В переводе с английского сокращение LED дословно означает «диод, который излучает свет». Это полупроводниковое устройство, способное трансформировать электрический ток в простое приспособление, конструкция которого довольно сильно отличается от привычных нам изделий для освещения (лампы накаливания, разрядные, люминесцентные лампы и т. д.).

Как работает светодиод, будет интересно узнать каждому. Этот прибор не имеет изначально ненадежных хрупких элементов конструкции и стеклянной колбы (в отличие от других ламп). Стоимость диодов настолько мала, что ненамного отличается от батареек, которые служат их источником питания. Популярность подобных изделий объясняется рядом факторов, в том числе и их конструкцией.

История возникновения

Рассматривая вопрос, почему работают светодиоды, следует изучить историю их возникновения. Впервые подобное устройство было создано в 1962 г. ученым Н. Холоньяком. Это был монохромный свечения. Он имел ряд недостатков, но сама технология была признана перспективной.

Спустя 10 лет после создания красного диода появились зеленые и желтые разновидности. Их применяли в качестве индикаторов во многих электронных приборах. Интенсивность светового потока диодов благодаря научным разработкам постоянно возрастала. В 90-х годах был создан осветитель с эффективностью потока 1 люмен.

В 1993 году С. Накамура создал первый синий диод, который характеризовался высокой яркостью. С этого момента стало возможным создавать любой цвет спектра (в том числе белый). Технологии неустанно развивались.

При соединении синего и ультрафиолетового типа диодов получается белый люминофорный осветитель. Они стали постепенно вытеснять лампы накаливания. К 2005 году выпускались диоды с мощностью светового потока до 100 лм и даже выше. Стали изготавливать белые осветительные приборы с разными оттенками (теплые, холодные).

Устройство светодиода

Чтобы понять, как работает точечный светодиод, необходимо подробно рассмотреть его устройство. Этот осветительный прибор, по мнению представителей Ассоциации развития оптоэлектронной индустрии и департамента энергетики, в скором времени станет самым востребованным источником освещения в обычных домах, офисах, учреждениях.

Светодиод имеет основой полупроводниковый кристалл. Он пропускает электрический ток только в одну сторону. Кристалл расположен на особой подложке. Она не проводит ток. Корпус защищает кристалл от внешних воздействий. Он имеет выходы в виде контактов, а также оптическую систему.

Чтобы повысить продолжительность эксплуатации прибора, пространство между пластиковой линзой и самим кристаллом заполнили прозрачным силиконовым компонентом. Чтобы отводить избыточное тепло, применяется алюминиевая основа. Это обычное устройство современного диода. При работе он выделяет относительно небольшое Это также является преимуществом прибора.

Принцип работы

Рассматривая, как работает светодиод, необходимо вникнуть в основной принцип работы подобных устройств. Прибор представленного типа имеет один электронно-дырчатый переход. Это связано с разным принципом проводимости компонентов осветителя. Один полупроводник имеет излишек электронов, а другой - излишек дырок.

При помощи процесса легирования дырчатый материал обогащается носителями отрицательного заряда. Если в месте обогащения полупроводников противоположными зарядами приложить ток, получится прямое смещение. Через переход этих двух материалов побежит электричество.

При этом в корпусе диода происходит сплавление носителей зарядов с различным электрическим статусом. Когда дырки и электроны сталкиваются, выделяется определенное количество энергии. Это квант светового потока. Его называют фотоном.

Цвет светодиода

При создании диодов применяются различные полупроводниковые материалы. Это определяет цвет, который испускает при работе представленное устройство. Разные материалы способны посылать в пространство волны разной длины. Это позволяет человеческому глазу увидеть тот или иной цвет видимого спектра.

Изучая вопрос, как работает светодиод, следует рассмотреть материалы полупроводников. Раньше в подобных целях применялись фосфид галлия, тройные соединения GaAsP, AlGaAs. При этом прибор мог посылать в пространство красный, желто-зеленый

Представленная технология ныне применяется только для индикаторных устройств. Сегодня для таких изделий используют алюминий индий-галлий (AllnGaP) и индий-нитрид галлия (InGaN). Они выдерживают довольно высокий уровень проходящего тока, высокие показатели влажности и нагрева. Возможна комбинация светодиодов разных типов.

Смешение цветов

Современные диодные ленты могут выдавать разные оттенки светового потока. Один прибор может производить монотонный цвет. При создании многокристального устройства возможно получить огромное количество различных оттенков. Подобно монитору телевизора или компьютера, диод может создать любой цвет при помощи модели RGB (расшифровывается как красный, зеленый, синий).

Это простой принцип, позволяющий понять, как работают RGB-светодиоды. При помощи этой технологии можно создавать и белое освещение. Для этого все три цвета смешиваются в равной пропорции.

Однако, помимо представленной технологии, можно получить белое свечение при соединении диода коротковолнового излучения (ультрафиолетовый, синий) вместе с желтым покрытием люминофорного типа. При комбинации фотонов желтого и синего цвета в итоге получается белое свечение.

Производство

Чтобы понять, от скольких вольт работают светодиоды, необходимо рассмотреть производство этих устройств. В первую очередь следует отметить, что приборы с матрицей типа RGB стоят дороже, чем люминоформы. Причем последние позволяют добиться освещения высокого качества.

Недостатком люминофоров является меньшая светоотдача, а также различная окраска (температура) потока. Это устройство стареет быстрее, чем светодиод. Поэтому в продажу поступают осветительные приборы обоих принципов работы. Для создания индикаторов производятся диоды с потреблением 2-4 В напряжения постоянного типа (при токе 50 мА).

Для создания полноценного освещения необходимы устройства с таким же потреблением напряжения, но более высоким уровнем тока - до 1 А. Если в одном модуле диоды подключить последовательно, суммарное напряжение будет достигать 12 или 24 В.

Усиление яркости

Рассматривая вопрос, от какого напряжения работают светодиоды, следует сказать о повышении яркости представленных устройств. Мощность таких приборов достигает 60 мВт. Если подобные диоды установить в средний по габаритам корпус, световых элементов потребуется установить 15-20 шт.

Диоды с усиленной яркостью свечения могут нести в себе мощность до 240 Вт. Чтобы обеспечить нормальную подсветку, подобных элементов потребуется 4-8 шт. В продаже представлены устройства, способные полноценно освещать помещения, наружную рекламу, витрины и т. д. Некоторые ленты создаются для выполнения подсветки средней или малой интенсивности.

Для подключения представленного оборудования применяют блоки управления соответствующей мощности. Для цветных лент возможно применять контроллеры, управляющие не только интенсивностью освещения, но и задающие оттенки и режимы работы устройства.

Управление свечением

Существует огромное количество вариантов представленного оборудования. Есть светодиоды, работающие от батареек (например, в фонариках), запитанные в стационарную сеть. Их применяют как для внутренней, так и внешней работы. В зависимости от условий применения подбирается соответствующий класс защиты диода.

Чтобы отрегулировать яркость свечения, напряжение питания не снижают. Для уменьшения интенсивности свечения применяется широтно-импульсная модуляция (ШИМ). В этом случае приобретается блок управления.

Представленный метод заключается в подаче на диод импульсно-модулированного тока. Частота сигнала при этом достигает тысяч герц. Может изменяться ширина импульсов и интервалов пауз. При этом можно управлять свечением прибора. Диод в этом случае не погаснет.

Долговечность

Диоды считаются долговечными устройствами. Это объясняется их конструкцией. Однако если не работают светодиоды на лампе, возможно, срок их эксплуатации вышел. Это можно определить по насыщенности свечения и изменению цвета.

Также специалисты отмечают, что срок эксплуатации маломощных устройств гораздо продолжительнее. Но даже в самых ярких лентах или лампах диоды гарантированно работают 20-50 тыс. часов. Так как они не имеют хрупких элементов конструкции, механические воздействия с большей вероятностью не нанесут вреда подобным осветителям.

Изучив, как работает светодиод, можно понять принцип устройства этого прибора, а также его эксплуатационные характеристики. Это оборудование считается осветителями будущего поколения.

Введение

Светодиод, или светоизлучающий диод (СД, СИД, LED от английского “Light-emitting diode ”), является полупроводниковым прибором с электронно-дырочным переходом (pn-переходом) или контактом металл-проводник, создающий оптическое излучение при прохождении электрического тока через него в прямом направлении. Кристалл светодиода создает оптическое излучение в довольно узком спектре. Его спектральные характеристики зависят в первую очередь от химического состава полупроводников, используемых при его изготовлении. Иными словами, кристалл светодиода излучает конкретный цвет (если речь идёт об СД видимого диапазона), в отличие от лампы, излучающей более широкий спектр, и где конкретный цвет отсеивается внешним светофильтром.

История

Электролюминесценция впервые была открыта и описана в 1907 году, учёным Генри Джозеф Раундом, который обнаружил её при изучении прохождения тока в паре металл — карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.

Эти эксперименты были позже, независимо от Раунда, повторены О. В. Лосевым в 1923 году, который, экспериментируя с выпрямляющим контактом из пары карборунд — стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение — электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.

Вероятно, первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса (США) группой, которой руководил Ник Холоньяк.

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

В чем разница?

Светодиодная технология излучения света кардинально отличается от традиционной технологии свечения источников света, таких как лампы накаливания, люминесцентные лампы и разрядные лампы высокого давления. В светодиоде нет ни газа, ни нити накала, он не имеет хрупкой стеклянной колбы и потенциально ненадежных подвижных деталей.

Главным отличием светодиодных источников света от традиционных является то, что в светодиодах применяется совершенно иной принцип генерации света и используются абсолютно другие материалы. Менее очевидным отличием является то, что в светодиодном световом приборе стирается граница между лампой и светильником. В светодиодной осветительной технике «лампы», которыми являются светодиоды, неотделимы от «светильника», а именно: корпуса, электроники и линзы.

Характеристики светодиодов

Вольт-амперная характеристика светодиодов в прямом направлении нелинейна. Диод начинает проводить ток, начиная с некоторого порогового напряжения. Это напряжение позволяет достаточно точно определить материал полупроводника.

Современные сверхъяркие светодиоды обладают менее выраженной полупроводимостью, чем обычные диоды. Высокочастотные пульсации в питающей цепи (т. н. «иголки») и выбросы обратного напряжения приводят к ускоренному деградированию кристалла. Скорость деградирования также зависит от питающего тока (нелинейно) и температуры кристалла (нелинейно).

Стоимость

Стоимость мощных светодиодов, применяемых в портативных прожекторах и автомобильных фарах, на сегодняшний день довольно высока — порядка 8-10$ и более за штуку. Как правило, в небольших фонариках и бытовых лампах-сборках используется несколько десятков не слишком мощных светодиодов.

К началу 2011 года стоимость мощных (1 Вт и более) светодиодов снизилась и начинается от 0,9 $. Стоимость сверхмощных (10Вт и более P7 и CREE M-CE 15-20$ CREE XM-L 10W 1000Lm) составляет порядка 10$.


Преимущества

По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:

    Высокая световая отдача. Современные светодиоды сравнялись по этому параметру с натриевыми газоразрядными лампами и металлогалогенными лампами, достигнув 150 Люмен на Ватт;

    Высокая механическая прочность , вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих);

    Длительный срок службы — от 30000 до 100000 часов (при работе 8 часов в день — 34 года). Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости;

    Спектр современных светодиодов бывает различным — от тёплого белого (2700 К) до холодного белого (6500 К);

    Малая инерционность — включаются сразу на полную яркость, в то время как у ртутно-фосфорных (люминесцентных-экономичных) ламп время включения от 1 сек до 1 мин, а яркость увеличивается от 30 % до 100 % за 3-10 минут, в зависимости от температуры окружающей среды;

    Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп);

    Различный угол излучения — от 15 до 180 градусов;

    Низкая стоимость индикаторных светодиодов , но относительно высокая стоимость при использовании в освещении, которая снижается при увеличении производства и продаж (экономия от масштаба);

    Безопасность — нет необходимости в высоком напряжении;

    Нечувствительность к низким и очень низким температурам . Однако высокие температуры противопоказаны светодиоду, как и любым полупроводникам;

    Экологичность — отсутствие ртути, фосфора и ультрафиолетового излучения, в отличие от люминесцентных ламп.

Применение светодиодов

    В уличном, промышленном, бытовом освещении (в том числе светодиодная лента);

    В качестве индикаторов — как в виде одиночных светодиодов (например, индикатор включения на панели прибора), так и в виде цифрового или буквенно-цифрового табло (например, цифры на часах);

    Массив светодиодов используется в больших уличных экранах, в бегущих строках. Такие массивы часто называют светодиодными кластерами или просто кластерами;

    В оптопарах;

    Мощные светодиоды используются как источники света в фонарях и светофорах;

    Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, интернет);

    В подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры и т. д.);

    В играх, игрушках, значках, USB-устройствах и прочее;

    В светодиодных дорожных знаках;

    В гибких ПВХ световых шнурах Дюралайт.


Если после прочтения данной статьи у Вас ещё остались вопросы по поводу светодиодного оборудования, то мы с радостью поможем выбрать светильник, который подойдет именно Вам!

Олег Лосев

Еще в 1907 году было впервые отмечено слабое свечение, испускаемое карбидокремниевыми кристаллами вследствие неизвестных тогда электронных превращений. В 1923 году наш соотечественник, сотрудник Нижегородской радио-лаборатории Олег Лосев отмечал это явление во время проводимых им радиотехнических исследований с полупроводниковыми детекторами, однако интенсивность наблюдаемых излучений была столь незначительной, что Российская научная общественность тогда всерьез не интересовалась этим феноменом.

Через пять лет Лосев специально занялся исследованиями этого эффекта и продолжал их почти до конца жизни (О.В. Лосев скончался в блокадном Ленинграде в январе 1942 года, не дожив до 39 лет). Открытие «Losev Licht» , как назвали эффект в Германии, где Лосев публиковался в научных журналах, стало мировой сенсацией. И после изобретения транзистора (в 1948 году) и создания теории p-n-перехода (основы всех полупроводников) стала понятна природа свечения.

В 1962 году американец Ник Холоньяк продемонстрировал работу первого светодиода, а вскоре после этого сообщил о начале полупромышленного выпуска светодиодов.

Светодиод (англ. light emission diode – LED) является полупроводниковым прибором, его активная часть, называемая «кристалл» или «чип», как и у обычных диодов состоит из двух типов полупроводника – с электронной (n-типа) и с дырочной (p-типа) проводимостью. В отличие же от обычного диода в светодиоде на границе полупроводников разного типа существует определенный энергетический барьер, препятствующий рекомбинации электронно-дырочных пар. Электрическое поле, приложенное к кристаллу, позволяет преодолеть этот барьер и происходит рекомбинация (аннигиляция) пары с излучением кванта света. Длина волны излучаемого света определяется величиной энергетического барьера, который, в свою очередь, зависит от материала и структуры полупроводника, а также наличия примесей.

Значит, прежде всего, нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую - донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного p-n-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

Как устроен светодиод

Основные современные материалы, используемые в кристаллах светодиодов:

  • InGaN — синие, зеленые и ультрафиолетовые светодиоды высокой яркости;
  • AlGaInP — желтые, оранжевые и красные светодиоды высокой яркости;
  • AlGaAs — красные и инфракрасные светодиоды;
  • GaP — желтые и зеленые светодиоды.


Кроме светодиодов лампового типа (3, 5, 10 мм, их форма действительно напоминает миниатюрную лампочку с двумя выводами), в последнее время все большее распространение получают SMD — светодиоды. Они совершенно иной конструкции, отвечающей требованиям технологии автоматического монтажа на поверхность печатной платы (surface mounted devices – SMD ).

А сверхяркие светодиоды такого типа называются эммитеррами (emitter, англ. «излучатель»).

SMD светодиоды имеют более компактные размеры, допускают автоматическую расстановку и пайку на поверхность платы без ручной сборки. Некоторые производители светодиодов выпускают специальные SMD-диоды, содержащие в одном корпусе три кристалла, излучающие свет трех основных цветов – красный, синий и зеленый. Это позволяет получить при смешении их излучения всю цветовую гамму, включая белый цвет, при ультракомпактных размерах.

Яркость светодиода характеризуется световым потоком (Люмены) и осевой силой света (Кандела), а также диаграммой направленности. Существующие светодиоды разных конструкций излучающих в телесном угле от 4 до 140 градусов.

Цвет , как обычно, определяется координатами цветности, цветовой температурой белого света (Кельвин), а также длиной волны излучения (нанометры).

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности (характеристика «Люмен/Ватт»).

Также интересной характеристикой оказывается цена одного люмена ($/Люмен).

Итак, любой светодиод состоит из одного или нескольких кристаллов, размещенных в корпусе с контактными выводами и оптической системы (линзы), формирующей световой поток. Длина волны излучения кристалла (цвет) зависит от материала полупроводника и от легирующих примесей. Биновка (wavelength bin) кристаллов по длине волны излучения происходит при их изготовлении. В партии поставки на современном производстве отбираются близкие по спектру излучения кристаллы.

Широкий диапазон оптических характеристик, миниатюрные размеры и гибкие возможности по дискретному управлению обеспечили применение светодиодов для создания самых различных световых приборов и изделий. Светодиод излучает в узкой части спектра, на определенной длине волны его цвет чист, что особенно ценят дизайнеры.

Срок службы светодиодов

Основная характеристика надежности светодиодов – срок их службы. В процессе эксплуатации возможны две ситуации: световой поток излучателя либо частично уменьшился, либо вовсе прекратился. Срок службы отражает эти факты: различают полезный срок службы (пока световой поток не упадет ниже определенного предела) и полный (пока прибор не выйдет из строя).

Срок службы напрямую зависит от типа светодиода, подаваемого на него тока, охлаждения кристалла (chip) светодиода, состава и качества кристалла, компоновки и сборки в целом.

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче чем у маломощных сигнальных. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Очевидно, например, что в светодиодах мощностью от 1 Вт (рабочий ток 0,350 А) и более мощных, тепловыделение гораздо обильнее, чем в светодиодах типа «5 мм», рассчитанных на ток 0,02 А. По светоотдаче 1 светодиод мощностью 1 Вт заменяет около 50 светодиодов типа «5 мм», но и греется сильнее. Поэтому светодиодные сборки с мощными светодиодами требуют пассивного охлаждения (монтаж на MCPCB плату (печатная плата на металлической основе) и радиатор).

Средний срок службы


5 мм -LED и SMD-LED:

Белый до 50000 ч. с падением светового потока до 35% в течении первых 15000 ч.
синий, зеленый до 70000 ч. с падением светового потока до 15% в течении первых 25000 ч.
красный, желтый до 90000 ч. с падением светового потока незначительно.

HI-POWER LED от 1 Вт и выше:

Белый до 80000 ч. с падением светового потока до 15% в течении первых 10000 ч.
синий, зеленый до 80000 ч.
красный, желтый до 80000 ч.


Почему же у белых светодиодов наименьший срок службы?

К сожалению, структур, излучающих белый свет, никто еще не придумал. Основой диода белого цвета является структура InGaN, излучающая на длине волны 470 нм (синий цвет) и нанесенный сверху на нее люминофор (специальный состав), излучающий в широком диапазоне видимого спектра и имеющий максимум в его желтый части. Человеческий глаз комбинацию такого рода воспринимает как белый цвет. Люминофор ухудшает тепловые характеристики светодиода, поэтому срок службы сокращается. Сейчас мировые производители изобретают новые и новые варианты эффективного нанесения люминофора.

Большинство сверхярких светодиодов служат в районе 50000 — 80000 часов. Много это или мало?

50000 часов - это:

24 часа в день 5.7 лет
18 часов в день 7.4 лет
12 часов в день 11.4 лет
8 часов в день 17.1 лет

Светодиоды греются

Многие считают, что светодиоды практически не греются. Так почему светодиодным приборам нужен теплоотвод и что будет, если теплоотвода нет?

Светодиоды продуцируют тепло в полупроводниковом переходе. И чем мощнее LED, тем больше тепла. Конечно, индикаторные светодиоды, например, датчики автосигнализаций сильно не греются. Но со сверхяркими LED они имеют мало общего. Если мощные светодиоды объединены в некую сборку, да еще и установлены в герметичный корпус, то нагрев становится значительным.

И если не происходит отвод тепла, полупроводниковый переход перегревается, отчего изменяются характеристики кристалла, и через некоторое время светодиод может выйти из строя. Так что очень важно строго контролировать количество тепла и обеспечивать эффективный теплоотвод.

Как реагирует светодиод на нагрев

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у красных и желтых светодиодов, и меньше у зеленых, синих и белых.

Источник: сайт НПО РоСАТ

Общая оценка материала: 5

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Отец видеозаписи Александр Понятов и AMPEX