ПРИМЕНЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К СТАТИСТИКЕ.

1. Основные понятия.

2. Определение неизвестной функции распределения.

3. Определение неизвестных параметров распределения.

4. Доверительный интервал. Доверительная вероятность.

5. Применение критерия Стьюдента для сравнения генеральных

совокупностей.

6. Элементы теории корреляции.

7. Проверка гипотезы о нормальном распределении генеральной

совокупности. Критерий согласия Пирсона.

Основные понятия.

Математическая статистика - это раздел математики, в котором изучаются методы обработки и анализа экспериментальных данных, полученных в результате наблюдений над массовыми случайными событиями, явлениями.

Наблюдения, проводимые над объектами, могут охватывать всех членов изучаемой совокупности без исключения и могут ограничиваться обследованиями лишь некоторой части членов данной совокупности. Первое наблюдение называется сплошным или полным, второе частичным или выборочным .

Естественно, что наиболее полную информацию дает сплошное наблюдение, однако к нему прибегают далеко не всегда. Во-первых, сплошное наблюдение очень трудоемко, а во-вторых, часто бывает практически невозможно или даже нецелесообразно. Поэтому в подавляющем большинстве случаев прибегают к выборочному исследованию.

Совокупность, из которой некоторым образом отбирается часть ее членов для совместного изучения, называется генеральной совокупностью , а отобранная тем или иным способом часть генеральной совокупности - выборочная совокупность или выборка .

Объем генеральной совокупности теоретически ничем неограничен , на практике же он всегда ограничен.

Объем выборки может быть большим или малым, но он не может быть меньше двух.

Отбор в выборку можно проводить случайным способом (по способу жеребьевки или лотереи). Либо планово, в зависимости от задачи и организации обследования. Для того, чтобы выборка была представительной, необходимо обращать внимание на размах варьирования признака и согласовывать с ним объем выборки.

2. Определение неизвестной функции распределения.

Итак, мы сделали выборку. Разобьем диапазон наблюдаемых значений на интервалы , , …. одинаковой длины . Для оценки необходимого числа интервалов можно использовать следующие формулы:

Далее пусть m i - число наблюдаемых значений , попавших в i -ый интервал. Разделив m i на общее число наблюдений n , получим частоту , соответствующую i -ому интервалу: , причем . Составим следующую таблицу:

Номер интервала Интервал m i
m 1
m 2
... ... ... ...
k m k

которая называется статистическим рядом . Эмпирической (или статистической ) функцией распределения случайной величины называется частота события, заключающегося в том, что величина в результате опыта примет значение, меньшее x :

На практике достаточно найти значения статистической функции распределения F * (x) в точках , которые являются границами интервалов статистического ряда:

(5.2)

Следует заметить, что при и при . Построив точки и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 5.1). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе испытаний с вероятностью, близкой к единице, эмпирическая функция распределения отличается сколь угодно мало от неизвестной нам функции распределения случайной величины .

Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы , ,…. . На каждом интервале строят прямоугольник, площадь которого равна частоте , соответствующей данному интервалу. Высота h i этого прямоугольника равна , где - длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.

Рассмотрим функцию , которая в интервале постоянна и равна . График этой функции называется гистограммой . Он представляет собой ступенчатую линию (рис. 5.2). С помощью закона больших чисел Бернулли можно доказать, что при малых и больших с практической достоверностью как угодно мало отличается от плотности распределения непрерывной случайной величины .

Таким образом на практике определяется вид неизвестной функции распределения случайной величины.

3. Определение неизвестных параметров распределения.

Таким образом мы получили гистограмму, которая дает наглядность. Наглядность представленных результатов позволяет сделать различные заключения, суждения об исследуемом объекте.

Однако на этом обычно не останавливаются, а идут дальше, анализируя данные на проверку определенных предположений относительно возможных механизмов изучаемых процессов или явлений.

Несмотря на то, что данных в каждом обследовании сравнительно немного, мы бы хотели, чтобы результаты анализа достаточно хорошо описывали бы все реально существующее или мыслимое множество (т.е. генеральную совокупность).

Для этого делают некоторые предположения о том, как вычисленные на основе экспериментальных данных (выборке) показатели соотносятся с параметрами генеральной совокупности.

Решение этой задачи составляет главную часть любого анализа экспериментальных данных и тесно связано с использованием ряда теоретических распределений, рассмотренных выше.

Широкое использование в статистических выводах нормального распределения имеет под собой как эмпирическое, так и теоретическое обоснование.

Во-первых, практика показывает, что во многих случаях нормальное распределение действительно является довольно точным представлением экспериментальных данных.

Во-вторых, теоретически показано, что средние значения интервалов гистограмм распределены по закону, близкому к нормальному.

Однако следует четко представлять, что нормальное распределение - это лишь чисто математический инструмент и совсем необязательно, чтобы реальные экспериментальные данные точно описывались нормальным распределением. Хотя во многих случаях, допуская небольшую ошибку, можно говорить, что данные распределены нормально.

Ряд показателей, такие как среднее, дисперсия и т.д., характеризуют выборку и называются статистиками. Такие же показатели, но относящиеся к генеральной совокупности в целом, называются параметрами. Таким образом, можно сказать, что статистики служат для оценки параметров.

Генеральной средней называется среднее арифметическое значений генеральной совокупности объема :

Выборочной средней называется среднее арифметическое выборки объема :

(5.4)

если выборка имеет вид таблицы.

Выборочную среднюю принимают в качестве оценки генеральной средней.

Генеральной дисперсией называется среднее арифметическое квадратов отклонения значений генеральной совокупности от их среднего значения :

Генеральным средним квадратическим отклонением называется корень квадратный из генеральной дисперсии: .

Выборочной дисперсией называется среднее арифметическое квадратов отклонения значений выборки от их среднего значения :

Выборочное среднее квадратическое отклонение определяется как .

Для лучшего совпадения с результатами экспериментов, вводят понятие эмпирической (или исправленной) дисперсии :

Для оценки генерального среднего квадратического отклонения служит исправленное среднее квадратическое отклонение, или эмпирический стандарт :

(5.5)

В случае, когда все значения выборки различны, т.е. , , формулы для и принимают вид:

(5.6)

Доверительный интервал. Доверительная вероятность.

Различные статистики, получаемые результате вычислений, представляют собой точечные оценки соответствующих параметров генеральной совокупности.

Если из генеральной совокупности извлечь некоторое количество выборок и для каждой из них найти интересующие нас статистики, то вычисленные значения будут представлять собой случайные величины, имеющие некоторый разброс вокруг оцениваемого параметра.

Но, как правило, в результате эксперимента в распоряжении исследователя имеется одна выборка. Поэтому значительный интерес представляет получение интервальной оценки, т.е. некоторого интервала, внутри которого, как можно предположить, лежит истинное значение параметра.

Вероятности, признанные достаточными для уверенных суждениях о параметрах генеральной совокупности на основании статистик, называются доверительными.

Для примера рассмотрим как оценку параметра .

Топология локальных компьютерных сетей

Топология, т.е. конфигурация соединения элементов в ЛВС, привлекает к себе внимание в большей степени, чем другие характеристики сети. Это связано с тем, что именно топология во многом определяет ряд важных свойств сети, например, как надежность (живучесть), производительность и др.

Существуют разные подходы к классификации топологий ЛВС. Согласно одному из них конфигурации локальных сетей делят на два основных класса: широковещательные и последовательные. В широковещательных конфигурациях каждый абонент (приемопередатчик физических сигналов) передает сигналы, которые могут быть восприняты остальными абонентскими системами. К таким конфигурациям относятся общая шина, дерево, звезда с пассивным центром. В последовательных конфигурациях каждый физический подуровень передает информацию только одной абонентской системе. Отсюда ясно, что широковещательные конфигурации - это, как правило, ЛВС с селекцией информации, а последовательные - ЛВС с маршрутизацией информации.

В широковещательных конфигурациях должны применяться сравнительно мощные приемники и передатчики, которые могут работать с сигналами в большом диапазоне уровней. Эта проблема частично решается введением ограничений на длину кабельного сегмента и на число подключений или использованием повторителей (усилителей). Поскольку в широковещательных ЛВС в любой момент времени может работать только одна станция (абонентская система), то передаваемая служебная информация используется для установления контроля станции над сетью на время распространения сигнала по сети, его обработки в сети.

Основной тип широковещательной конфигурации - общая шина (рис.4.2). Достоинствами ЛВС шинной топологии являются: простота расширения сети и используемых методов управления, возможность работы в параллельном коде (при наличии дополнительных каналов передачи данных), отсутствие необходимости в централизованном управлении, минимальный расход кабеля.

Общая шина представляет собой пассивную среду и поэтому обладает очень высокой надежностью. Кабель шины очень часто прокладывается в фальшпотолках зданий, а к каждой сетевой станции делаются специальные ответвления. Желательно, чтобы соединения ответвлений выполнялись пассивными, так как в этом случае уменьшается интенсивность физического доступа к главной шине. Для повышения надежности вместе с основным кабелем прокладывают и запасной, на который станции переключаются в случае неисправности основного.

Рис. 4.2. Топология "Шина"

Конфигурация типа «дерево» (рис. 4.3.) представляет собой более развитый вариант конфигурации типа «шина». Дерево образуется путем соединения нескольких шин активными повторителями или пассивными «размножителями» - концентраторами (концентратор – устройство, служащее для объединения каналов передачи данных отдельных участков сети). Оно обладает необходимой гибкостью для того, чтобы охватить средствами ЛВС несколько этажей в здании или несколько зданий на одной территории. При наличии активных повторителей отказ одного сегмента не приводит к выходу из строя остальных. В случае отказа повторителя дерево разветвляется на два поддерева или на две шины.

Рис. 4.3. Топология "Дерево"

Широкополосные ЛВС с конфигурацией типа «дерево» часто имеют так называемый корень - управляющую позицию, в которой размещаются самые важные компоненты сети. К надежности этого оборудования предъявляются высокие требования, поскольку от него зависит работа всей сети. По этой причине оборудование часто дублируется.

Развитие конфигурации типа «дерево» - сеть типа «звезда» (рис. 4.4.), которую можно рассматривать как дерево, имеющее корень с ответвлениями к каждому подключенному устройству. В ЛВС в центре звезды может находиться пассивный соединитель или активный повторитель - достаточно простые и надежные устройства. Звездообразные ЛВС обычно менее надежны, чем сети с топологией типа «шина» или «дерево» , но они могут быть защищены от нарушений в кабеле с помощью центрального реле, которое отключает вышедшие из строя кабельные лучи. Заметим, что топология типа «звезда» требует большего количества кабеля для реализации чем «шина» или «кольцо».

Рис.4.4. Топология "Звезда"

В последовательных конфигурациях каждый физический подуровень передает информацию только одной рабочей станции. К передатчикам или приемникам станции здесь предъявляются более низкие требования, чем в широковещательных конфигурациях, и на различных участках сети могут использоваться разные виды физической передающей среды.

Наиболее простой путь построения ЛВС - непосредственное соединение всех устройств, которые должны взаимодействовать друг с другом, посредством каналов передачи данных от устройства к устройству. Каждый канал может использовать в принципе различные методы передачи и различные интерфейсы, выбор которых зависит от структуры и характеристик соединяемых устройств. Такой способ соединения устройств вполне удовлетворителен для ЛВС с ограниченным числом соединений. Основные преимущества данного метода заключаются в необходимости соединения узлов только на физическом уровне, в простоте программной реализации соединения, в простоте структуры интерфейсов. Однако, есть и недостатки, такие как высокая стоимость, большое число каналов, необходимость маршрутизации информации.

Другой распространенный способ соединения абонентских систем в ЛВС при их небольшом числе - иерархическое соединение. В нем промежуточные узлы работают по принципу “накопи и передай”. Основные преимущества данного метода заключаются в возможности оптимального соединения ЭВМ, входящих в сеть. Недостатки связаны в основном со сложностью логической и программной структуры ЛВС. Кроме того, в таких ЛВС снижается скорость передачи информации между абонентами различных иерархических уровней.

Наиболее распространенные последовательные конфигурации – «кольцо» (рис. 4.5.), «цепочка», «звезда с интеллектуальным центром», «снежинка».

Рис. 4.5. Топология "Кольцо

В конфигурациях «кольцо» и «цепочка» для правильного функционирования ЛВС необходима постоянная работа всех блоков. Чтобы уменьшить эту зависимость, в каждый из блоков включается реле, блокирующее блок при неисправностях. Сигналы обычно передаются по кольцу только в одном направлении. Каждая станция ЛВС располагает памятью объемом от нескольких битов до целого пакета. Наличие памяти замедляет передачу данных в кольце и обуславливает задержку, длительность которой зависит от числа станций. Информация передается от станции к станции, возвращаясь снова к станции-отправителю, отправитель в ходе обработки пакета может установить некоторый индикатор подтверждения. Этот индикатор служит для управления потоком и (или) квитирования. Управление потоком предполагает удаление пакетов из кольца станцией-получателем или после завершения полного круга станцией-отправителем. Поскольку любая станция может выйти из строя и пакет может не попасть по назначению, необходимо устанавливать специальный «сборщик мусора», который опознает и уничтожает такие «заблудившиеся» пакеты.



Как последовательная конфигурация, «кольцо» особенно уязвимо в отношении отказов. Выход из строя сегментов кабеля прекращает обслуживание всех пользователей. В то же время, кольцевая структура обеспечивает многие функциональные возможности ЛВС при высокой эффективности использования моноканала, низкой стоимости и достаточной надежности ЛВС. В кольцевой структуре сохраняются достоинства шины: простота расширения ЛВС и методов управления, высокая пропускная способность при малых энергозатратах и среднем быстродействии элементов и узлов ЛВС. Кроме того, в кольцевой ЛВС устраняется ряд недостатков общей шины за счет возможности контроля работоспособности моноканала посылкой по кольцу.

Следует также отметить, что в широковещательных конфигурациях и в большинстве последовательных конфигураций (исключение составляет кольцо) каждый элемент кабеля должен обеспечивать передачу данных в разных направлениях с помощью двух направленных кабелей и применение в широкополосных системах различной несущей частоты для передачи сигналов в двух различных направлениях.

Наличие единственного кабеля обуславливает дополнительную загрузку системы в связи с необходимостью “реверса” направления передачи в кабеле. В больших системах при работе на больших скоростях этот недостаток может стать весьма существенным. При дуплексной передаче должны поддерживаться одинаковые характеристики передачи, что может вызвать определенные технические сложности. Например, усилители кабельного телевидения и оптоволоконные соединители обычно обеспечивают передачу информации только в одну сторону. В этом отношении ЛВС кольцевой топологии имеют преимущество, так как дают возможность использовать однонаправленные усилители сигналов и однонаправленные оптоэлектронные каналы информации в обоих направлениях.

Таким образом, для локальных компьютерных сетей можно выделить следующие характерные признаки: относительная простота конфигурации сети; использование высокоскоростных цифровых каналов передачи данных; высокий уровень функционального взаимодействия пользователей сети; размещение сети на ограниченной территории, на которой замыкаются все основные информационные потоки; сравнительно невысокая стоимость сетевого оборудования, в том числе сетевых адаптеров.

Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети.

В описании топологии сетей применяются несколько специализированных терминов: узел сети - компьютер, либо коммутирующее устройство сети; ветвь сети - путь, соединяющий два смежных узла; оконечный узел - узел, расположенный в конце только одной ветви; промежуточный узел - узел, расположенный на концах более чем одной ветви; смежные узлы - узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов.

Существует всего 5 основных типов топологии сетей:

1. Топология “Общая Шина”. В этом случае подключение и обмен данными производится через общий канал связи, называемый общей шиной: Общая шина является очень распространенной топологией для локальных сетей. Передаваемая информация может распространяться в обе стороны. Применение общей шины снижает стоимость проводки и унифицирует подключение различных модулей. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

2. Топология “Звезда”. В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому концентратором, который находится в центре сети:

В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной - большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи. К недостаткам топологии типа звезда относится более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора. В настоящее время иерархическая звезда является самым распространенным типом топологии связей как в локальных, так и глобальных сетях.

3. Топология “Кольцо”. В сетях с кольцевой топологией данные в сети передаются последовательно от одной станции к другой по кольцу, как правило, в одном направлении:

Если компьютер распознает данные как предназначенные ему, то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии - простота управления, недостаток - возможность отказа всей сети при сбое в канале между двумя узлами.

4. Ячеистая топология. Для ячеистой топологии характерна схема соединения компьютеров, при которой физические линии связи установлены со всеми рядом стоящими компьютерами:

В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. Достоинства данной топологии в ее устойчивости к отказам и перегрузкам, т.к. имеется несколько способов обойти отдельные узлы.

5. Смешанная топология. В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.

Глава 3 Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

Существует три, базовые топологии сети:

    Шина (bus) - все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1.5).

Рис. 1.5. Сетевая топология шина

    Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 1.6). Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.


Рис. 1.6. Сетевая топология звезда

    Кольцо (ring) - компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 1.7.)


Рис. 1.7. Сетевая топология кольцо

На практике нередко используют и другие топологии локальных сетей, однако большинство сетей ориентировано именно на три базовые топологии.

Прежде чем перейти к анализу особенностей базовых сетевых топологий, необходимо выделить некоторые важнейшие факторы, влияющие на физическую работоспособность сети и непосредственно связанные с понятием топология.

    Исправность компьютеров (абонентов), подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

    Исправность сетевого оборудования, то есть технических средств, непосредственно подключенных к сети (адаптеры, трансиверы, разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом.

    Целостность кабеля сети. При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле.

    Ограничение длины кабеля, связанное с затуханием распространяющегося по нему сигнала. Как известно, в любой среде при распространении сигнал ослабляется (затухает). И чем большее расстояние проходит сигнал, тем больше он затухает (рис. 1.8). Необходимо следить, чтобы длина кабеля сети не была больше предельной длины L пр, при превышении которой затухание становится уже неприемлемым (принимающий абонент не распознает ослабевший сигнал).


Рис. 1.8. Затухание сигнала при распространении по сети

3.1 Топология шина

Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта , коллизии ). В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии шина отсутствует явно выраженный центральный абонент, через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.


Рис. 1.9. Обрыв кабеля в сети с топологией шина

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины (рис. 1.9). Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов , показанных на рис. 1.5 и 1.9 в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе книги. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей (на рис. 1.10 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.


Рис. 1.10. Соединение сегментов сети типа шина с помощью репитера

3. 2 Топология звезда

Звезда - это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка . Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 L пр), так как каждый из кабелей, соединяющий центр с периферийным абонентом, может иметь длину L пр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6, носит название активной или истинной звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер, то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи.


Рис. 1.11. Топология пассивная звезда и ее эквивалентная схема

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспективной топологией.

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

3. 3 Топология кольцо

Кольцо - это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов.

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.


Рис. 1.12. Сеть с двумя кольцами

Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях (рис. 1.12). Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

3.4 Другие топологии

Кроме трех рассмотренных базовых топологий нередко применяется также сетевая топология дерево (tree), которую можно рассматривать как комбинацию нескольких звезд. Причем, как и в случае звезды, дерево может быть активным или истинным (рис. 1.13) и пассивным (рис. 1.14). При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы).

Рис. 1.13. Топология активное дерево


Рис. 1.14. Топология пассивное дерево. К - концентраторы

Довольно часто применяются комбинированные топологии, среди которых наиболее распространены звездно-шинная (рис. 1.15) и звездно-кольцевая (рис. 1.16).


Рис. 1.15. Пример звездно-шинной топологии


Рис. 1.16. Пример звездно-кольцевой топологии

В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. К концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты. На самом деле реализуется физическая топология шина, включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. В результате получается звездно-шинное дерево. Таким образом, пользователь может гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количество компьютеров, подключенных к сети. С точки зрения распространения информации данная топология равноценна классической шине.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.16 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рис. 1.16). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.

В заключение надо также сказать о сеточной топологии (mesh), при которой компьютеры связываются между собой не одной, а многими линиями связи, образующими сетку (рис. 1.17).


Рис. 1.17. Сеточная топология: полная (а) и частичная (б)

В полной сеточной топологии каждый компьютер напрямую связан со всеми остальными компьютерами. В этом случае при увеличении числа компьютеров резко возрастает количество линий связи. Кроме того, любое изменение в конфигурации сети требует внесения изменений в сетевую аппаратуру всех компьютеров, поэтому полная сеточная топология не получила широкого распространения.

Частичная сеточная топология предполагает прямые связи только для самых активных компьютеров, передающих максимальные объемы информации. Остальные компьютеры соединяются через промежуточные узлы. Сеточная топология позволяет выбирать маршрут для доставки информации от абонента к абоненту, обходя неисправные участки. С одной стороны, это увеличивает надежность сети, с другой же – требует существенного усложнения сетевой аппаратуры, которая должна выбирать маршрут.

Заключение

Заканчивая обзор особенностей топологий локальных сетей, необходимо отметить, что топология все-таки не является основным фактором при выборе типа сети. Гораздо важнее, например, уровень стандартизации сети, скорость обмена, количество абонентов, стоимость оборудования, выбранное программное обеспечение. Но, с другой стороны, некоторые сети позволяют использовать разные топологии на разных уровнях. Этот выбор уже целиком ложится на пользователя, который должен учитывать все перечисленные в данной главе соображения.

Список литературы

    Бройдо, В.Л. Вычислительные системы, сети и телекоммуникации: Учебник для вузов. – 2-е изд. – СПб.: Питер, 2006. – 703с.

    Куроуз, Дж., Росс, К. Компьютерные сети. – 2-е изд. – СПб.: Питер, 2004. – 756с.

    Новиков, Ю.В., Кондратенко, С.В. Локальные сети. Архитектура, алгоритмы, проектирование. – М.: Издательство ЭКОМ, 2000. – 312с.

    топологий и... неисправного пути сети . 5.3 Аппаратура для логической структуризации сети Сеть с типовой топологией ("Общая шина" ...

  1. Вычислительные системы, сети и телекоммуникации

    Книга >> Информатика, программирование

    Это локальные вычислительные сети (ЛВС) и глобальные вычислительные сети (ГВС). Обычно под локальной сетью понимают вычислительную сеть , ... локальных сетей сети с соответствующей типовой топологией ...

  2. Локальные сети понятие и виды

    Реферат >> Информатика

    Уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией , например топологией ... основные требования, которым должны удовлетворять локальные вычислительные сети . Группа 802 определила множество...

  3. Локальная сеть Ethernet

    Курсовая работа >> Информатика

    Оборудование для локальных сетей …………………………..15 Топология сети ……………………………………………….....16 Общие характеристики локальных вычислительных сетей ....22 Ethernеt безопасность локальной сети ………………………...26 ...

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.