ПИД (от англ. P-proportional, I-integral, D-derivative) — регулятором называется устройство, применяемое в контурах управления, оснащенных звеном обратной связи. Данные регуляторы используют для формирования сигнала управления в автоматических системах, где необходимо достичь высоких требований к качеству и точности переходных процессов.

Управляющий сигнал ПИД-регулятора получается в результате сложения трех составляющих: первая пропорциональна величине сигнала рассогласования, вторая — интегралу сигнала рассогласования, третья — его производной. Если какой-то из этих трех компонентов не включен в процесс сложения, то регулятор будет уже не ПИД, а просто пропорциональным, пропорционально-дифференцирующим или пропорционально-интегрирующим.

Первый компонент — пропорциональный

Выходной сигнал дает пропорциональная составляющая. Сигнал этот приводит к противодействию текущему отклонению входной величины, подлежащей регулированию, от установленного значения. Чем больше отклонение — тем больше и сигнал. Когда на входе значение регулируемой величины равно заданному, то выходной сигнал становится равным нулю.

Если оставить только эту пропорциональную составляющую, и использовать только ее, то значение величины, подлежащей регулированию, не стабилизируется на правильном значении никогда. Всегда есть статическая ошибка, равная такому значению отклонения регулируемой величины, что выходной сигнал стабилизируется на этом значении.

К примеру, терморегулятор управляет мощностью нагревательного прибора. Выходной сигнал уменьшается по мере приближения требуемой температуры объекта, и сигнал управления стабилизирует мощность на уровне тепловых потерь. В итоге заданного значения температура так и не достигнет, ибо нагревательный прибор в просто должен будет быть выключен, и начнет остывать (мощность равна нулю).

Больше коэффициент усиления между входом и выходом — меньше статическая ошибка, но если коэффициент усиления (по сути — коэффициент пропорциональности) будет слишком большим, то при условии наличия задержек в системе (а они зачастую неизбежны), в ней вскоре начнутся автоколебания, а если увеличить коэффициент еще больше — система попросту утратит устойчивость.

Или пример позиционирования двигателя с редуктором. При малом коэффициенте нужное положение рабочего органа достигается слишком медленно. Увеличить коэффициент — реакция получится более быстрая. Но если увеличивать коэффициент дальше, то двигатель «перелетит» правильную позицию, и система не перейдет быстро к требуемому положению, как хотелось бы ожидать. Если теперь увеличивать коэффициент пропорциональности дальше, то начнутся осцилляции около нужной точки — результат снова не будет достигнут...

Второй компонент - интегрирующий

Интеграл по времени от величины рассогласования — есть основная часть интегрирующей составляющей. Она пропорциональна этому интегралу. Интегрирующий компонент используется как раз для исключения статической ошибки, поскольку регулятор со временем учитывает статическую погрешность.

В отсутствие внешних возмущений, через какое-то время подлежащая регулированию величина будет стабилизирована на правильном значении, когда пропорциональная составляющая окажется равной нулю, и точность выхода будет целиком обеспечена интегрирующей составляющей. Но интегрирующая составляющая тоже может породить осцилляции около точки позиционирования, если коэффициент не подобран правильно.

Третий компонент — дифференцирующий

Темпу изменения отклонения величины, подлежащей регулированию, пропорциональна третья — дифференцирующая составляющая. Она необходима для того, чтобы противодействовать отклонениям (вызванным внешними воздействиями или задержками) от правильного положения, прогнозируемого в будущем.

Как вы уже поняли, ПИД-регуляторы применяют для поддержания заданного значения х0 некоторой одной величины, благодаря изменению значения u другой величины. Есть уставка или заданное значение х0, и есть разность или невязка (рассогласование) е = х0-х. Если система линейна и стационарна (практически это вряд ли возможно), то для задания u справедливы нижеследующие формулы:

В этой формуле вы видите коэффициенты пропорциональности для каждого из трех слагаемых.

Практически в ПИД-регуляторах используют для настройки другую формулу, где коэффициент усиления применен сразу ко всем компонентам:

Практическая сторона ПИД-регулирования

Практически теоретический анализ ПИД-регулируемых систем редко применяют. Сложность состоит в том, что характеристики объекта управления неизвестны, и система практически всегда нестационарна и нелинейна.

Реально работающие ПИД-регуляторы всегда имеют ограничение рабочего диапазона снизу и сверху, это принципиально объясняет их нелинейность. Настройка поэтому практически всегда и везде производится экспериментальным путем, когда объект управления подключен к системе управления.

Использование величины, формируемой программным алгоритмом управления, обладает рядом специфических нюансов. Если речь, например, о регулировке температуры, то часто требуется все же не одно, а сразу два устройства: первое управляет нагревом, второе — охлаждением. Первое подает разогретый теплоноситель, второе — хладагент. Три варианта практических решений может быть рассмотрено.

Первый — близок к теоретическому описанию, когда выход - аналоговая и непрерывная величина. Второй — выход в форме набора импульсов, например для управления шаговым двигателем. Третий — , когда выход с регулятора служит для задания ширины импульсов.

Сегодня системы автоматизации практически все строятся , и ПИД-регуляторы представляют собой специальные модули, добавляемые к управляющему контроллеру или вообще реализуемые программно путем загрузки библиотек. Для правильной настройки коэффициентов усиления в таких контроллерах, их разработчики предоставляют специальное ПО.

Андрей Повный

Можно утверждать, что наибольшее быстродействие обеспечивает П-закон , - исходя из соотношения tp / T d .

Однако, если коэффициент усиления П-регулятора Кр мал (чаще всего это наблюдается в с запаздыванием), то такой не обеспечивает высокой точности регулирования, т.к. в этом случае велика величина .

Если Кр > 10, то П-регулятор приемлем, а если Если Кр < 10, то требуется введение в закон управления составляющей.

ПИ-закон регулирования

Наиболее распространенным на практике является ПИ-регулятор, который обладает следующими достоинствами:

  1. Обеспечивает нулевую регулирования.
  2. Достаточно прост в настройке, т.к. настраиваются только два параметра, а именно коэффициент усиления Кр и постоянная времени интегрирования Ti. В таком регуляторе имеется возможность оптимизации величины отношения Кр/Ti-min, что обеспечивает управление с минимально возможной среднеквадратичной регулирования.
  3. Малая чувствительность к шумам в измерения (в отличие от ПИД-регулятора).

ПИД-закон регулирования

Для наиболее ответственных контуров регулирования можно рекомендовать использование , обеспечивающего наиболее высокое быстродействие в системе.

Однако следует учитывать, что это выполняется только при его оптимальных настройках (настраиваются три параметра).

С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора.

Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора, что увеличивает дисперсию ошибки регулирования и износ механизма.

Таким образом, ПИД-регулятор следует выбирать для систем регулирования, с относительно малым уровнем шумов и величиной запаздывания в управления. Примерами таких систем является системы регулирования температуры.

В частном случае пропорциональная, интегральная или дифференциальная компоненты могут отсутствовать и такие упрощенные регуляторы называют П, И или ПИ регуляторами.

Распространены также следующие модификации выражения (5.36):

,
.

Между параметрами выражений (5.36) - (5.38) существует простая связь. Однако отсутствие общепринятой системы параметров часто приводит к путанице. Это нужно помнить при замене одного ПИД контроллера на другой, при задании его параметров или использовании программ настройки параметров. Мы будем пользоваться выражением (5.36).

Следует подчеркнуть, что входом объекта управления на всех рисунках является выход регулятора, т.е. величина u , которая в соответствии c (5.36)-(5.38) и рис. 5.34 имеет ту же размерность, что и рассогласование e , выходная величина y и уставка r . Т.е., если объект управляется, например, ШИМ-регулятором, током, или частотой вращения вала, во всех этих случаях управляющей величиной является u , а в модель объекта управления P следут ввести преобразователь величины u в ширину импульса ШИМ-регулятора, в ток или в частоту вращения вала соответственно. Это надо учитывать также при задании входного воздействия в экспериментах для настройки регулятора (см. раздел "Расчет параметров"). Таким воздействием во всех случаях должна быть величина u (выходная величина регулятора).

Используя преобразование Лапласа при нулевых начальных условиях u (0)=0 , выражение (5.36) можно представить в операторной форме:

Амплитудно-частотная и фазо-частотная характеристика передаточной функции (5.40) при параметрах =1 с, =1 с, =10 показаны на рис. 5.36 . Переходная характеристика ПИД-регулятора (реакция на единичный скачок) представляет собой сумму постоянной составляющей , прямой линии , полученной при интегрировании единичного скачка и дельта-функции Дирака , полученной при дифференцировании единичного скачка.

Рассмотрим теперь несколько частных случаев.

5.2.1. П-регулятор

Пусть интегральная и дифференциальная компоненты отсутствуют, т.е. . Тогда из (5.40) получим и (5.42) можно преобразовать к виду

.

В установившемся режиме, при или передаточная функция процесса равна коэффициенту передачи . При этом выражение (5.43) преобразуется к виду

.

Как следует из полученной формулы, влияние возмущений d снижается с ростом петлевого усиления и при обратно пропорционально коэффициенту регулятора . Однако проблема устойчивости не позволяет выбирать как угодно большим.

Влияние помехи n также уменьшается с ростом петлевого усиления и пропорционального коэффициента регулятора. Дополнительно влияние помехи можно уменьшить применением экранирования, правильного заземления, витых пар, уменьшением длины проводников в цепи обратной связи и др., см. [Денисенко ]).

При пренебрежимо малых помехах и внешних возмущениях погрешность П-регулятора , как следует из (5.44), определяется величиной пропорционального коэффициента усиления:

.

Эта погрешность обычно не может быть сделана как угодно малой путем увеличения усиления регулятора, поскольку с ростом сначала падает запас по фазе и усилению системы с обратной связью, что ухудшает ее робастность и качество регулирования, затем возникают периодические колебания (система теряет устойчивость), см. рис. 5.37 . Поэтому в П-регуляторах для снижения погрешности используют метод компенсации. Для этого к входу объекта регулирования прикладывают компенсирующее воздействие , которое аддитивно добавляется к возмущению d , чтобы суммарное воздействие возмущения и компенсирующего воздействия стало равно . Отметим, что при изменении значения уставки компенсацию нужно выполнить заново, поскольку погрешность (5.45) пропорциональна (т.е. является мультипликативной), а компенсация в виде является аддитивной (не зависит от ).

Скомпенсировать погрешность можно также с помощью коррекции величины . Для этого управляющее воздействие после коррекции (обозначим его ), как следует из (5.44) и (5.45), должно иметь вид

.

Рис. 5.37. Изменение переменной во времени при подаче единичного скачка на вход системы при разных

Переходный процесс в контуре с П-регулятором при и разных показан на рис. 5.37 . При малых система имеет малое перерегулирование, но большую статическую погрешность (50%). С ростом погрешность уменьшается, но возрастает перерегулирование.

Объясняется поведение П-регулятора следующим образом. С ростом усиления вся АЧХ разомкнутой системы (АЧХ петлевого усиления , рис. 5.19) сдвигается вверх, в том числе возрастает усиление на частоте , где фазовый сдвиг в контуре с обратной связью равен 180˚. Это приводит к уменьшению запаса по фазе и усилению, возрастает колебательность и перерегулирование. Если петлевое усиление на частоте достигает 1, в системе устанавливаются незатухающие колебания. Подробнее описание этого процесса см. в разделе "Частотная идентификация в режиме релейного регулирования"

5.2.2. И-регулятор

Рассмотрим теперь случай, когда в ПИД-регуляторе остается только интегральный член, т.е. и . Из (5.39) получим

АЧХ И-регулятора в логарифмическом масштабе представляет собой прямую линию с наклоном ‑20дб/дек во всем диапазоне частот, от 0 до , которая пересекает ось частот (проведенную при ) в точке . ФЧХ представляет собой горизонтальную линию с ординатой .

На низких частотах, при , коэффициент передачи регулятора (5.48) больше единицы и стремится к бесконечности при . Поскольку случаю во временной области соответствует , или установившийся (равновесный) режим для асимптотически устойчивых систем, то передаточная функция любого устойчивого объекта (за исключением объектов с интегрирующими процессами, см. раздел "Модели интегрирующих процессов") при будет равна статическому коэффициенту передачи . Поэтому, подставляя в (5.42) и , получим для системы с И-регулятором

.

Это означает, что система с И-регулятором не имеет ошибки в установившемся режиме.

Отметим аналогию между И-регулятором и операционным усилителем. Операционный усилитель (ОУ) имеет передаточную функцию вида , параметры которой для типовых микросхем ОУ равны , . Поэтому практически во всем рабочем диапазоне частот и передаточная функция ОУ описывается упрощенным выражением , т.е. совпадает с передаточной функцией И-регулятора. Схемы включения ОУ также подобны структурам систем управления с И-регулятором.

На рис. 5.38 показаны переходные характеристики замкнутой системы с И-регулятором и объектом второго порядка вида

, где .

При больших постоянных интегрирования переходная характеристика имеет вид, сходный с характеристикой апериодического звена. С уменьшением растет усиление регулятора в соответствии с (5.48) и когда на частоте петлевое усиление контура с обратной связью приближается к 1, в системе появляются колебания (рис. 5.38 , кривая ).

Вторым фактором, влияющим на устойчивость замкнутой системы, является дополнительный сдвиг фаз величиной -, вносимый И-регулятором в контур регулирования. Поэтому объект 1‑го порядка с малой транспортной задержкой, или объект 2-го порядка, устойчивый в контуре с П-регулятором, может потерять устойчивость в контуре с И-регулятором.

5.2.3. ПИ-регулятор

В ПИ-регуляторе только постоянная дифференцирования равна нулю, :

.

Рис. 5.39. Реакция замкнутой системы с ПИ регулятором на скачок при для объекта вида (5.50) при

Рис. 5.40. Реакция замкнутой системы с ПИ регулятором на скачок при для объекта вида (5.50) при

АЧХ ПИ-регулятора можно получить из рис. 5.36 , если отбросить правую ветвь АЧХ с наклоном +20 дБ/дек. При этом сдвиг фаз на частотах выше 1 Гц (на рис. 5.36) не превысит уровень 0˚. Таким образом, ПИ-регулятор имеет два существенных положительных отличия от И-регулятора: во-первых, его усиление на всех частотах не может стать меньше , следовательно, увеличивается динамическая точность регулирования, во-вторых, по сравнению с И-регулятором, он вносит дополнительный сдвиг фаз только в области низких частот, что увеличивает запас устойчивости замкнутой системы. Оба фактора дают дополнительные степени свободы для оптимизации качества регулирования. В то же время, как и в И-регуляторе, модуль коэффициента передачи регулятора с уменьшением частоты стремится к бесконечности, обеспечивая тем самым нулевую ошибку в установившемся режиме. Отсутствие сдвига фаз на высоких частотах позволяет увеличить скорость нарастания управляемой переменной (по сравнению с И-регулятором) без снижения запаса устойчивости. Однако это справедливо до тех пор, пока пропорциональный коэффициент не станет настолько большой, что увеличит усиление контура до единицы на частоте .

Переходный процесс в ПИ-регуляторе при разных сочетаниях и показан на рис. 5.39 , рис. 5.40 . При (рис. 5.39) получаем И-регулятор. С ростом пропорционального коэффициента появляется дополнительная ошибка во время переходного процесса (см. также рис. 5.37 и (5.45)), которая уменьшается с ростом , однако при этом снижается запас устойчивости системы, поскольку с ростом увеличивается усиление на частоте . Это приводит к появлению затухающих колебаний в начале переходного процесса (рис. 5.39). Когда величина становится достаточно большой для компенсации ослабления сигнала в объекте на частоте , в системе появляются незатухающие колебания. полюс

,

откуда следует, что на высоких частотах (в начале переходного процесса) ПД-регулятор имеет высокое усиление и, следовательно, точность, а в установившемся режиме (при ) он вырождается в П-регулятор со свойственной ему статической ошибкой. Если статическую ошибку скомпенсировать, как это делается в П-регуляторах, то возрастет ошибка в начале переходного процесса. Таким образом, ПД-регулятор по своим потребительским свойствам оказывается хуже П-регулятора, поэтому на практике он используется крайне редко. П-регулятор имеет только одно положительное свойство: он вносит в контур регулирования положительный фазовый сдвиг (рис. 5.36), что повышает запас устойчивости системы при малых . Однако с увеличением рис. 5.36), затем, при дальнейшем увеличении , система переходит в колебательный режим.

Значительно улучшить точность регулирования можно применением ПИД-закона (Пропорционально-Интегрально-Дифференциальный закон регулирования).
Для реализации ПИД-закона используются три основные переменные:
P – зона пропорциональности, %;
I – время интегрирования, с;
D – время дифференцирования, с.
Ручная настройка ПИД-регулятора (определение значений параметров Р, I, D), обеспечивающая требуемое качество регулирования, достаточно сложна и на практике редко используется. ПИД-регуляторы серии UT/UP обеспечивают автоматическую настройку ПИД-параметров под конкретный процесс регулирования, сохраняя при этом возможность их ручной корректировки.

Пропорциональная составляющая
В зоне пропорциональности, определяемой коэффициентом Р, сигнал управления будет изменяться пропорционально разнице между уставкой и действительным значением параметра (рассогласованию):

сигнал управления = 100/P E,

где E – рассогласование.
Коэффициент пропорциональности (усиления) К является величиной обратнопропорциональной Р:

Зона пропорциональности определяется относительно заданной уставки регулирования, и внутри этой зоны сигнал регулирования изменяется от 0 до 100%, т. е. при равенстве действительного значения и уставки выходной сигнал будет иметь значение 50%.

где Р – зона пропорциональности;
ST – уставка регулирования.
Например:
диапазон измерения 0…1000 °С;
уставка регулирования ST = 500 °С;
зона пропорциональности P = 5%, что составляет 50 °С (5% от 1000 °С);
при значении температуры 475 °С и ниже управляющий сигнал будет иметь величину 100%; при 525 °С и выше – 0%. В диапазоне 475…525 °С (в зоне пропорциональности) управляющий сигнал будет изменяться пропорционально величине рассогласования с коэффициентом усиления К = 100/Р = 20.
Уменьшение значения зоны пропорциональности Р увеличивает реакцию регулятора на рассогласование, т. е. малому рассогласованию будет соответствовать большее значение управляющего сигнала. Но при этом, из-за большого усиления, процесс принимает колебательный характер около значения уставки, и точного регулирования добиться не удастся. При излишнем увеличении зоны пропорциональности регулятор будет слишком медленно реагировать на образующееся рассогла­сование и не сможет успевать отслеживать динамику процесса. Для того, чтобы компенсировать эти недостатки пропорционального регулирования, вводится дополнительная временная характеристика – интегральная составляющая.

Интегральная составляющая
Определяется постоянной времени интегрирования I, является функцией времени и обеспечивает изменение коэффициента усиления (сдвиг зоны пропорциональности) на заданном промежутке времени.


сигнал управления = 100/P E + 1/I ∫ E dt.

Как видно из рисунка, если пропорциональная составляющая закона регулирования не обеспечивает уменьшение рассогласования, то интегральная составляющая начинает на периоде времени I плавно увеличивать коэффициент усиления. Через период времени I процесс этот повторяется. Если же рассогласование мало (или быстро уменьшается), то коэффициент усиления не увеличивается и, в случае равенства значения параметра заданной уставке, принимает какое-то минимальное значение. В этом плане об интегральной составляющей говорят как о функции автоматического выключения регулирования. В случае регулирования по ПИД-закону переходная характеристика процесса будет представлять собой колебания, постепенно затухающие к значению уставки.

Дифференциальная составляющая
Многие объекты регулирования достаточно инерционны, т. е. имеют задержку реакции на приложенное воздействие (мертвое время) и продолжают реагировать после снятия управляющего воздействия (время задержки). ПИД-регуляторы на таких обьектах будут всегда запаздывать с включением/выключением управляющего сигнала. Для устранения этого эффекта вводится дифференциальная составляющая, определяемая постоянной времени дифференцирования D, и обеспечивается полная реализация ПИД-закона управления. Дифференциальная составляющая есть производная во времени от рассогласования, т. е. является функцией скорости изменения параметра регулирования. В случае, когда рассогласование становится постоянной величиной, дифференциальная составляющая перестает оказывать воздействие на сигнал управления.

сигнал управ. = 100/P E + 1/I ∫ E dt + D d/dt E.

С введением дифференциальной составляющей регулятор начинает учитывать мертвое время и время задержки, заранее изменяя сигнал управления. Это позволяет значительно уменьшить колебания процесса около значения уставки и добиться более быстрого завершения переходного процесса.
Таким образом, ПИД-регуляторы, генерируя управляющий сигнал, учитывают характеристики самого объекта управления, т.е. проводят анализ рассогласования на величину, на продолжительность и скорость изменения. Иными словами, ПИД-регулятор "предвидит" реакцию объекта регулирования на сигнал управления и начинает изменять управляющее воздействие не при достижении значения уставки, а заранее.

5. Передаточная функция какого звена представлена: К(р) = К/Тр

П, ПД, ПИ, ПИД регуляторы. Они же P, PD, PI, PID регуляторы.

Во первых, упомянем, что сами понятия П, ПД, ПИ, ПИД (P, PD, PI, PID) регуляторы являются неким сокращением от понятия: "устройство регулирования () обеспечивающие на своем выходе регулируемого параметра, или его изменения, описываемую типа П, ПИ и т.д....... ". При этом:

  • П, (P) - означает "пропорциональный"
  • И(I) - "интегральный"
  • Д(D) - "дифференциальный"
  • ПИ (PI) - "пропорциональный и интегральный"
  • ПД (PD) - "пропорциональный и дифференциальный"
  • ПИД (PID) - "пропорциональный, интегральный и дифференциальный"

Очень важное замечание - в подавляющем большинстве случаев эти регуляторы обеспечивают изменения регулируемого параметра на регулирующий параметр (воздействие). Для ясности в данной статье мы будем говорить о регулировании комнатной температуры (поддержании ее значения X градусов) с помощью некоего комнатного электронагревателя, выходная мощность которого зависит от уровня входного сигнала. Т.е. при изменении температуры на некую положительную величину e (при повышении температуры до уровня X+e ) к стандартному входному сигналу U нагревателя будет добавлен отрицательный сигнал регулятора u . Результирующим сигналом на входе нагревателя будет, таким образом, U-u , что уменьшит выходную мощность нагревателя, и, следовательно, комнатную температуру.

Очень часто e называют "ошибкой" или "отклонением", Х - "заданным уровнем" или "заданным значением", причем Х , в общем случае, может быть и регулируемым сигналом в каком-то другом контуре регулирования. ! Во избежания автоколебательных явлений желательно, чтобы "верхний" контур регулирования был "медленным" по отношению к нижнему!

Рассмотрим работу ПИД (PID) регулятора , как наиболее универсального представителя класса. Любой другой может быть получен путем обнуления коэффициента передачи при соответствующем слагаемом передаточной функции. Итак,

Передаточная функция ПИД регулятора описывается уравнением:

где "тау" - время с того момента, как изменение e регулируемой величины стало отличным от нуля (значимо отличным), а жаргон инженеров-автоматчиков еще требует нижеследующих названий для компонент уравнения и их производных величин:

  • Kp - пропорциональный коэффициент усиления
  • Pb=1/Kp - относительный диапазон регулирования
  • Ki - интегральный коэффициент усиления
  • Ti=1/Ki - постоянная интегрирования (размерность - время)
  • Kd - дифференциальный коэффициент усиления
  • Td=Kd - постоянная дифференицирования (размерность - время)

Очевидно, что функция содержит 3 слагаемых, первое - пропорциональное к изменению заданного параметра, второе - интегральное, а третье - дифференциальное. В дальнейшем будем использовать в рассуждениях обозначения из уравнения (2). Рассмотрим, что это такое по порядку:

Пропорциональное регулирование (П или P регуляторы) : - величина поправки в регулирующее воздействие пропорциональна величине отклонения. Логично, чем больше отклонение температуры в компате от заданного уровня, тем сильнее следует изменить мощность нагревателя для компенсации изменения. u(t)=P (коэффициенты Kd и Ki уравнения (2) равны нулю).

Интегральное регулирование: - величина поправки в регулирующее воздействие зависит от накопленного действия отклонения регулируемой величины. Спокойно, тут ничего нет сложного. Рассмотрим наш пример -если в комнате низкая температура недопустима, ибо на подоконнике находятся ценные теплолюбивые кактусы, а какой-то клоун открыл окно зимой, то пропорциональное регулирование в силу разумности своих настроек попросту не позволяет прогреть комнату. Если накопленное действие пониженной температуры растет (интеграл от изменения) , то это слагаемое даст дополнительное приращение мощности нагревателя.

Дифференциальное регулирование: - величина поправки в регулирующее воздействие зависит от скорости изменения регулируемого параметра. Тут ничего сложного нет, поскольку - если, например, температура на улице резко упала, то лучше поскорее прогреть комнату и стены, и не дать им набрать влажность. ! В гидравлических системах и в системах, имеющих собственные частоты колебаний близкие к характерным временам запуска процессов регулирования, данный вид регулирования малоприменим, так как легко вызывает гироудары или резонансы!

ПД или PD регуляторы, описать просто: Передаточная функция П (P) регулятора описывается уравнением: u(t)=P+D

ПИ или PI регуляторы описываются тоже просто: Передаточная функция П (P) регулятора описывается уравнением: u(t)=P+I (коэффициент Ki уравнения (2) равен нулю).

Уравнение (2), для целей упрощения настройки часто может быть записано как:

тут нет никакого подвоха, все то же самое, просто другая запись.