. По этой же причине, если сеть недостаточно быстра, чем больше пользователей ее одновременно использует, тем медленнее она будет общаться с каждым.

    Одно из достоинств Интернета состоит в том, что протокола IP самого по себе уже вполне достаточно для работы. Однако этот протокол имеет и ряд недостатков:

    • - большая часть пересылаемой информации длиннее 1500 символов, поэтому ее приходится разбивать на несколько пакетов;
    • - некоторые пакеты могут теряться в пути следования;
    • - пакеты могут приходить в последовательности, отличной от начальной.

    Используемые протоколы должны обеспечить способы пересылки больших объемов информации без искажений, которые могут возникать по вине сети.

    Протокол управления передачей (TCP, Transmission Control Protocol) - это протокол, тесно связанный с IP, который используется в аналогичных целях, но на более высоком уровне. Протокол TCP занимается проблемой пересылки больших объемов информации, основываясь на возможностях протокола IP.

    TCP делит информацию, которую надо переслать, на несколько частей и нумерует каждую часть, чтобы позже восстановить порядок. Чтобы пересылать эту нумерацию вместе с данными, он обкладывает каждый кусочек информации своей обложкой - TCP-конвертом, который содержит соответствующую информацию.

    Получатель по получении распаковывает IP-конверты и видит TCP-конверты, распаковывает и их и помещает данные в последовательность частей в соответствующее место. Если чего-то недостает, он требует переслать этот кусочек снова. В конце концов, информация собирается в нужном порядке и полностью восстанавливается.

    Для упорядочения обмена данными между компьютерами применяются наборы правил, или протоколы . В настоящее время наиболее широко распространен набор протоколов под общим названием TCP/IP . (Следует помнить, что во многих странах Европы применяется протокол X.25 ). Основные функции семейства протоколов TCP/IP : электронная почта, передача файлов между компьютерами и удаленный вход в систему.

    Пользовательская команда mail , пользовательские команды обработки сообщений (MH) и команда сервера sendmail могут применять TCP/IP для передачи сообщений между системами, а основные сетевые утилиты (BNU) могут применять TCP/IP для передачи файлов и команд между системами.

    TCP/IP - это набор протоколов, который задает стандарты связи между компьютерами и содержит подробные соглашения о маршрутизации и межсетевом взаимодействии. TCP/IP широко применяется в Internet, поэтому с его помощью могут общаться пользователи из исследовательских институтов, школ, университетов, правительственных учреждений и промышленных предприятий.

    TCP/IP обеспечивает связь подключенных к сети компьютеров, обычно называемых хостами. Любую сеть можно подключить к другой сети и организовать связь с ее хостами. Несмотря на то, что существуют различные сетевые технологии, многие из которых основаны на коммутации пакетов и потоковом режиме передачи, набор протокол TCP/IP обладает одним важным преимуществом: он обеспечивает аппаратную независимость.

    Так как в протоколах Internet определяется только блок передачи и способ его отправки, TCP/IP не зависит от особенностей сетевого аппаратного обеспечения, позволяя организовать обмен информацией между сетями с различной технологией передачи данных. Система IP-адресов позволяет установить соединение между любыми двумя машинами сети. Кроме того, в TCP/IP также определены стандарты для многих служб связи, предназначенных для конечных пользователей.

    TCP/IP обеспечивает средства, позволяющие вашему компьютеру выступать в роли хоста Internet, который может подключиться к сети и установить соединение с любым другим хостом Internet. В TCP/IP предусмотрены команды и средства, которые позволяют выполнять следующие действия:

    • Передавать файлы в другую систему
    • Входить в удаленную систему
    • Выполнять команды в удаленной системе
    • Печатать файлы в удаленной системе
    • Отправлять электронные сообщения удаленным пользователям
    • Вести интерактивный диалог с удаленными пользователями
    • Управлять сетью
    Примечание: TCP/IP предусмотрены только основные функции управления сетью. По сравнению с TCP/IP, Простой протокол управления сетью (SNMP) предоставляет более широкий набор команд и функций управления.
    • Терминология TCP/IP
      Ознакомьтесь с основными понятиями Internet, связанными с TCP/IP.
    • Планирование сети TCP/IP
      Стек протоколов TCP/IP - это гибкое средство организации сетевого взаимодействия, поэтому каждый пользователь может настроить его с учетом собственных потребностей. При планировании сети обратите внимание не следующие вопросы. Более подробно эти вопросы обсуждаются в других разделах. Данный список следует рассматривать лишь как общий обзор задач.
    • Установка TCP/IP
      В этом разделе рассмотрена процедура установки TCP/IP .
    • Настройка TCP/IP
      Настройку программного обеспечения TCP/IP можно начинать сразу после его установки в системе.
    • Идентификация и защищенные rcmds
      Теперь у этих команд появились дополнительные способы идентификации.
    • Настройка TCP/IP
      Для настройки TCP/IP создайте файл .netrc .
    • Способы организации взаимодействия с другой системой или пользователем
      Существует несколько способов организации взаимодействия с другой системой или пользователем. В данном разделе описаны два возможных способа. Во-первых, можно установить соединение между локальным и удаленным хостами. Второй способ - это диалог с удаленным пользователем.
    • Передача файлов
      Несмотря на то, что сравнительно небольшие файлы можно передавать с помощью электронной почты, для больших файлов существуют более эффективные способы передачи.
    • Печать на удаленном принтере
      Если к вашему хосту подключен локальный принтер, то с помощью приведенной в этом разделе информации вы сможете печатать на удаленном принтере. Кроме того, если локального принтера нет, то вы сможете печатать на удаленном принтере, отличном от заданного по умолчанию.
    • Печать файлов из удаленной системы
      Вам может понадобиться напечатать файл, который расположен на удаленном хосте. В этом случае расположение напечатанного файла зависит от того, какие удаленные принтеры доступны удаленному хосту.
    • Просмотр сведений о состоянии
      С помощью команд TCP/IP вы можете получить информацию о состоянии, пользователях и хостах сети. Эта информация может потребоваться для связи с другим хостом или пользователем.
    • Протоколы TCP/IP
      Протоколом называется набор правил, задающих форматы сообщений и процедуры, которые позволяют компьютерам и прикладным программам обмениваться информацией. Эти правила соблюдаются каждым компьютером в сети, в результате чего любой хост-получатель может понять отправленное ему сообщение. Набор протоколов TCP/IP можно рассматривать как многоуровневую структуру.
    • Карты сетевых адаптеров локальной сети TCP/IP
      Карта сетевого адаптера - это физическое устройство, которое непосредственно подключается к сетевому кабелю. Она отвечает за прием и передачу данных на физическом уровне.
    • Сетевые интерфейсы TCP/IP
      На уровне сетевого интерфейса TCP/IP создает из IP-дейтаграмм пакеты, которые могут интерпретироваться и передаваться с помощью определенных сетевых технологий.
    • Адресация TCP/IP
      Схема IP-адресации, применяемая в TCP/IP , позволяет пользователям и приложениям однозначно идентифицировать сети и хосты, с которыми устанавливаются соединения.
    • Преобразование имен TCP/IP
      Несмотря на то, что 32-разрядные IP-адреса позволяют однозначно идентифицировать все хосты в сети Internet, пользователям гораздо удобнее работать с осмысленными, легко запоминающимися именами хостов. В Протоколе управления передачей/Протоколе Internet (TCP/IP) предусмотрена система имен, поддерживающая как одноуровневую, так и иерархическую структуру сети.
    • Планирование и настройка преобразования имен LDAP (Схема IBM SecureWay Directory)
      Упрощенный протокол доступа к каталогам (LDAP) - это открытый стандартный протокол, регламентирующий способ получения и изменения информации в каталоге.
    • Планирование и настройка преобразования имен NIS_LDAP (схема RFC 2307)
      В AIX 5.2 реализован новый механизм преобразования имен NIS_LDAP.
    • Присвоение адреса и параметров TCP/IP - протокол динамической настройки хостов
      предназначен для организации связи между компьютерами с определенными адресами. Одной из обязанностей администратора сети является присвоение адресов и задание параметров для всех машин в сети. Обычно администратор информирует пользователей о том, какие адреса выделены их системам, и предоставляет пользователям возможность самим выполнить настройку. Однако ошибки при настройке или неправильное понимание могут вызвать у пользователей вопросы, которые администратор должен будет рассматривать индивидуально. позволяет администратору централизованно настраивать сеть без участия конечных пользователей.
    • Протокол динамической настройки хостов версии 6
      Протокол динамической настройки хостов (DHCP) позволяет работать с сетевыми конфигурациями из централизованного расположения. Этот раздел посвящен DHCPv6 ; под IP-адресами понимаются адреса IPv6, а под DHCP - DHCPv6 (если не сказано обратное).
    • Демон PXE Proxy DHCP
      Сервер PXE Proxy DHCP работает примерно так же, как и сервер DHCP : он просматривает сообщения клиентов DHCP и отвечает на некоторые запросы. Однако, в отличие от сервера DHCP , сервер PXE Proxy DHCP не управляет сетевыми адресами, а всего лишь отвечает на запросы клиентов PXE.
    • Демон согласования загрузочных образов (BINLD)
      Сервер демона согласования загрузочных образов (BINLD) применяется на третьем этапе загрузки клиентов PXE.
    • Демоны TCP/IP
      Демоны (или серверы ) - это процессы, которые работают в фоновом режиме и выполняют запросы других процессов. Протокол управления передачей/Протокол Internet применяет программы-демоны для выполнения определенных функций в операционной системе.
    • Маршрутизация TCP/IP
      Маршрутом называется путь, по которому пакеты пересылаются от отправителя к получателю.
    • Mobile IPv6
      Протокол Mobile IPv6 обеспечивает поддержку переадресации для IPv6 . С его помощью пользователь может применять один и тот же IP-адрес в любой точке земного шара, а приложения, работающие с этим адресом, сохраняют связь и соединения верхнего уровня, независимо от местонахождения пользователя. Поддержка переадресации осуществляется в однородных и разнородных средах.
    • Виртуальный IP-адрес
      Виртуальный IP-адрес устраняет зависимость хоста от отдельных сетевых интерфейсов.
    • Канал EtherChannel и объединение линий IEEE 802.3ad
      Канал EtherChannel и объединение линий IEEE 802.3ad - это технологии объединения сетевых портов, позволяющие объединить несколько адаптеров Ethernet в одно псевдоустройство Ethernet.
    • Протокол IP для InfiniBand (IPoIB)
      Пакеты IP-протокола могут быть отправлены через интерфейс InfiniBand (IB). При этом IP-пакеты заключаются в пакеты IB с помощью сетевого интерфейса.
    • Инициатор ПО iSCSI и целевой объект ПО
      Программный инициатор iSCSI позволяет AIX получать доступ к запоминающим устройствам по сети TCP/IP с использованием адаптеров Ethernet. Целевой объект ПО iSCSI обеспечивает AIX доступ других инициаторов iSCSI к экспортированной локальной памяти с использованием протокола iSCSI, определенного в RFC 3720.
    UNIX , что способствовало росту популярности протокола, так как производители включали TCP/IP в набор программного обеспечения каждого UNIX -компьютера. TCP/IP находит свое отображение в эталонной модели OSI , как это показано на рисунке 3.1 .

    Вы видите, что TCP/IP располагается на третьем и четвертом уровнях модели OSI . Смысл этого состоит в том, чтобы оставить технологию работы LAN разработчикам. Целью TCP/IP является передача сообщений в локальных сетях любого типа и установка связи с помощью любого сетевого приложения.

    Протокол TCP/IP функционирует за счет того, что он связан с моделью OSI на двух самых нижних уровнях - на уровне передачи данных и физическом уровне. Это позволяет TCP/IP находить общий язык практически с любой сетевой технологией и, как результат, с любой компьютерной платформой. TCP/IP включает в себя четыре абстрактных уровня, перечисленных ниже.


    Рис. 3.1.

    • Сетевой интерфейс. Позволяет TCP/IP активно взаимодействовать со всеми современными сетевыми технологиями, основанными на модели OSI.
    • Межсетевой. Определяет, как IP управляет пересылкой сообщений через маршрутизаторы сетевого пространства, такого как интернет.
    • Транспортный. Определяет механизм обмена информацией между компьютерами.
    • Прикладной. Указывает сетевые приложения для выполнения заданий, такие как пересылка, электронная почта и прочие.

    Благодаря своему широкому распространению протокол TCP/IP фактически стал интернет -стандартом. Компьютер , на котором реализована сетевая технология , основанная на модели OSI ( Ethernet или Token Ring ), имеет возможность устанавливать связь с другими устройствами. В "Основы организации сети" мы рассматривали уровни 1 и 2 при обсуждении LAN -технологий. Теперь мы перейдем к стеку OSI и посмотрим, каким образом компьютер устанавливает связь в интернете или в частной сети. В этом разделе рассматривается протокол TCP/IP и его конфигурации.

    Что такое TCP/IP

    То, что компьютеры могут общаться между собой, само по себе представляется чудом. Ведь это компьютеры от разных производителей, работающие с различными операционными системами и протоколами. При отсутствии какой-то общей основы такие устройства не смогли бы обмениваться информацией. При пересылке по сети данные должны иметь такой формат, который был бы понятен как отправляющему устройству, так и принимающему.

    TCP/IP удовлетворяет этому условию за счет своего межсетевого уровня. Этот уровень напрямую совпадает с сетевым уровнем эталонной модели OSI и основан на фиксированном формате сообщений, называемом IP-дейтаграммой. Дейтаграмма - это нечто вроде корзины, в которую помещена вся информация сообщения. Например, при загрузке веб-страницы в браузер то, что вы видите на экране, доставлено по частям дейтаграммой.

    Легко перепутать дейтаграммы с пакетами. Дейтаграмма - это информационная единица, в то время как пакет - это физический объект сообщения (созданный на третьем и более высоких уровнях), который действительно пересылается в сети. Хотя некоторые считают эти термины взаимозаменяемыми, их различие на самом деле имеет значение в определенном контексте - не здесь, конечно. Важно понять то, что сообщение разбивается на фрагменты, передается по сети и собирается заново на принимающем устройстве.


    Положительным в таком подходе является то, что если один-единственный пакет будет испорчен во время передачи, то потребуется повторная передача только этого пакета, а не сообщения целиком. Другой положительный момент состоит в том, что ни одному хосту не приходится ждать неопределенно долгое время, пока не закончится передача на другом хосте, чтобы послать свое собственное сообщение.

    TCP и UDР

    При пересылке IP-сообщения по сети используется один из протоколов транспортировки: TCP или UDР. TCP (Transmission Control Protocol) составляет первую половину аббревиатуры TCP/IP. Протокол пользовательских дейтаграмм (User Datagram Protocol, UDР) используется вместо ТСР для транспортировки менее важных сообщений. Оба протокола служат для корректного обмена сообщениями в сетях TCP/IP. Между этими протоколами есть одно существенное различие.

    ТСР называют надежным протоколом, так как он связывается с получателем для проверки факта получения сообщения.

    UDР называют ненадежным протоколом, так как он даже не пытается устанавливать связь с получателем, чтобы убедиться в доставке.


    Важно помнить, что для доставки сообщения можно воспользоваться только одним протоколом. Например, при загрузке веб-страницы доставкой пакетов управляет ТСР без всякого вмешательства UDP. С другой стороны, простой протокол передачи файлов (Trivial File Transfer Protocol, TFTP) загружает или отправляет сообщения под контролем протокола UDP.

    Используемый способ транспортировки зависит от приложения - это может быть электронная почта, НТТР, приложение, отвечающее за сетевую работу, и так далее. Разработчики сетевых программ используют UDP везде, где только можно, так как этот протокол снижает избыточный трафик. Протокол ТСР прилагает больше усилий для гарантированной доставки и передает гораздо больше пакетов, чем UDP. На рисунке 3.2 представлен список сетевых приложений, и показано, в каких приложениях применяется ТСР, а в каких - UDP. Например, FTP и TFTP делают практически одно и то же. Однако TFTP, в основном, применяется для загрузки и копирования программ сетевых устройств. TFTP может использовать UDP, потому что при неудачной доставке сообщения ничего страшного не происходит, поскольку сообщение предназначалось не конечному пользователю, а администратору сети, уровень приоритета которого гораздо ниже. Другим примером является сеанс голосовой видеосвязи, в котором могут быть задействованы порты как для ТСР-сессий, так и для UDP. Так, сеанс TCP инициируется для обмена данными при установке телефонной связи, в то время как сам телефонный разговор передается посредством UDP. Это связано со скоростью потоковой передачи голоса и видео. В случае потери пакета не имеет смысла повторно посылать его, так как он уже не будет соответствовать потоку данных.


    Рис. 3.2.
    Формат IP-дейтаграммы

    IP-пакеты можно разбивать на дейтаграммы. Формат дейтаграммы создает поля для полезной нагрузки и для данных управления передачей сообщения. На рисунке 3.3 показана схема дейтаграммы.

    Примечание. Пусть вас не вводит в заблуждение величина поля данных в дейтаграмме. Дейтаграмма не перегружена дополнительными данными. Поле данных является на самом деле самым большим полем дейтаграммы.


    Рис. 3.3.

    Важно помнить, что IP-пакеты могут иметь различную длину. В "Основы организации сети" говорилось о том, что информационные пакеты в сети Ethernet имеют размер от 64 до 1400 байт. В сети Token Ring их длина составляет 4000 байт, в сети ATM - 53 байта.

    Примечание. Использование в дейтаграмме байтов может привести вас в недоумение, так как передача данных чаще связана с такими понятиями, как мегабиты и гигабиты в секунду. Однако в связи с тем, что компьютеры предпочитают работать с байтами данных, в дейтаграммах также используются байты.

    Если вы еще раз посмотрите на формат дейтаграммы на рисунке 3.3 , то заметите, что крайние поля слева имеют постоянную величину. Так происходит, потому что центральный процессор, работающий с пакетами, должен знать, где начинается каждое поле. Без стандартизации этих полей конечные биты будут представлять собой мешанину из нулей и единиц. В правой части дейтаграммы находятся пакеты переменной длины. Назначение различных полей дейтаграммы состоит в следующем.

    • VER . Версия протокола IP, используемого станцией, где появилось исходное сообщение. Текущей версией IP является версия 4. Это поле обеспечивает одновременное существование различных версий в межсетевом пространстве.
    • HLEN. Поле информирует получающее устройство о длине заголовка, чтобы центральный процессор знал, где начинается поле данных.
    • Service type (Тип сервиса). Код, сообщающий маршрутизатору о типе управления пакетом с точки зрения уровня сервиса (надежность, первоочередность, отсрочка и т. д.).
    • Length (Длина). Общее количество байт в пакете, включая поля заголовка и поле данных.
    • ID, frags и frags offset. Эти поля указывают маршрутизатору, как следует проводить фрагментацию и сборку пакета и как компенсировать различия в размере кадров, которые могут возникать во время прохождения пакета по сегментам локальной сети с различными сетевыми технологиями (Ethernet, FDDI и т.д.).
    • TTL. Аббревиатура для Time to Live (Время жизни) - число, которое уменьшается на единицу при каждой последующей пересылке пакета. Если время жизни становится равным нулю, то пакет прекращает существование. TTL предотвращает возникновение циклов и бесконечное блуждание потерянных пакетов в межсетевом пространстве.
    • Protocol. Протокол транспортировки, который следует использовать для передачи пакета. Чаще всего в этом поле указывается протокол TCP, но могут быть использованы и другие протоколы.
    • Header checksum . Контрольная сумма - это число, которое используется для проверки целостности сообщения. Если контрольные суммы всех пакетов сообщения не совпадают с правильным значением, то это означает, что сообщение было искажено.
    • Source IP address (Адрес отправителя). 32-битный адрес хоста, отправившего сообщение (обычно персональный компьютер или сервер).
    • Destination IP address (Адрес получателя). 32-битный адрес хоста, которому отправлено сообщение (обычно персональный компьютер или сервер).
    • IP options. Используются для тестирования сети или других специальных целей.
    • Padding. Заполняет все неиспользованные (пустые) позиции битов, чтобы процессор мог правильно определить позицию первого бита в поле данных.
    • Data. Полезная нагрузка отправленного сообщения. Например, в поле данных пакета может содержаться текст электронного письма.

    Как говорилось ранее, пакет состоит из двух основных компонентов: данных об обработке сообщения, размещенных в заголовке, и собственно информации. Информационная часть находится в секторе полезной нагрузки. Можете представить себе этот сектор в виде грузового отсека космического корабля. Заголовок - это все бортовые компьютеры шаттла в кабине управления. Он распоряжается всей информацией, необходимой всевозможным маршрутизаторам и компьютерам на пути следования сообщения, и используется для поддержания определенного порядка сборки сообщения из отдельных пакетов.

    Стек протоколов TCP/IP

    Корпоративная сеть - это сложная система, состоящая из большого числа разнообразных устройств: компьютеров, концентраторов, маршрутизаторов , коммутаторов, системного прикладного программного обеспечения и т.д. Основная задача системных интеграторов и администраторов сетей состоит в том, чтобы эта система как можно лучше справлялась с обработкой потоков информации и позволяла получать правильные решения пользовательских задач в корпоративной сети. Прикладное программное обеспечение запрашивает сервис, обеспечивающий связь с другими прикладными программами. Этим сервисом является механизм межсетевого обмена.

    Корпоративная информация, интенсивность ее потоков и способы ее обработки постоянно меняются. Примером резкого изменения технологии обработки корпоративной информации стал беспрецедентный рост популярности глобальной сети Internet за последние 2-3 года. Сеть Internet изменила способ представления информации, собрав на своих серверах все ее виды - текст, графику и звук. Транспортная система сети Internet существенно облегчила задачу построения распределенной корпоративной сети.

    Соединение и взаимодействие в рамках одной мощной компьютерной сети явилось целью проектирования и создания семейства протоколов, названных в дальнейшем стеком протоколов TCP/IP (Transmission Control Protocol / Internet Protocol ) . Главной идеей стека является создание механизма межсетевого обмена.

    Стек протоколов TCP/IP широко применяется во всем мире для объединения компьютеров в сети Internet . TCP / IP - это общее название, присвоенное семейству протоколов передачи данных, используемых для связи компьютеров и другого оборудования в корпоративной сети.

    Основное достоинство стека протоколов TCP/IP в том, что он обеспечивает надежную связь между сетевым оборудованием от различных производителей. Это достоинство обеспечивается включением в состав TCP/IP отработанного в процессе эксплуатации набора коммуникационных протоколов с различными стандартизованными приложениями. Протоколы стека TCP/IP предоставляют механизм передачи сообщений, описывают детали форматов сообщений и указывают, как обрабатывать ошибки. Протоколы позволяют описать и понять процессы передачи данных, не учитывая тип оборудования, на котором эти процессы происходят.

    История создания стека протоколов TCP/IP началась с момента, когда Министерство обороны США столкнулось с проблемой объединения большого числа компьютеров с различными операционными системами. Для этого в 1970 году был составлен набор стандартов. Протоколы, разработанные на базе этих стандартов, получили обобщенное название TCP/IP.

    Стек протоколов TCP/IP был изначально предназначен для сети Advanced Research Project Agency Network (ARPANET ). ARPANET рассматривалась как экспериментальная распределенная сеть коммутации пакетов. Эксперимент по применению стека протоколов TCP/IP в этой сети закончился с положительными результатами. Поэтому стек протоколов был принят в промышленную эксплуатацию, а в дальнейшем был расширен и усовершенствовался в течение нескольких лет. Позже стек адаптировали для использования в локальных сетях. В начале 1980 года протокол стал использоваться как интегральная часть операционной системы Вег kley UNIX v 4.2. В этом же году появилась объединенная сеть Internet . Переход к технологии Internet был завершен в 1983 году, когда Министерство обороны США установило, что все компьютеры, присоединенные к глобальной сети, используют стек протоколов TCP/IP.

    Стек протоколов TCP/IP предоставляет пользователям два основных сервиса , которые используют прикладные программы:

    Дейтаграммное средство доставки пакетов . Это означает, что протоколы стека TCP/IP определяют маршрут передачи небольшого сообщения, основываясь только на адресной информации, находящейся в этом сообщении. Доставка осуществляется без установки логического соединения. Такой тип доставки делает протоколы TCP/IP адаптируемыми к широкому диапазону сетевого оборудования.

    Надежное потоковое транспортное средство . Большинство приложений требует от коммуникационного программного обеспечения автоматического восстановления при ошибках передачи, потере пакетов или сбоях в промежуточных маршрутизаторах . Надежное транспортное средство позволяет устанавливать логическое соединение между приложениями, а затем посылать большие объемы данных по этому соединению.

    Основными преимуществами стека протоколов TCP/IP являются:

    Независимость от сетевой технологии. Стек протоколов TCP/IP не зависит от оборудования конечных пользователей, так как он только определяет элемент передачи - дейтаграмму - и описывает способ ее движения по сети.

    Всеобщая связанность. Стек позволяет любой паре компьютеров, которые его поддерживают, взаимодействовать друг с другом. Каждому компьютеру назначается логический адрес, а каждая передаваемая дейтаграмма содержит логические адреса отправителя и получателя. Промежуточные маршрутизаторы используют адрес получателя для принятия решения о маршрутизации.

    Межконцевые подтверждения. Протоколы стека TCP/IP обеспечивают подтверждение правильности прохождения информации при обмене между отправителем и получателем.

    Стандартные прикладные протоколы. Протоколы TCP/IP включают в свой состав средства для поддержки наиболее часто встречающихся приложений, таких как электронная почта, передача файлов, удаленный доступ и т.д.

    Резкий рост сети Internet и, естественно, ускоренное развитие стека протоколов TCP/IP потребовали от разработчиков создания серии документов, которые способствовали бы дальнейшему упорядоченному развитию протоколов. Организация Internet Activities Board (IAB ) разработала серию документов, называемых RFC (Request For Comments ). Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, другие документы описывают условия их применения. В том числе в RFC опубликованы стандарты стека протоколов TCP/IP. При этом следует иметь в виду, что стандарты TCP/IP всегда публикуются в виде документов RFC , но не все RFC определяют стандарты.

    Документы RFC первоначально публиковались в электронном виде и могли комментироваться теми, кто принимал участие в их обсуждении. Документ мог претерпевать несколько изменений до тех пор, пока не будет достигнуто общее соглашение по его содержанию. Если документ при этом регламентировал новую идею, то ему присваивался номер, и он помещался к другим RFC . При этом каждому новому документу присваивается статус, регламентирующий необходимость его внедрения. Выход в свет нового документа RFC вовсе не означает, что все производители оборудования и программного обеспечения должны внедрять его в своей продукции. В приложении № 2 приведены описания некоторых документов RFC и их статусов.

    1.Состояние стандартизации. Протокол может иметь несколько состояний:

    стандарт на протокол утвержден;

    стандарт на протокол предлагается к рассмотрению;

    предлагается экспериментальный протокол;

    протокол устарел и в настоящее время не используется.

    2.Статус протокола. Протокол может иметь несколько статусов:

    протокол требуется для внедрения;

    протокол может внедряться производителем по выбору;

    При эксплуатации сложной корпоративной сети возникает масса не связанных между собой проблем. Решить их функциональными возможностями одного протокола практически невозможно. Такой протокол должен был бы:

    распознавать сбои в сети и восстанавливать ее работоспособность;

    распределять пропускную способность сети и знать способы уменьшения потока данных при перегрузке;

    распознавать задержки и потери пакетов, знать способ уменьшения ущерба от этого;

    распознавать ошибки в данных и информировать о них прикладное программное обеспечение;

    производить упорядоченное движение пакетов в сети.

    Такое количество функциональных возможностей не под силу одному протоколу. Поэтому был создан набор взаимодействующих протоколов, названный стеком.

    Так как стек протоколов TCP/IP был разработан до появления эталонной модели OSI , то соответствие его уровней уровням модели OSI достаточно условно. Структура стека протоколов TCP/IP приведена на рис. 1.1.

    Рис. 1.1. Структура стека протоколов TCP/IP .

    Рис. 1. 2. Путь передачи сообщений .

    Теоретически посылка сообщения от одной прикладной программы к другой означает последовательную передачу сообщения вниз через соседние уровни стека у отправителя, передачу сообщений по уровню сетевого интерфейса (уровню IV ) или, в соответствии с эталонной моделью OSI , по физическому уровню, прием сообщения получателем и передачу его вверх через соседние уровни протокольного программного обеспечения. На практике взаимодействие уровней стека организовано гораздо сложнее. Каждый уровень принимает решение о корректности сообщения и производит определенное действие на основании типа сообщения или адреса назначения. В структуре стека протоколов TCP/IP имеется явный «центр тяжести» - это сетевой уровень и протокол IP в нем. Протокол IP может взаимодействовать с несколькими модулями протоколов более высокого уровня и несколькими сетевыми интерфейсами. То есть на практике процесс передачи сообщений от одной прикладной программы к другой будет выглядеть следующим образом: отправитель передает сообщение, которое на уровне III про токолом IP помещается в дейтаграмму и посылается в сеть (сеть 1). На промежуточных устройствах, например маршрутизаторах , дейтаграмма передается вверх до уровня протокола IP , который отправляет ее обратно вниз, в другую сеть (сеть 2). Когда дейтаграмма достигает получате ля, протокол IP выделяет сообщение и передает его на верхние уровни. Рис. 1.2 иллюстрирует данный процесс.

    Структуру стека протоколов TCP/IP можно разделить на четыре уровня . Самый нижний - уровень сетевого интерфейса (уровень IV ) -соответствует физическому и канальному уровню модели OSI . В стеке протоколов TCP/IP этот уровень не регламентирован. Уровень сетево го интерфейса отвечает за прием дейтаграмм и передачу их по конкрет ной сети. Интерфейс с сетью может быть реализован драйвером уст ройства или сложной системой, которая использует свой протокол ка нального уровня (коммутатор, маршрутизатор ). Он поддерживает стан дарты физического и канального уровня популярных локальных сетей: Ethernet , Token Pang , FDDI и т.д. Для распределенных сетей поддержи ваются проколы соединений РРР и SLIP , а для глобальных сетей - протокол Х.25. Предусмотрена поддержка использования развивающейся технологии коммутации ячеек - ATM . Обычной практикой стало вклю чение в стек протоколов TCP/IP новых технологий локальных или рас пределенных сетей и регламентация их новыми документами RFC .

    Сетевой уровень (уровень III ) - это уровень межсетевого взаимо действия. Уровень управляет взаимодействием между пользователями в сети. Он принимает от транспортного уровня запрос на посылку пакета от отправителя вместе с указанием адреса получателя. Уровень инкапсулирует пакет в дейтаграмму, заполняет ее заголовок и при необходи мости использует алгоритм маршрутизации. Уровень обрабатывает при ходящие дейтаграммы и проверяет правильность поступившей инфор мации. На стороне получателя программное обеспечение сетевого уровня удаляет заголовок и определяет, какой из транспортных протоколов будет обрабатывать пакет.

    В качестве основного протокола сетевого уровня в стеке TCP/IP используется протокол IP , который и создавался с целью передачи ин формации в распределенных сетях. Достоинством протокола IP является возможность его эффективной работы в сетях со сложной топологи ей. При этом протокол рационально использует пропускную способ ность низкоскоростных линий связи. В основе протокола IP заложен дейтаграммный метод, который не гарантирует доставку пакета, но на правлен на ее осуществление.

    К этому уровню относятся все протоколы, которые создают, под держивают и обновляют таблицы маршрутизации. Кроме того, на этом уровне функционирует протокол обмена информацией об ошибках меж ду маршрутизаторами в сети и отправителями.

    Следующий уровень - транспортный (уровень II ) . Основной его задачей является обеспечение взаимодействия между прикладными про граммами. Транспортный уровень управляет потоком информации с обес печением надежной передачи. Для этого использован механизм подтвер ждения правильного приема с дублированием передачи утерянных или пришедших с ошибками пакетов. Транспортный уровень принимает дан ные от нескольких прикладных программ и посылает их более низкому уровню. При этом он добавляет дополнительную информацию к каждо му пакету, в том числе и значение вычисленной контрольной суммы.

    На этом уровне функционирует протокол управления передачей данных TCP (Transmission Control Protocol ) и протокол передачи при кладных пакетов дейтаграммным методом UDP (User Datagram Protocol ). Протокол TCP обеспечивает гарантированную доставку данных за счет образования логических соединений между удаленными прикладными процессами. Работа протокола UDP аналогична работе протокола IP , но основной его задачей является выполнение функций связующего звена между сетевым протоколом и различными приложениями.

    Самый верхний уровень (уровень I ) - прикладной . На нем реализованы широко используемые сервисы прикладного уровня. К ним от носятся: протокол передачи файлов между удаленными системами, про токол эмуляции удаленного терминала, почтовые протоколы и т.д. Каж дая прикладная программа выбирает тип транспортировки - либо не прерывный поток сообщений, либо последовательность отдельных со общений. Прикладная программа передает данные транспортному уров ню в требуемой форме.

    Рассмотрение принципов функционирования стека протоколов TCP/IP целесообразно проводить, начиная с протоколов третьего уров ня. Это связано с тем, что протоколы более высоких уровней в своей работе опираются на функциональные возможности протоколов нижних уровней. Для понимания проблем маршрутизации в распределен ных сетях изучение протоколов рекомендуется проводить в следующей последовательности: IP , ARP , ICMP , UDP и TCP . Это связано с тем, что для доставки информации между удаленными системами в распределенной сети используется в той или иной степени все семейство сте ка протоколов TCP/IP.

    Стек протоколов TCP/IP включает в свой состав большое число протоколов прикладного уровня. Эти протоколы выполняют различные функции, в том числе: управление сетью, передачу файлов, оказание распределенных услуг при использовании файлов, эмуляцию термина лов, доставку электронной почты и т.д. Протокол передачи файлов (File Transfer Protocol - FTP ) обеспечивает перемещение файлов между ком пьютерными системами. Протокол Telnet обеспечивает виртуальную тер минальную эмуляцию. Простой протокол управления сетью (Simple Network Management Protocol - SNMP ) является протоколом управле ния сетью, используемым для сообщений об аномальных условиях в сети и установления значений допустимых порогов в сети. Простой протокол передачи почты (Simple Mail Transfer Protocol - SMTP ) обеспечивает механизм передачи электронной почты. Эти протоколы и другие прило жения используют услуги стека TCP/IP для обеспечения пользователей базовыми сетевыми услугами.

    Более подробно протоколы прикладного уровня стека протоколов TCP/IP в рамках данного материала не рассматриваются.

    Перед рассмотрением протоколов стека TCP/IP введем базовые термины, определяющие названия фрагментов информации, передава емой между уровнями. Название блока данных, передаваемого по сети, зависит от того, на каком уровне стека протоколов он находится. Блок данных, с которым имеет дело сетевой интерфейс, называется кадром . Если блок данных находится между сетевым интерфейсом и сетевым уровнем, то он называется IP -дейтаграммой (или просто дейтаграм мой). Блок данных, циркулирующий между транспортным и сетевым уровнями и выше, называется IP -пакетом . На рис. 1.3 показано соот ветствие обозначений блоков данных уровням стека протоколов TCP/IP.


    Рис. 1. 3. Обозначение фрагментов информации на уровнях стека TCP/IP.

    Очень важно дополнить описание уровней стека протоколов TCP/IP описанием различия между передачей от отправителя непосредственно к получателю и передачей через несколько сетей. На рис. 4 показано различие между этими видами передач.


    Рис. 1.4. Способы передачи информации.

    При доставке сообщения через две сети с применением маршрутизатора оно использует два разных сетевых кадра (кадр 1 и кадр 2). Кадр 1 - для передачи от отправителя до маршрутизатора , кадр 2 - от маршрутизатора до получателя.

    Прикладной и транспортный уровни могут устанавливать соединения, поэтому принцип разделения на уровни определяет, что пакет, принятый транспортным уровнем получателя, должен быть идентичен пакету, посланному транспортным уровнем отправителя.