Мы уже рассказывали о том, как разгонять процессоры и видеокарты. Еще один компонент, достаточно ощутимо влияющий на производительность отдельно взятого компьютера, - оперативная память. Форсирование и тонкая настройка режима работы ОЗУ позволяют повысить быстродействие ПК в среднем на 5-10%. Если подобный прирост достигается без каких-либо денежных вложений и не влечет риски для стабильности системы - почему бы не попробовать? Однако начав готовить данный материал, мы пришли к выводам о том, что описания собственно процесса разгона будет недостаточно. Понять, почему и для чего надо изменять определенные настройки работы модулей, можно, лишь вникнув в суть работы подсистемы памяти компьютера. Потому в первой части материала мы кратко рассмотрим общие принципы функционирования ОЗУ. Во второй приведены основные советы, которых следует придерживаться начинающим оверклокерам при разгоне подсистемы памяти.

Основные принципы функционирования оперативной памяти одинаковы для модулей разных типов. Ведущий разработчик стандартов полупроводниковой индустрии JEDEC предоставляет возможность каждому желающему ознакомиться с открытыми документами, посвященными этой тематике. Мы же постараемся кратко объяснить базовые понятия.

Итак, оперативная память - это матрица, состоящая из массивов, именуемых банками памяти. Они формируют так называемые информационные страницы. Банк памяти напоминает таблицу, каждая ячейка которой имеет координаты по вертикали (Column) и горизонтали (Row). Ячейки памяти представляют собой конденсаторы, способные накапливать электрический заряд. С помощью специальных усилителей аналоговые сигналы переводятся в цифровые, которые в свою очередь образуют данные. Сигнальные цепи модулей обеспечивают подзарядку конденсаторов и запись/считывание информации.

Алгоритм работы динамической памяти можно описать такой последовательностью:

  1. Выбирается чип, с которым будет осуществляться работа (команда Chip Select, CS). Электрическим сигналом проводится активация выбранной строки (Row Activate Selection). Данные попадают на усилители и могут быть считаны определенное время. Эта операция в англоязычной литературе называется Activate.
  2. Данные считываются из соответствующей колонки/записываются в нее (операции Read/Write). Выбор колонок проводится командой CAS (Column Activate Selection).
  3. Пока строка, на которую подан сигнал, остается активной, возможно считывание/запись соответствующих ей ячеек памяти.
  4. При чтении данных - зарядов конденсаторов - их емкость теряется, поэтому требуется подзарядка или закрытие строки с записью информации в массив памяти (Precharge).
  5. Конденсаторы-ячейки со временем теряют свою емкость и требуют постоянной подзарядки. Эта операция - Refresh - выполняется регулярно через отдельные промежутки (64 мс) для каждой строки массива памяти.

На выполнение операций, происходящих внутри оперативной памяти, уходит некоторое время. Именно его и принято называть таким знакомым словом «тайминги» (от англ. time). Следовательно, тайминги - временные промежутки, необходимые для выполнения тех или иных операций, осуществляющихся в работе ОЗУ.

Схема таймингов, указываемых на стикерах модулей памяти, включает в себя лишь основные задержки CL-tRCD-tRP-tRAS (CAS Latency, RAS to CAS Delay, RAS Precharge и Cycle Time (или Active to Precharge)). Все остальные, в меньшей мере оказывающие влияние на скорость работы ОЗУ, принято называть субтаймингами, дополнительными или второстепенными таймингами.

Приводим расшифровку основных задержек, возникающих при функционировании модулей памяти:

CAS Latency (CL) - пожалуй, самый важный параметр. Определяет минимальное время между подачей команды на чтение (CAS) и началом передачи данных (задержка чтения).

RAS to CAS Delay (tRCD) определяет интервал времени между подачей команд RAS и CAS. Обозначает число тактов, необходимых для поступления данных в усилитель.

RAS Precharge (tRP) - время, уходящее на перезарядку ячеек памяти после закрытия банка.

Row Active Time (tRAS) - временной промежуток, на протяжении которого банк остается открытым и не требует перезарядки.

Command Rate 1/2T (CR) - время, необходимое для декодирования контроллером команд и адресов. При значении 1T команда распознается за один такт, при 2T - за два.

Bank Cycle Time (tRC, tRAS/tRC) - время полного такта доступа к банку памяти, начиная с открытия и заканчивая закрытием. Изменяется вместе с tRAS.

DRAM Idle Timer - время простоя открытой информационной страницы для чтения данных с нее.

Row to Column (Read/Write) (tRCD, tRCDWr, tRCDRd) напрямую связан с параметром RAS to CAS Delay (tRCD). Вычисляется по формуле tRCD(Wr/Rd) = RAS to CAS Delay + Rd/Wr Command Delay. Второе слагаемое - величина нерегулируемая, определяет задержку на выполнение записи/чтения данных.

Пожалуй, это базовый набор таймингов, зачастую доступный для изменения в BIOS материнских плат. Расшифровку остальных задержек, как и детальное описание принципов работы и определение влияния тех или иных параметров на функционирование ОЗУ можно найти в спецификациях уже упомянутой нами JEDEC, а также в открытых datasheet производителей наборов системной логики.

Таблица соответствия реальной, эффективной частоты работы и рейтинга разных типов ОЗУ
Тип памяти Рейтинг Реальная частота
работы памяти, МГц
Эффективная частота
работы памяти
(DDR, Double Data Rate), МГц
DDR PC 2100 133 266
PC 2700 167 333
PC 3200 200 400
ЗС 3500 217 434
PC 4000 250 500
PC 4300 266 533
DDR2 PC2 4300 266 533
PC2 5400 333 667
PC2 6400 400 800
PC2 8000 500 1000
PC2 8500 533 1066
PC2 9600 600 1200
PC2 10 400 650 1300
DDR3 PC3 8500 533 1066
PC3 10 600 617,5 1333
PC3 11 000 687,5 1375
PC3 12 800 800 1600
PC3 13 000 812,5 1625
PC3 14 400 900 1800
PC3 15 000 933 1866
Отметим, что числовое обозначение рейтинга в данном случае согласно спецификациям JEDEC указывает на скорость в миллионах передач в секунду через один вывод данных.
Что касается быстродействия и условных обозначений, то вместо эффективной частоты работы правильнее говорить, что скорость передачи данных в два раза больше тактовой частоты модуля (данные передаются по двум фронтам сигналов тактового генератора).

Основные тайминги памяти

Объяснение одного из таймингов tRP (Read to Precharge, RAS Precharge) с помощью типичной схемы в datasheet от JEDEC. Расшифровка подписей: CK и CK - тактовые сигналы передачи данных, инвертированные один относительно другого (Differential Clock); COMMAND - команды, поступающие на ячейки памяти; READ - операция чтения; NOP - команды отсутствуют; PRE - подзарядка конденсаторов - ячеек памяти; ACT - операция активации строки; ADDRESS - адресация данных к банкам памяти; DQS - шина данных (Data Strobe); DQ - шина ввода-вывода данных (Data Bus: Input/Output); CL - CAS Latency в данном случае равен двум тактам; DO n - считывание данных со строки n. Один такт - временной промежуток, необходимый для возврата сигналов передачи данных CK и CK в начальное положение, зафиксированное в определенный момент.


Упрощенная блок-схема, объясняющая основы работы памяти стандарта DDR2. Она создана с целью демонстрации возможных состояний транзисторов и команд, которые их контролируют. Как видите, чтобы разобраться в столь «простой» схеме, потребуется не один час изучения основ работы ОЗУ (мы уже не говорим о понимании всех процессов, происходящих внутри чипов памяти).

Основы разгона оперативной памяти

Быстродействие ОЗУ в первую очередь определяют два показателя: частота работы и тайминги. Какой из них окажет большее влияние на производительность ПК, следует выяснять индивидуально, однако для разгона подсистемы памяти нужно использовать оба пути. На что же способны ваши модули? С достаточно высокой долей вероятности поведение плашек можно спрогнозировать, определив названия используемых в них чипов. Наиболее удачные оверклокерские микросхемы стандарта DDR - Samsung TCCD, UCCC, Winbond BH-5, CH-5; DDR2 - Micron D9xxx; DDR3 - Micron D9GTR. Впрочем, итоговые результаты будут зависеть и от типа РСВ, системы, в которой установлены модули, умения владельца разгонять память и просто от удачи при выборе экземпляров.

Пожалуй, первый шаг, который делают новички, - повышение рабочей частоты ОЗУ. Она всегда привязана к FSB процессора и выставляется с помощью так называемых делителей в BIOS платы. Последние могут выражаться в дробном виде (1:1, 1:1,5), в процентном выражении (50%, 75%, 120%), в режимах работы (DDR-333, DDR2-667). При разгоне процессора путем увеличения FSB автоматически возрастает частота работы памяти. К примеру, если мы использовали повышающий делитель 1:1,5, то при изменении частоты шины с 333 до 400 МГц (типично для форсирования Core 2 Duo) частота памяти поднимется с 500 МГц (333×1,5) до 600 МГц (400×1,5). Поэтому, форсируя ПК, следите, не является ли камнем преткновения предел стабильной работы оперативной памяти.

Следующий шаг - подбор основных, а затем дополнительных таймингов. Их можно выставлять в BIOS материнской платы или же изменять специализированными утилитами на лету в ОС. Пожалуй, самая универсальная программа - MemSet, однако владельцам систем на базе процессоров AMD Athlon 64 (K8) очень пригодится A64Tweaker. Прирост производительности можно получить лишь путем понижения задержек: в первую очередь CAS Latency (CL), а затем RAS to CAS Delay (tRCD), RAS Precharge (tRP) и Active to Precharge (tRAS). Именно их в сокращенном виде CL4-5-4-12 указывают изготовители модулей памяти на стикерах продуктов. Уже после настройки основных таймингов можно переходить к понижению дополнительных.

Компоновка модулей памяти

Модули стандартов: a) DDR2; b) DDR; c) SD-RAM.

  1. Чипы (микросхемы) памяти. Комбинация «чипы + РСВ» определяет объем, количество банков, тип модулей (с коррекцией ошибок или без).
  2. SPD (Serial Presence Detect) - микросхема энергонезависимой памяти, в которую записаны базовые настройки любого модуля. Во время старта системы BIOS материнской платы считывает информацию, отображенную в SPD, и выставляет соответствующие тайминги и частоту работы ОЗУ.
  3. «Ключ» — специальная прорезь платы, по которой можно определить тип модуля. Механически препятствует неверной установке плашек в слоты, предназначенные для оперативной памяти.
  4. smd-компоненты модулей (резисторы, конденсаторы). Обеспечивают электрическую развязку сигнальных цепей и управление питанием чипов.
  5. На стикерах производители обязательно указывают стандарт памяти, штатную частоту работы и базовые тайминги.
  6. РСВ - печатная плата. На ней распаиваются остальные компоненты модуля. От качества РСВ зачастую зависит результат разгона: на разных платах одинаковые чипы могут вести себя по-разному.

На результаты разгона оперативной памяти значительное влияние оказывает увеличение напряжения питания плашек. Безопасный для длительной эксплуатации предел зачастую превышает заявленные производителями значения на 10-20%, однако в каждом случае подбирается индивидуально с учетом специфики чипов. Для наиболее распространенной DDR2 рабочее напряжение зачастую равно 1,8 В. Его без особого риска можно поднять до 2-2,1 В при условии, что это влечет за собой улучшение результатов разгона. Впрочем, для оверклокерских модулей, использующих чипы Micron D9, производители заявляют штатное напряжение питания на уровне 2,3-2,4 В. Превышать эти значения рекомендуется только для кратковременных бенчинг-сессий, когда важен каждый дополнительный мегагерц частоты. Отметим, что при длительной эксплуатации памяти при напряжениях питания, отличающихся от безопасных для используемых чипов значений, возможна так называемая деградация модулей ОЗУ. Под этим термином понимают снижение разгонного потенциала модулей со временем (вплоть до неспособности работать в штатных режимах) и полного выхода плашек из строя. На деградационные процессы особо не влияет качество охлаждения модулей - даже холодные чипы могут быть им подвержены. Конечно, есть и примеры длительного успешного использования ОЗУ при высоких напряжениях, но помните: все операции при форсировании системы вы проводите на свой страх и риск. Не переусердствуйте.

Прирост производительности современных ПК можно получить, используя преимущества двухканального режима (Dual Channel). Это достигается за счет увеличения ширины канала обмена данными и роста теоретической пропускной способности подсистемы памяти. Такой вариант не требует специальных знаний, навыков и тонкой настройки режимов работы ОЗУ. Для активации Dual Channel достаточно иметь два или четыре модуля одинакового объема (при этом необязательно использовать полностью идентичные плашки). Двухканальный режим включается автоматически после установки ОЗУ в соответствующие слоты материнской платы.

Все описанные манипуляции приводят к увеличению быстродействия подсистемы памяти, однако заметить прирост невооруженным глазом зачастую сложно. При хорошей настройке и ощутимом повышении частоты работы модулей можно рассчитывать на прибавку производительности порядка 10-15%. Среднестатистические показатели более низкие. Стоит ли овчинка выделки и нужно ли тратить время на игры с настройками? Если хотите детально изучить повадки ПК - почему бы и нет?

ЕРР и XMP - разгон ОЗУ для ленивых

Далеко не все пользователи изучают особенности настройки ПК на максимальное быстродействие. Именно для новичков оверклокинга ведущие компании предполагают простые способы повышения производительности компьютера.

В отношении ОЗУ все началось с технологии Enhanced Performance Profiles (EPP), представленной NVIDIA и Corsair. Материнские платы на базе nForce 680i SLI первыми предоставили максимальную функциональность в плане настройки подсистемы памяти. Суть ЕРР довольно проста: производители ОЗУ подбирают гарантированные нестандартные скоростные режимы функционирования собственных продуктов, а разработчики системных плат предоставляют возможность их активировать через BIOS. EPP - расширенный перечень настроек модулей, дополняющий базовый набор. Существует две версии ЕРР - сокращенная и полная (два и одиннадцать резервных пунктов соответственно).

Параметр Возможные значения для ЕРР Поддерживается
JEDEC SPD Сокращенный профиль ЕРР Полный профиль ЕРР
CAS Latency 2, 3, 4, 5, 6 Да Да Да
Minimum Cycle time at Supported CAS JEDEC + 1,875 нс (DDR2-1066) Да Да Да
Minimum RAS to CAS Delay (tRCD) JEDEC* Да Да Да
Minimum Row Precharge Time (tRP) JEDEC* Да Да Да
Minimum Active to Precharge Time (tRAS) JEDEC* Да Да Да
Write Recovery Time (tWR) JEDEC* Да Да Да
Minimum Active to Active/Refresh Time (tRC) JEDEC* Да Да Да
Voltage Level 1,8-2,5 В - Да Да
Address Command Rate 1Т, 2Т - Да Да
Address Drive Strenght 1.0х, 1.25х, 1.5х, 2.0х - - Да
Chip Select Drive Strenght 1.0х, 1.25х, 1.5х, 2.0х - - Да
Clock Drive Strenght 0.75х, 1.0х, 1.25х, 1.5х - - Да
Data Drive Strenght 0.75х, 1.0х, 1.25х, 1.5х - - Да
DQS Drive Strenght 0.75х, 1.0х, 1.25х, 1.5х - - Да
Address/ Command Fine Delay 0, 1/64, 2/64, 3/64 MEMCLK - - Да
Address/ Command Setup Time 1/2, 1 MEMCLK - - Да
Chip Select Delay 0, 1/64, 2/64, 3/64 MEMCLK - - Да
Chip Select Setup Time 1/2, 1 MEMCLK - - Да
* Диапазон значений соответствует требованиям, определенным JEDEC для модулей DDR2
Расширенные профили ЕРР позволяют автоматически управлять ощутимо большим количеством задержек модулей стандарта DDR2, чем базовый набор, сертифицированный JEDEC.

Дальнейшее развитие данной темы - концепция Xtreme Memory Profiles (ХМР), представленная компанией Intel. По своей сути данное новшество не отличается от ЕРР: расширенный набор настроек для ОЗУ, гарантированные производителями скоростные режимы записаны в SPD планок и при необходимости активируются в BIOS платы. Поскольку Xtreme Memory Profiles и Enhanced Performance Profiles предоставлены разными разработчиками, модули сертифицируются под их собственные наборы системной логики (на чипсетах NVIDIA или Intel). XMP, как более поздний стандарт, относится только к DDR3.

Безусловно, несложные в активации резервов ОЗУ технологии EPP и XMP пригодятся новичкам. Однако позволят ли производители модулей просто так выжать максимум из своих продуктов? Хотите еще больше? Тогда нам по пути - будем глубже вникать в суть повышения быстродействия подсистемы памяти.

Итоги

В небольшом материале сложно раскрыть все аспекты работы модулей, принципы функционирования динамической памяти вообще, показать, насколько повлияет изменение одной из настроек ОЗУ на общую производительность системы. Однако надеемся, что начало положено: тем, кто заинтересовался теоретическими вопросами, настоятельно рекомендуем изучить материалы JEDEC. Они доступны каждому желающему. На практике же опыт традиционно приходит со временем. Одна из главных целей материала - объяснение новичкам основ разгона подсистемы памяти.

Тонкая настройка работы модулей - дело довольно хлопотное, и если вам не нужна максимальная производительность, если каждый балл в тестовом приложении не решает судьбу рекорда, можно ограничиться привязкой к частоте и основным таймингам. Существенное влияние на быстродействие оказывает параметр CAS Latency (CL). Выделим также RAS to CAS Delay (tRCD), RAS Precharge (tRP) и Cycle Time (или Active to Precharge) (tRAS) - это базовый набор, основные тайминги, всегда указываемые производителями. Обратите внимание и на опцию Command Rate (наиболее актуально для владельцев современных плат на чипсетах NVIDIA). Впрочем, не стоит забывать о балансе характеристик. Системы, использующие неодинаковые контроллеры памяти, по-разному могут реагировать на изменения параметров. Разгоняя ОЗУ, следует придерживаться общей схемы: максимальный разгон процессора при пониженной частоте модулей → предельный разгон памяти по частоте с наихудшими задержками (изменением делителей) → снижение таймингов при сохранении достигнутых частотных показателей.

Дальше - тестирование производительности (не ограничивайтесь лишь синтетическими приложениями!), затем новая процедура разгона модулей. Установите значения основных таймингов меньше на порядок (скажем, 4-4-4-12 вместо 5-5-5-15), с помощью делителей подберите максимальную частоту в таких условиях и протестируйте ПК заново. Таким образом возможно определить, что больше всего «по душе» вашему компьютеру - высокая частота работы или низкие задержки модулей. После чего переходите к тонкой настройке подсистемы памяти, поиску минимальных значений для субтаймингов, доступных для корректировки. Желаем удачи в этом нелегком деле!

Привет, GT! Все мы любим новое железо - приятно работать за быстрым компьютером, а не смотреть на всякие прогрессбары и прочие песочные часики. Если с процессорами и видеокартами всё более-менее понятно: вот новое поколение, получите ваши 10-20-30-50% производительности, то с оперативкой всё не так просто.

Где прогресс в модулях памяти, почему цена на гигабайт почти не падает и чем порадовать свой компьютер - в нашем железном ликбезе.

DDR4

Стандарт памяти DDR4 имеет ряд преимуществ перед DDR3: большие максимальные частоты (то есть пропускная способность), меньшее напряжение (и тепловыделение), и, само собой, удвоенная ёмкость на один модуль.

Комитет инженерной стандартизации полупроводниковой продукции при Electronic Industries Alliance (более известный как JEDEC) трудится над тем, чтобы ваша оперативная память Kingston подходила к материнской плате ASUS или Gigabyte, и по этим правилам играют все. По части электрики, физики и разъёмов всё жёстко (оно и понятно, нужно обеспечить физическую совместимость), а вот в отношении рабочих частот, объёмов модулей и задержек в работе правила допускают некоторую волатильность: хотите сделать лучше - делайте, главное, чтобы на стандартных настройках у пользователей не было проблем.

Именно так получились в своё время модули DDR3 с частотой выше, чем 1600 МГц, и DDR4 с частотами выше 3200 МГц: они превышают базовые спецификации, и могут работать как на «стандартных» параметрах, совместимых со всеми материнскими платами, так и с экстремальными профилями (X.M.P.), протестированными на заводе и зашитыми в BIOS памяти.

Прогресс

Основные улучшения в этой сфере ведутся сразу в нескольких направлениях. Во-первых, производители непосредственно микросхем памяти (Hynix, Samsung, Micron и Toshiba) постоянно улучшают внутреннюю архитектуру чипов в пределах одного техпроцесса. От ревизии к ревизии внутреннюю топологию доводят до совершенства, обеспечивая равномерность нагрева и надёжность работы.

Во-вторых, память потихоньку переходит на новый техпроцесс. К сожалению, здесь нельзя проводить улучшения также быстро, как делают (делали последние лет 10) производители видеокарт или центральных процессоров: грубое уменьшение размеров рабочих частей, то есть транзисторов, потребует соответствующего снижения рабочих напряжений, которые ограничены стандартом JEDEC и встроенными в CPU контроллерами памяти.

Поэтому единственное, что остаётся - не только «поджимать» производственные нормы, но ещё и параллельно увеличивать скорость работы каждой микросхемы, что потребует соответствующего повышения напряжения. В итоге и частоты растут, и объёмы одного модуля.

Примеров такого развития много. В 2009-2010 году нормальным был выбор между 2/4 гигабайтами DDR3 1066 МГц и DDR3 1333 МГц на один модуль (обе были выполнены по 90-нм техпроцессу). Сегодня же умирающий стандарт готов предложить вам 1600, 1866, 2000 и даже 2133 МГц рабочих частот на модулях в 4, 8 и 16 ГБ, правда внутри уже 32, 30 и даже 28 нм.

К сожалению, подобный апгрейд стоит немалых денег (в первую очередь на исследования, закупку оборудования и отладку производственного процесса), так что ждать радикального уменьшения цены 1 ГБ оперативки до выхода DDR5 не придётся: ну а там нас ждёт очередное удвоение полезных характеристик при той же цене производства.

Цена улучшений, разгон и поиски баланса

Растущий объём и скорость работы напрямую влияет на ещё один параметр оперативной памяти - задержки (они же тайминги). Работа микросхем на высоких частотах до сих пор не желает нарушать законы физики, и на различные операции (поиск информации на микросхеме, чтение, запись, обновление ячейки) требуются определённые временные интервалы. Уменьшение техпроцесса даёт свои плоды, и тайминги растут медленнее, чем рабочие частоты, но здесь необходимо соблюдать баланс между скоростью линейного чтения и скоростью отклика.

Например, память может работать на профилях 2133 МГц и 2400 МГц с одинаковым набором таймингов (15-15-15-29) - в таком случае разгон оправдан: при большей частоте задержки в несколько тактов только уменьшатся, и вы получите не только увеличение линейной скорости чтения, но и скорости отклика. А вот если следующий порог (2666 МГц) требует увеличения задержек на 1-2, а то и 3 единицы, стоит задуматься. Проведём простые вычисления.

Делим рабочую частоту на первый тайминг (CAS). Чем выше соотношение - тем лучше:

2133 / 15 = 142,2
2400 / 15 = 160
2666 / 16 = 166,625
2666 / 17 = 156,823

Полученное значение - знаменатель в дроби 1 секунда / Х * 1 000 000. То есть чем выше число, тем ниже будет задержка между получением информации от контроллера памяти и отправкой данных назад.

Как видно из расчётов, наибольший прирост - апгрейд с 2133 до 2400 МГц при тех же таймингах. Увеличение задержки на 1 такт, необходимое для стабильной работы на частоте 2666 МГц всё ещё даёт преимущества (но уже не такие серьёзные), а если ваша память работает на повышенной частоте только с увеличением тайминга на 2 единицы - производительность даже немного снизится относительно 2400 МГц.

Верно и обратное: если модули совершенно не хотят увеличивать частоты (то есть вы нащупали предел для конкретно вашего комплекта памяти) - можно попытаться отыграть немного «бесплатной» производительности, снизив задержки.

На самом деле факторов несколько больше, но даже эти простые расчёты помогу не напортачить с разгоном памяти: нет смысла выжимать максимальную скорость из модулей, если результаты станут хуже, чем на средних показателях.

Практическое применение разгона памяти

В плане софта от подобных манипуляций в первую очередь выигрывают задачи, постоянно эксплуатирующие память не в режиме потокового чтения, а дёргающие случайные данные. То есть игры, фотошоп и всякие программистские задачи.

Аппаратно же системы со встроенной в процессор графикой (и лишённые собственной видеопамяти) получают значительный прирост производительности как при снижении задержек, так и при увеличении рабочих частот: простенький контроллер и невысокая пропускная способность очень часто становится бутылочным горлышком интегрированных GPU. Так что если ваши любимые «Цистерны» еле-еле ползают на встроенной графике старенького компа - вы знаете, что можно попробовать предпринять для улучшения ситуации.

Мэйнстрим

Как не странно, больше всего от подобных улучшений выигрывают среднестатистические пользователи. Нет, безусловно, оверклокеры, профессионалы и игроки с полным кошельком получают свои 0.5% производительности, применяя экстремальные модули с запредельными частотами, но их доля на рынке мала.

Что под капотом?

Белые алюминиевые радиаторы снять достаточно просто. Шаг нулевой: заземляемся об батарею или ещё какой металлический контакт с землёй и даём стечь статике - мы же не хотим дать нелепой случайности убить модуль памяти?

Шаг первый: прогреваем модуль памяти феном или активными нагрузками на чтение-запись (во втором случае вам надо быстренько выключить ПК, обесточить его и снять оперативку, пока она ещё горячая).

Шаг второй: находим сторону без наклейки и аккуратно подцепляем радиатор чем-нибудь в центре и по краям. Использовать печатную плату как основание для рычага можно, но с осторожностью. Внимательно выбираем точку опоры, стараемся избегать давления на на хрупкие элементы. Действовать лучше по принципу «медленно, но верно».

Шаг третий: открываем радиатор и разъединяем замки. Вот они, драгоценные чипы. Распаяны с одной стороны. Производитель - Micron, модель чипов 6XA77 D9SRJ.

8 штук по 1 Гб каждый, заводской профиль - 2400 МГц @ CL16.


Правда, дома снимать теплораспределители не стоит - сорвёте пломбу и плакала ваша пожизненная 1 гарантия. Да и родные радиаторы отлично справляются с возложенными на них функциями.

Попробуем измерить эффект от разгона оперативки на примере комплекта HyperX Fury HX426C16FW2K4/32. Расшифровка названия даёт нам следующую информацию: HX4 - DDR4, 26 - заводская частота 2666 МГц, C16 - задержки CL16. Далее идёт код цвета радиаторов (в нашем случае - белый), и описание комплекта K4/32 - набор из 4 модулей суммарным объёмом 32 ГБ. То есть уже сейчас видно, что оперативка незначительно разогнана ещё при производстве: вместо штатных 2400 прошит профиль 2666 МГц с теми же таймингами.

Помимо эстетического удовольствия от созерцания четырёх «Белоснежек» в корпусе вашего ПК этот набор готов предложить весомых 32 гига памяти и нацелен на пользователей обычных процессоров, не особо балующихся разгоном CPU. Современные Intel’ы без буквы K на конце окончательно лишились всех возможных способов получения бесплатной производительности, и практически не получают никаких бонусов от памяти с частотой выше 2400 МГц.

В качестве тестовых стендов мы взяли два компьютера. Один на базе Intel Core i7-6800K и материнской плате ASUS X99 (он представляет платформу для энтузиастов с четырёхканальным контроллером памяти), второй с Core i5-7600 внутри (этот будет отдуваться за мэйнстримовое железо со встроенной графикой и отсутствующим разгоном). На первом проверим разгонный потенциал памяти, а на втором будем измерять реальную производительность в играх и рабочем софте.

Разгонный потенциал

Со стандартными профилями JEDEC и заводским X.M.P. память имеет следующие режимы работы:
DDR4-2666 CL15-17-17 @1.2V
DDR4-2400 CL14-16-16 @1.2V
DDR4-2133 CL12-14-14 @1.2V

Легко заметить, что настройки таймингов под 2400 МГц делают память не такой отзывчивой, как профили 2133 и 2666 МГц.
2133 / 12 = 177.75
2400 / 14 = 171.428
2666 / 15 = 177.7(3)

Попытки завести память на частоте 2900 МГц с повышением задержек до 16-17-18, 17-18-18, 17-19-19 и даже с подъёмом напряжения до 1.3 Вольта ничего не дали. Без серьёзных нагрузок компьютер работает, но фотошоп, архиватор или бенчмарк плюются ошибками или сваливают систему в BSOD. Похоже, что частотный потенциал модулей выбран до конца, и единственное, что нам остаётся - уменьшать задержки.

Лучший результат, который удалось достичь с тестовым комплектом из 4 модулей - 2666 МГц при таймингах CL13-14-13. Это существенно увеличит скорость доступа к случайным данным (2666 / 13 = 205.07) и должно показать неплохое улучшение результатов в игровом бенчмарке. В двухканальном режиме память разгоняется лучше: специалисты из oclab ухитрились довести комплект из двух 16 Гб модулей до частоты 3000 МГц @ CL14-15-15-28 с подъёмом напряжения до 1.4 Вольта - отличный результат.

Натурные испытания

Для нашего i5 со встроенной графикой в качестве бенчмарка мы выбрали GTA V. Игра не молодая, использует API DirectX 11, который давно известен и отлично вылизан в драйверах Intel, любит потреблять оперативную память и нагружает систему сразу по всем фронтам: GPU, CPU, Ram, чтение с диска. Классика. Вместе с этим GTA V использует т.н. «отложенный рендеринг», благодаря которому время расчёта кадра меньше зависит от сложности сцены, то есть методика испытания будет чище, а результаты - нагляднее.

За средний FPS возьмём значения, укладывающиеся в нормальное течение игры: пролёт самолёта, езда в городе, уничтожение супостатов имеют равномерный профиль нагрузки. По таким сценам (отбросив 1% лучших и худших результатов из массива данных) и получим средне-игровой FPS.

Просадки определим по сценам со взрывами и сложными эффектами (водопад под мостом, закатные пейзажи) аналогичным образом.

Подлагивания и неприятные фризы при резкой смене окружения (переключение от одного тестируемого случая к другому) случаются даже на монструозной GTX 1080Ti, постараемся их отметить, но в результаты не возьмём: в игре оно не встречается, и это, скорее, косяк самого бенчмарка.

Конфигурация демо-стенда

CPU: Intel Core i5-7500 (4c4t @ 3.8 ГГц)
GPU: Intel HD530
RAM: 32 GB HyperX Fury White (2133 МГц CL12, 2666 МГц CL15 и 2666 МГц CL13)
MB: ASUS B250M
SSD: Kingston A400 240 GB

Для начала выставим стандартные частоты X.M.P.-профиля: 2666 МГц с таймингами 15-17-17. Встроенный бенчмарк GTA V выдаёт идентичный FPS и одинаковые просадки на минимальных и средних настройках в разрешении 720p: в большинстве сцен счётчик колеблется в районе 30–32, а в тяжёлых сценах и при смене одной локации на другую FPS проседает.

Причина очевидна - мощностей GPU достаточно, а вот блоки растеризации просто не успевают собрать и отрисовать большее число кадров в секунду. На «высоких» настройках графики результаты стремительно ухудшаются: игра начинает упираться непосредственно в скромные вычислительные возможности интегрированной графики.

2133 МГц CL12

Собственной памяти у GPU нет, и он вынужден постоянно дёргать системную. Пропускная способность DDR4 в двухканальном режиме на частоте 2133 МГц составит 64 бит (8 байт) × 2 133 000 000 МГц × 2 канала - порядка 34 Гб/с, с небольшими (до 10%) накладными потерями.

Для сравнения, пропускная способность подсистемы памяти у самой скромной дискретной карточки NVIDIA GTX 1030 - 48 Гб/с, а GTX 1050 Ti (которая легко выдаёт в GTA V 60 FPS на максимальных настройках в FullHD) - уже 112 Гб/с.


На заднем плане виден тот самый водопад под мостом, просаживающий FPS во внутриигровом бенчмарке.

Результаты бенчмарка просели до 28 FPS в среднем, а лаги при смене локаций и взрывах их ненапряжных просадок превратились в неприятные микрофризы.

2666 МГц CL13

Снижение таймингов значительно сократило время ожидания ответа от памяти, а стандартные результаты с данной частотой у нас уже есть: можно будет сравнить три бенчмарка и получить наглядную картину. Пропускная способность для 2666 МГц уже 21.3 Гб/с ×2 канала ~ 40 Гб/с, сравнимо с младшей NVIDIA.

Максимальный FPS практически не вырос (0.1 не показатель и находится на грани погрешности измерений) - здесь мы всё ещё упираемся в скромные возможности ROP’ов, а вот все просадки стали менее заметны. В сценах с водопадом из-за высокой вычислительной нагрузки результат не изменился, во всех остальных - то есть на прогрузках, взрывах и прочих радостях, замедлявших работу видеоядра вырос в среднем на 10-15%. Вместо 25–27 кадров в нагруженных событиями эпизодах - уверенные 28–29. В целом игра стала ощущаться значительно комфортнее.

TL;DR и результаты

Нельзя оценивать скорость работы оперативной памяти по одной только частоте. У DDR4 достаточно большие тактовые задержки, и при прочих равных стоит выбирать память не только удовлетворяющую потребности вашего железа по рабочей частоте и объёму, но и уделять внимание этому параметру.

Проведённые тесты показали, что компьютеры на базе Intel Core i-серии со встроенной графикой получают заметный прирост производительности при использовании высокоскоростной памяти с низкими задержками. Видеоядро не имеет собственных ресурсов для хранения и обработки данных и пользуется системными отлично отвечает (до определённого предела) на рост частоты и снижение таймингов, так как от скорости доступа к памяти напрямую зависит время отрисовки кадра со множеством объектов.

Самое важное! Линейка Fury выпускается в нескольких цветах: белом, красном и чёрном - можно подобрать не только быструю память, но и подходящую по стилю к остальным комплектующим, как делают специалисты из

Продолжаем тему железа и в этом ролике речь пойдёт о частоте оперативной памяти и о ее разгоне. Как известно каждая оперативная память имеет параметр – максимальная тактовая частота, на которой она будет стабильно работать. Но, немного подправив параметры работы памяти в БИОС, можно добиться увеличения ее рабочей частоты сверх установленного производителей. Главное что бы материнская плата и процессор поддерживали работу с такой частотой.

Дата: 2018-03-10 Обзоры гаджетов от ArtomU


Рейтинг: 4.0 из 5
Голоса: 1

Комментарии и отзывы: 40

1. Максим Белозеров
Здравствуйте, купил мать Asus Rampage IV Black Edition (2011), проц Xeon e5-1650 V2 (работает с частотой памяти 1866 МГц) и СЖО Fractal Kelvin S36 (на мосту и мосфетах водоблоки), рассчитываю держать проц на 5 ГГц. Хочу приобрести 4х8=32 ГБ ОЗУ Kingston HyperX, в планах держать в разгоне (корпус типа открытого стенда (Aerocool Strike X Air)), никак не могу определиться с частотой планок. В спецификациях проца написано, что поддерживает DDR3-1866 МГц, хочется с таким сетапом конечно иметь максимально возможную частоту памяти. Какие планки (с какой "заводской" частотой работы памяти) подобрать и как добиться их работы на максимальной частоте, на что можно рассчитывать ~ в данном случае? Заранее спасибо!
P.S. Присматриваюсь к Kingston HyperX Savage 4x8 2400 MHz, только как мне их использовать с процессором, который поддерживает только память 1866 МГц, и каким образом осуществлять их разгон (если он возможен?)

2. Jean-Claude Van Damme
Вопрос автору данного ролика, раз он разбирается в этой кухне - мать MSI Z77A-G41, процессор i5 - 3570k, оперативка 2х4 Гб Corsair Vengeance DDR3-1333. Собственно вопрос такой - один человек мне сказал, если очень вкратце, не стоит покупать оперативную память с частотой например 2133, когда можно купить ту же оперативку с частотой 1333 и через биос выставить такую которую тебе надо (если это позволяет сделать железо, ибо всё это маркетинговый ход ибо те, кто разбирается в железе так и делает). Собственно исходя из моего железа, через биос подняли частоту до 1866 (ибо больше 2133 не позволяет проц, только если его разогнать с 3.4 хотя бы до 4.2 можно якобы частоту оперативки поднять еще выше). Так ли это?

3. пумпусик пумпусик
зачем вам это все на процессоре стоит определены максимум хоть ты планку в 2 раза выше поставь по скорости проц перерабатывать не будет всеравно своего максимального предела что ему положенно.а так как на видео разгон озу это приведет к сугубим последствиям потом луче не чего не трогать и купить новые планки по процессору которые нужны или выше.а луче под процессор чистоту допустимую процессором ставить по максималке процессора.а если вы расчитываете обгрейд компа то купите планки по максимому чистоте но ток чтоб от минимальной по максимальной озу чистоте вписывался процессор которую может поддерживать а то может не работать потом.

4. Алексей Алексей
Здравствуйте. У меня есть вопрос по этой теме. приобрел 2 планки оперативной памяти -одна 2gb 1RХ8 PC3-12800S другая планка 4gb 2RХ8 PC3-12800S.Что мы видим?одинаковые частоты а именно 1600mgz ,разная память 2+4=6gb.а теперь вопрос почему система выставляет автоматически 800mgz?хотя должна 1600mgz так как частоты одинаковы.идем дальше пытался войти в БИОС но там ни чего не нашёл про увеличении частоты оперативки.Судя по вашему БИОСУ в кладка АДВАСЕНТ есть в моём случае эта вкладка отсутствует.правда у меня ноутбук леново g580 у вас же ПК,но я думаю суть одна.что мне делать как быть как же увеличить частоту оперативки

5. CampeR"s Gaming
Зачетный видос, но нужна помощь. Подскажи пожалуйста как разогнать оперативку DDR 3 с 1333 mhz до 1600. Поменять то в биосе я знаю как, но не разбираюсь в работе таймингов и т.д. По этому чтобы не навредить хочу у вас узнать об этом, т.к вижу вы разбираетесь.
Если поменяю просто частоту, но при этом ничего другое трогать не стану - будет ли стабильно работать система и не навредит ли это оперативке?(Просто у меня 2 плашки стоят в A двухканальном режиме по 1600, а в B - 1333).
Заранее спасибо:)

6. ANTON FAAQ
Привет Артем! Подскажи пожайлуста по оперативке. У меня материнка ASUS P5B SE стояли две планки по 1Гб причём разных частот, купил две планки по 2Гб и они ни в какую ни могут запустить комп доходит до окна винды и ни в какую по отдельности каждая планка работает в паре с одногиговой ставлю вторую не запускается перепробовал все варианты менять местами в четырёх слотах всё равно никак. Подскажи может дело в биосе или ещё в чём планки то по идее рабочие все.

7. Konstantin Volvachou
У меня другая проблема оперативка DDR3 1866 кингстон, и мать и проц по мануала держат эту частоту а по факту больше 1600 разогнать не могу при чем и тайминги и вольтаж выставлял согласно мануала, а при разгоне процессора по множителю вообще уходит в сток 1333 и любое поднятия частоты оперативки приводит к авт. сбросу биуса как и в случае превышения частоты свыше 1600 без разгона процессора. Может есть у кого какие идеи?

8. zloy diktator
Артём, так "команд реит" лучше 1 или 2? Я так понял это тоже время задержки? И чем меньше тем лучше? Или я ошибаюсь. У меня в стоке "1", при поднятии частоты "авто" ставит "2". Стоит пробовать понизить до "1" вручную? И как Это критично?
P.S. Разггон с 1333 до 1866, запускается с таймингами 10-10-10-25 без проблем, ниже не берёт.

9. Сергей Й
посмотрел, есть вопрос. у меня плата p35 ds3l 2.0 rev. поддерживает до 1066 частоту по-моему, стоят 4 планки на 5 гб в сумме, частоты на каждой заявлены 800, а параметр memory frequency 667 667, почему частота ниже номинала? при смене множителя второе число изменяется, при изменении частоты шины тоже, но какой выставить вольтаж и тайминги?

10. gam ma
Моей материнке уже 10 лет скоро будет, было три платы оперативы - на 2гб и две по 1гб. И слота всего только два. Т.е. одна плата у меня долго отдыхала. Только недавно частоту оп глянул, а она 667. Поставил другую - частота 800. Почитал, я так понял у них еще программа разная может быть, не совпадающая. В общем, весело живу...

11. Вася Рогов
подскажите с разгоном ОЗУ 4 планки по 4гб 1333 и все от разных фирм)
DIMM1: Kingston 99U5471-020.A00LF
DIMM2: Kingmax FLFF65F-D8KQ9
DIMM3: SK hynix HMT351U6CFR8C-H9
DIMM4: AMD AE34G1339U1
1600 успешно удалось запустить но с напряжением 1.685 тайминги 9 9 9 24!А вот 1866 никак не получается!Проц без разгона 8150 турбо бост 3.6-4.2 а мамка ASRock 970 Pro3

12. david sherkhanov
Здравствуйте не как не могу разобраться прошу помощи я купил 2планки по 8гб каждая но hyperx но компьютер не хочет запускаться на них gigabyte g1sniper2 z68 но у меня сейчас стоят 2планки от zepelinger одна планка на 4гб а другая на 2гб и комп с ними работал отлично.подскажите в чем проблема.спасибо

13. Виталя Грицюк
Добрый день, терзает такой вопрос: если у меня проц Athlon 760к официально поддерживает 1866 МГц, могу ли я разогнать например до 2133? здесь нужно гнать по шине все (потому как просто множителем оператива не воспринимается) или это как повезет (с процессором либо с оперативой)?

14. Orhidejafairytale81
У меня проц. пень е5200 у него частота 800 , иоперативка у меня ддр2 тоже 800, я так понимаю я оперативку не разгоню? чтобы её разогнать надо менять процессор у которого системная шина 1066 или 1333? и только тогда моя оперативка сможет работать на чистоте 1066 без разгона процессора?

15. Prost_046
Здравствуйте, посоветуйте пожалуйста
какую лучше оперативку взять для этой материнки - MSI H67MA-E35.
Я думал взять две вот такие (по 8 гиг каждая)
Kingston DDR3-1600 8192MB PC3-12800 HyperX FURY Black (HX316C10FB/8).
Скажите стоит ли или есть варианты по лучше для моей материнки?

16. gunfire ch`e
Уважаемый, Артем! Вы бы сняли видео, где очень подробно остановились бы на таймингах! Что это? Как выставлять? Лучший софт для этого? И самое главное, что даст занижение числовых значений тамийнгов, на самой высокой скорости, что может дать планка, и мать?

17. Steve Wonder
Ребят, помогите плз. Добавил 1 гб ДДР2 к своем компу (раньше был только гиг), но он ее не видит. Может мне чето в БИОСе поколдовать? Биос - Gigabyte Technology Co. Ltd. M52S-S3P (Socket M2). Планки, кстати, от разных производителей - одна Самсунг, другая Хюндай, тайминги разные

18. владимир кручинин
Обзоры гаджетов от ArtomU Будьте добры подскажите есть ли вариант установить в двух канальном режиме разные по параметрам (частота, тайминги, питание) модули памяти? стоит кит 2600 mhz подарили другой 3000mhz или не стоит заморачиватся?

19. Сергей Сидорков
кстати биос показывает что у меня 2.4 мгерц почему не могу понять разгоняю через оверлок на 5 процентов получаеться а на 10и больше при загрузке винды выскакивает ошибка 0+00000005 синий экран и перезагрузказаранее спасибо!

20. Buster
1.65v уже опасно для встроенного КП в камень, о чем интел предупреждает! В спеке от интел край 1.5v Также и ты предупреди подписчиков, иначе начнут до 1.65 вольтаж задирать и выше, а камни гореть. Удивляешься горе знатокам.....

21. Кирилл Шилов
очень трудно найти золотую середину. легче купить топовую оперативу на 16 или на 32. а вот разгон процев или видюхи немного полегче, но опять же кучу комбинаций надо перебрать для нахождения золотой середины...

22. Сергей Сидорков
очень полезные видио лайк лайк лайк!помоги пожалуйста сразгоно вот этой системы Системная плата Asus P5B-VM SE (2 PCI, 1 PCI-E x1, 1 PCI-E x16, 4 DDR2 DIMM, Audio, Video, Gigabit LAN)
процесор- Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz
оперативки 4Гб

23. sacred333333
А будет разница в производительности процессора если разогнать процессор до одинаковых частот, но в первом случае сделать маленький множитель с большой шиной, а в другом большой множитель и маленькую шину?)

24. Саня слепышев
пля может тут есть понимающие люди монитор в полоску весь но на видеокарту и на монитор не могу установить как устанавливаю так я висну на виндовс и покрытый в полоску.Вопрос такой можно ли исправить

25. ComanderCH
Здравствуйте, я пытаюсь разогнать память на все 1600 МГц, но у меня всегда получается 799,6 * 2 = 1599,2 МГц, вот 10-10-10-28 1Т (1.650V) выставлено так, дальше боюсь крутить так как небольшой опыт во всем этом. LGA 1155

26. John Crichton
Про подбор таймингов разогнанной памяти так и не было ничего сказано, а это самое главное, одно из самых главных, это не обзор по разгону оперативки, это просто обзор возможностей биоса;(

27. Николай Должанский
У меня например 1 оперативный модуль hyper x savage на 8 гигов и 800Мгц, хотя в описании написано 1600, есть смысл разгонять и даст ли это вообще что-нибудь весомое в играх?

28. Артем Кулик
Подскажите пожалуйста у меня процесор AMD Athlon ll x4651 3.0 за счет множителя выставил 3.3 но частоту памяти показывает 1066(планка стоит 4 gb 1600) что не так? заранее спасибо

29. Goha TV
тепер я знаю что память разгоняется из биоса. А как разогнать оперативную память(название ролика) - смотрите в интернете(совет автора)
верните 14 мин моей жизни!

30. Дмитрий Козлов
подскажи у меня стоит 2 плашки одна на 4 г дд3 1333мгц и на 2 г 1333мгц процессоа АМД феном х4 945 мать GA-MA770T-UD3 Можно ли поднять чистату до 1600 мгц

31. Malstr Malstrov
Норм!!! Недавно методом тыка только раздуплился, сделал, но не запомнил.... А тут видео посмотрел и вроде все так и делал.... спасибо.

33. Jono Bacon
Молодец. С первого захода разогнал свой старый Е8400 до 3600 а память с 800 до 960 мгц. Завтра еще попробую. готовлюсь к приезду Xeon e5440.

34. StreLok _
Спасибо) с помощью тебя я играю в самые новые и требовательные игры потому что старый комп сгорел и мне родители купили новый)

35. Сергей ФОМИН
Удалось первый ддр с 400 МГц кастануть до ддр 3 начального уровня до 1066 МГц. На идеевском харде хрюшка забегала как надо.

36. Максим Маликов
А на хера ее вообще гнать? В играх получишь 1 фпс прирост!? Короче говоря бессмысленная и ничем неоправданная затея!

37. Никола Юта
ок спасибо,значит тайминги можно выровнить...у меня обе гудрам ддр2 дим по 2гб,но на одной тайминг 5 а на 2й 6ка конфликт

38. DarK RedBuLL
Лучше мне разогнать мой процессор чутка. А то i7 930 CPU и частота его 2.80 мгц...
До какой частоты лучше разгонять мой проц?

39. Вася Рогов
пробовал таймини ставить 10 10 10 30 и поднимал напряжение до 1.7!Я не мастре по разгону,подскажите что еще попробовать

40. Typical User
ААААААААА... возьми карандаш и острым концом показывай, не прикасаясь к дисплею. Ненавижу, когда лапают монитор.

Пользуясь компьютером, многие из нас даже не догадываются, что производительность устройства можно значительно увеличить, не прибегая к «апгрейду» - обновлению аппаратных компонентов. Делается это при помощи так называемого «разгона» различных видов микросхем. В частности, данного рода процедура очень популярна в отношении модулей оперативной памяти ПК (ОЗУ), наряду с аналогичными экспериментами с процессорами, видеокартами и прочими аппаратными компонентами компьютера.

Какова практическая значимость разгона ОЗУ, не считая повышения производительности ПК? Эта процедура, в частности, может использоваться при сравнительном тестировании от разных производителей в сервисных центрах.

Разгон аппаратных компонентов ПК - это популярное в мире и в России хобби. Люди, которые им увлекаются, именуют себя интересным термином "оверклоккеры" (от англ. overclock, означающего в одной из трактовок "разгон").

Есть ряд нюансов, знание которых может оказаться полезным для энтузиастов "оверклоккинга" и IT-специалистов, занимающихся тестированием «железа». Как разогнать оперативную память и обеспечить при этом наибольший прирост производительности ПК? Как обеспечить стабильную работу компьютера в «разогнанном» режиме? Как выбрать оптимальный метод "оверклоккинга" и при этом не навредить другим аппаратным компонентам компьютера?

Методы разгона ОЗУ

IT-специалисты, комментируя возможность разгона оперативной памяти, обычно акцентируют внимание на том, что как таковая микросхема ОЗУ, как правило, имеет заложенный заводом-изготовителем «иммунитет» к искусственному увеличению производительности. Поэтому разгонять модули отдельно от других аппаратных компонентов ПК может оказаться делом бесполезным. По этой причине на практике «оперативка» разгоняется практически всегда вслед за процессором. Отдельно — в крайне редких случаях. Прежде чем думать над тем, как разогнать оперативную память, пользователю ПК будет полезно изучить особенности ускорения производительности процессора.

Под «разгоном» оперативной памяти почти всегда понимают активизацию особых режимов ее работы. Каких именно?

Во-первых, это «разгон» посредством повышения модулей ОЗУ. Как правило, осуществляется эта процедура одновременно со сменой настроек процессора, направленных, в свою очередь, на увеличение его производительности.

Во-вторых, «разгон» ОЗУ может осуществляться посредством изменения так называемых «таймингов». Если их значения уменьшить, то процесс обмена электронными сигналами в микросхеме станет более интенсивным.

Некоторые специалисты выделяют также и третий способ ускорения производительности ОЗУ, а именно эксперименты с изменением значений, касающихся электрического напряжения в микросхеме.

Как разогнать оперативную память, используя все три выше описанных инструмента наиболее эффективно? Посмотрим, что рекомендуют IT-специалисты.

Выбор оптимального метода разгона ОЗУ

В силу технологических особенностей архитектуры модулей оперативной памяти оба вышеобозначенных метода их «разгона» не могут применяться в режимах выставления максимальных значений одновременно. Придется выбирать — высокие тайминги или же частоты, либо подбирать компромиссное сочетание настроек. Как разогнать оперативную память, корректно оптимизируя сочетание этих двух параметров?

IT-специалисты не дают однозначного ответа на этот вопрос. Есть только общие рекомендации. Одна из них звучит так: если мы выставим повышенные значения для тактовой частоты, то придется замедлять тайминги, иначе работа ПК будет нестабильной. А ускорение таймингов будет эффективным, только если тактовую частоту не повышать относительно заводского уровня.

Эксперты полагают, что все зависит от специфики архитектуры конкретных микросхем, а также от того, насколько корректно будут интерпретированы результаты тестирования разогнанных модулей.

Важнейший нюанс: многие специалисты отмечают, что пользователю, задумавшему разогнать процессор и память, нужно быть готовым к тому, что компьютер не ускорится, а, наоборот, замедлится. Такие случаи — не редкость. В этом случае идеальный вариант — не трогать заводские настройки ОЗУ и процессора. Лучшая оперативная память, полагают некоторые IT-эксперты — это та, которая работает по частотам и таймингам, выставленным производителем.

«Двойственность» частот ОЗУ: что нужно знать

Есть версия, что частота — определяющая характеристика в скорости работы ОЗУ. Поэтому при разгоне в первоочередном порядке следует уделять внимание именно этому параметру. Чем выше частота, тем больше операционных тактов производят модули ОЗУ в секунду. Тем, соответственно, выше скорость оперативной памяти. Вместе с тем есть здесь один интересный нюанс.

Эксперты советуют обратить внимание на то, что модули ОЗУ типа DDR имеют две «частотные» характеристики: реальную (фактическую) и эффективную. Причем вторая вдвое больше. Производители оперативной памяти крайне редко указывают фактическую. В то время как в программах диагностики и мониторинга работы аппаратных компонентов ПК, как правило, отображается именно такого типа частота.

Главные «тайминги»

Второй важнейший параметр при разгоне ОЗУ — тайминги. Их достаточно много, но в нашем случае нам пригодятся знания о четырех — CAS, RAS-to-CAS, а также Row Precharge и Row Active. В такой последовательности обычно указываются установленные в настройках значения таймингов.

Оптимальное рабочее напряжение

Оптимизация данного параметра важна с точки зрения стабильности работы разогнанного модуля ОЗУ. Заводское значение для модулей DDR2 составляет 1,8 вольт, для ОЗУ типа DDR3 чуть меньше — 1,5. Для «разгона» можно увеличивать напряжение, но ненамного. IT-специалисты рекомендуют выставлять значение в пределах 2,2 вольт для микросхем типа DDR2. Если же пользователь думает над тем, как разогнать оперативную память DDR3, то ему нужно иметь в виду, что для этого типа ОЗУ максимальное значение в вольтаже — 1,65. Если выше — то система может начать работать со сбоями. Специалисты отмечают: даже самая лучшая оперативная память от ведущих мировых брендов не гарантирует стабильности работы при манипуляциях с уровнем напряжения.

Тестируем производительность при разгоне

Как мы уже отметили выше, заранее сложно предугадать, какой метод разгона окажется эффективнее — манипуляции с тактовой частотой или таймингом. Поэтому если вы решили ускорить работу ПК, вам предстоит вооружиться специализированными программами, позволяющими вести мониторинг производительности разогнанных модулей ОЗУ.

На какие программы стоит обратить внимание? Эксперты советуют обзавестись таким ПО, как PC Mark и Everest. Какая именно программа для оперативной памяти подходит больше всего? Специалисты считают, что каждое из этих решений имеет свои плюсы и минусы. Многое зависит от субъективного уровня комфорта пользования этими программами, который определяет сам пользователь.

Данные виды ПО хороши, помимо качественного мониторинга в отношении производительности, наличием функций по отслеживанию стабильности работы модулей ОЗУ.

Измерять скорость оперативной памяти исключительно важно с точки зрения выбора оптимального сочетания инструментов для разгона микросхем.

Инструментарий разгона ОЗУ

Выставить необходимые значения частоты или поменять настройки в таймингах можно двумя способами: через интерфейс БИОС либо воспользовавшись специальным ПО. Многие IT-специалисты рекомендуют первый вариант, так как в этом случае осуществляется низкоуровневое взаимодействие с аппаратными компонентами ПК.

Таким образом, мы имеем дело с удивительной рекомендацией от IT-экспертов: не пользоваться ПО, запускамым из операционной системы. Лучшая, таким образом, программа для разгона оперативной памяти — это BIOS, система ввода-вывода.

Манипуляции с частотой: ключевые нюансы

Эксперты в области разгона аппаратных компонентов ПК считают, что подходить к изменению частоты ОЗУ нужно с особой осторожностью. Дело в том, что данный параметр нельзя выставить посредством корректировки какой-то одной цифры. Общая частота памяти — результат произведения двух разных параметров: FSB и BCLK (при этом к ним добавляется дополнительный коэффициент-множитель, который также можно менять). Произведение FSB и BCLK — это так называемая «опорная частота». Именно ее предстоит корректировать в процессе «разгона» ОЗУ. Эксперименты с коэффициентом-множителем без изменения опорной частоты, как правило, не приводят к видимым результатам.

Процессор как фактор эффективности разгона ОЗУ

Многие IT-эксперты считают, что подходы к разгону модулей ОЗУ следует выбирать, исходя из конкретной модели процессора. Вполне возможно, что выставление одних и тех же значений частоты, напряжения и таймингов при использовании модулей на разных процессорах будет сопровождаться совершенно противоположными результатами.

Разгоняем память с процессором Intel

Тесты, проводимые IT-специалистами, показывают, что при разгоне памяти, используемой в сочетании с современными процессорами Intel (особенно с теми, что построены на архитектуре Sandy Bridge), существуют следующие закономерности.

Во-первых, многие из микросхем Intel плохо поддаются корректировке в отношении параметра BCLK. Если его значения изменить, то ПК может начать работать нестабильно. Поэтому экспериментировать, скорее всего, будет возможно только с множителем.

Есть вместе с тем в линейке Intel процессоры, которые, как отмечают эксперты, прекрасно адаптированы к работе при разгоне памяти. Например, это микросхемы таких типов, как Core i7-8 (они собраны на базе архитектуры Lynnfield). Наименьшей совместимостью с разгоном памяти, как считают некоторые специалисты, обладают процессоры Intel, собранные на базе технологии Clarkdale (особенно новейших серий).

Специалисты отмечают, что на результативность ускорения ОЗУ при разгоне на процессорах Intel влияют параметры материнской платы ПК, а именно то, какие на ней использованы чипсеты. Быстрая работа одних микросхем в должна сопровождаться не меньшей динамикой производительности других. ПК — это комплекс электронных компонентов. Чем слаженнее их работа — тем быстрее и стабильнее функционирует компьютер. Если в распоряжении пользователя — низкопроизводительная материнская плата, оперативной памяти, скорее всего, никакой разгон не поможет.

Наилучшей совместимостью с разгоном памяти обладают микросхемы с чипсетом типа P67 Express.

Разгон памяти и процессоры AMD

IT-специалисты отмечают, что компания AMD характеризуется несравненно большей консервативностью в подходах к изменению архитектуры выпускаемых процессоров. Поэтому разогнанные модули ОЗУ в тандеме с микросхемами от AMD, полагают эксперты, ведут себя более предсказуемо, чем в случае использования в сочетании с процессорами Intel. Однако достигаемый уровень производительности, как отмечают IT-специалисты, при разогнанных модулях ОЗУ в тандеме с процессорами AMD обычно ниже.

Достаточно хорошо себя проявляют при разгоне ОЗУ микросхемы Phenom II, Athlon II. Опорная частота в них составляет 200 мегагерц. Для лучшего результата рекомендуется выставлять частоту для контроллера памяти в три, а порой даже более раз выше, чем аналогичный показатель для модулей памяти.

Специалисты отмечают, что память DDR3, считающаяся одной из самых производительных, почти не разгоняется на ПК, оснащенных процессором AMD. Важно при этом убедиться, что на материнской плате стоят иного типа модули. Прежде чем приступать к разгону, нужно изучить каждый слот оперативной памяти, посмотреть, какая на микросхемах стоит маркировка.

Что лучше разгонять: процессор или память?

На этот вопрос IT-эксперты не дают однозначного ответа. Почти всегда имеет смысл делать и то и другое одновременно. Вместе с тем некоторые специалисты полагают, что отдельный разгон процессора даст гарантированное увеличение производительности системы. В то время как эффект от использования разогнанной памяти не всегда сопровождается реальным ускорением работы ПК, а иногда даже, наоборот, система начинает «тормозить».

Как разогнать оперативную память компьютера так, чтобы производительность гарантированно выросла, но при этом снизилась вероятность возникновения неисправностей? Раскрыть реальный потенциал аппаратных компонентов ПК, как считают IT-эксперты, можно, реализуя комплексный подход, который выражается в одновременной работе по разгону самых разных типов «железа».

В частности, практическая значимость увеличения производительности ПК возникает, как правило, при запуске компьютерных игр и мощных графических приложений. Поэтому одновременно с ОЗУ и процессором имеет смысл разогнать также и видеокарту. Выставляя параметры оперативной памяти, предполагающие искусственное ускорение ее работы, следует сопоставлять их со значениями, которые потребуется устанавливать для других аппаратных компонентов ПК.

Аспект охлаждения

Выставить оптимальные значения по частоте и таймингам — половина дела. Очень важно позаботиться о том, чтобы аппаратура выдержала повышенные в силу проведенного разгона нагрузки. Поэтому прежде чем искусственно увеличивать скорость работу ОЗУ, следует убедиться, что на ней установлена мощная система охлаждения.

Планки оперативной памяти должны находиться в непосредственной близости от радиаторов. Это правило касается, между тем, не только ОЗУ, но и процессора (а также иных «разгоняемых» видов «железа»). Очень важно, чтобы вентиляция качественно обдувала каждый слот оперативной памяти, обеспечивала постоянную циркуляцию воздуха. В некоторых случаях имеет смысл установить одновременно с заводскими кулерами дополнительную систему

Оперативная память не менее важна для быстродействия компьютера, чем центральный процессор и видеокарта. И если мы уже разобрались с разгоном процессора, то почему бы нам не раскрыть вопрос, как разогнать оперативную память на компьютере? Думаю, этот вопрос не менее актуален. Однако здравствуйте!

Конечно же, вам нужны будут небольшие познания работы с BIOS, но страшного в этом ничего нет, особенно, если вы уже пробовали . А вот можно и не заходя в БИОС, достаточно воспользоваться бесплатной программой MSI Afterburner, но сегодня не об этом.

Ну что же, думаю самое время приступить к делу. Закатите рукава повыше и подвиньте клавиатуру поближе.

Прежде чем разогнать ОЗУ

По идее, что бы вы ни сделали с вашей оперативной памятью в ходе экспериментирования и разгона, вы не сможете ей никак навредить. Если настройки будут критическими, то компьютер попросту не включится или автоматически сбросит настройки на оптимальные.

Однако не стоит забывать и о том, что любое повышение производительности оперативной памяти снижает срок ее жизни. Да, так и в жизни, бодибилдеры не бывают долгожителями.

Очень важно понимать также, что разгон оперативной памяти компьютера это не просто увеличение ее тактовой частоты! Вам придется провести множественные эксперименты по настройке и тонкой подстройке таких параметров, как тактовая частота, напряжение и тайминги задержки. Если вы увеличиваете частоту, то тайминги придется тоже увеличивать, но ОЗУ, как известно, работает тем быстрее, чем ниже эти тайминги задержки. Палка о двух концах.

Именно поэтому, разгоняя оперативную память, подобрать оптимальные настройки получится далеко не с первого раза. Хотя, если у вас ОЗУ какого-то именитого бренда, то скорее всего данную модель оперативной памяти уже кто-то пробовал разгонять и, вполне вероятно, выложил полезную информацию где-нибудь в интернете на специализированных форумах. Нужно только поискать немного.

Учтите еще, что если даже вы нашли на каком-то форуме оптимальные параметры для разгона именно вашей оперативной памяти, то это совсем не означает, что в вашем случае эти параметры также окажутся оптимальными и максимально производительными. Очень многое зависит от связки ЦП-Мать-ОЗУ . Поэтому, если вы хотите сразу оптимальные параметры для разгона ОЗУ, то вам будет полезно иметь на вооружении некоторую информацию о вашем компьютере. Постарайтесь ответить на вопросы:

  1. Какая у меня оперативная память ? Производитель и модель. А если память из бюджетного класса, то просто нужно знать , частоту, тайминги задержки.
  2. Какой у меня процессор ? Модель, частота, размер кэш памяти 2-го и 3-го уровня.
  3. Какая у меня материнская плата ? И на ней?

Ответив на эти вопросы, смело отправляйтесь на форумы и ищите связки, похожие с вашей. Но опять же повторюсь, лучше всего провести эксперименты и выяснить, какие настройки и параметры будут оптимальными именно для вашей системы.

Разгон оперативной памяти (ОЗУ DDR3, DDR4) через БИОС

В принципе нет никакой принципиальной разницы, хотите вы разогнать оперативную память типа DDR3 или DDR4. Поиск настроек в биосе и последующее тестирование будет выглядеть примерно одинаково. А разгонный потенциал будет больше зависеть от производителя и качества ОЗУ и еще от материнской платы и процессора.

Также хочу отметить, что на большинстве ноутбуков в биосе не предусмотрена возможность изменять параметры оперативной памяти. А ведь весь этот «разгон» по сути, и основывается на подстройке параметров.

Разгон ОЗУ в биосе Award

Прежде чем начать разгон оперативной памяти в биосе Award , нужно нажать комбинацию клавиш Ctrl + F1 , чтобы появились расширенные меню настроек. Без этого «трюка» вы нигде не найдете параметры оперативной памяти, которые нам так сильно нужны.

Теперь ищите в меню пункт MB Intelligent Tweaker (M. I. T.) . Тут находятся необходимые нам настройки оперативной памяти, а именно System Memory Multiplier . Изменяя частоту этого множителя, вы можете повысить или понизить тактовую частоту вашей оперативной памяти.

Обратите также внимание на то, что если вы хотите разогнать оперативную память, которая работает в связке со стареньким процессором, то у вас, скорее всего, будет общий множитель на ОЗУ и процессор. Таким образом, разгоняя оперативную память, вы будете разгонять и процессор. Обойти эту особенность старых платформ, к сожалению, не получится.

Тут же вы можете увеличить подачу напряжения на ОЗУ. Однако это чревато последствиями, поэтому напряжение нужно трогать, только если вы понимаете, что вы делаете и зачем вы это делаете. В противном случае, лучше оставьте все как есть. А если все же решились, то не понимайте напряжение больше чем на 0,15В.

После того, как вы определились с частотой (так вам пока кажется) и напряжением (если решились) выходим в главное меню и ищем пункт меню Advanced Chipset Features . Тут вы сможете подобрать тайминги задержки. Для этого предварительно нужно изменить значение параметра DRAM Timing Selectable из Auto на Manual , то есть на ручную настройку.

Разгон ОЗУ в биосе UEFI

Биос UEFI является наиболее молодым биосом из всех, а потому и выглядит почти как операционная система. По этой же причине пользоваться им намного удобнее. Он не лишен графики, как его предки и поддерживает разные языки, в том числе русский.

Ныряйте сразу в первую вкладку под аббревиатурным названием M. I. T. и заходите там в «Расширенные настройки частот ». Благодаря русскому интерфейсу тут вы точно не запутаетесь. Все аналогично первому варианту – регулируйте множитель памяти .

Потом заходите в «Расширенные настройки памяти ». Тут мы управляем напряжением и таймингами. Думаю, все понятно с этим.

Дольше останавливаться на биосах не вижу смысла. Если у вас какой-то другой биос, то либо методом научного тыка найдете необходимый пункт, либо читайте мануалы по вашему биосу.

Правильный разгон оперативной памяти (формула)

Да, конечно же, чтобы подобрать лучшие параметры и повысить производительность ОЗУ и системы в целом, нужно экспериментировать, и каждый раз тестировать систему на производительность и стабильность.

Но скажу вам по секрету, узнать наилучшую производительность можно не только опытным путем, а еще и математическим. Однако тесты на стабильность все равно никто не отменяет.

Итак, как вывести коэффициент эффективности работы ОЗУ? Очень просто. Нужно поделить рабочую частоту памяти на первый тайминг. Например, у вас DDR4 2133 МГц с таймингами 15-15-15-29. Делим 2133 на 15 и получаем некое число 142,2. Чем выше это число, тем теоретически выше эффективность оперативной памяти.

Как известно, при разгоне ОЗУ без увеличения напряжения, поднимая частоту, скорее всего, придется поднять и тайминги на 1 или 2 такта. Исходя из нашей формулы, можно понять, обосновано ли поднятие частоты или нет. Вот пример настройки одной и той же планки ОЗУ:

DDR4-2133 CL12-14-14 @1.2V
2133 / 12 = 177.75

DDR4-2400 CL14-16-16 @1.2V
2400 / 14 = 171.428

DDR4-2666 CL15-17-17 @1.2V
2666 / 15 = 177.7(3)

Вот и получается, что если частота 2400 МГц требует поднять тайминги на 2 такта по сравнению со стандартными таймингами, то нам это абсолютно не выгодно. А вот с частотой 2133 и 2666 МГц можно провести тесты производительности и стабильности системы, чтобы выбрать, какой из них для нас оптимальный.

Тестирование производительности и стабильности системы после разгона ОЗУ

После каждой подстройки оперативной памяти в биосе (то есть после разгона) сохраняйте настройки биоса и запускайте систему. Если система запустилась, это уже хорошо, если нет – компьютер перезагрузится с заводскими настройками. А если компьютер совсем не включается, то настройки можно сбросить вручную, замкнув на материнской плате контакт Clear CMOS (JBAT1) любым металлическим предметом или перемычкой.

После этого вам нужно будет проверить систему на стабильность , запустив один из специальных тестов (например, в AIDA64 или Everest) или запустив игру, которая может хорошенько нагрузить систему. Если компьютер не выключается, не перезагружается, не выдает ошибку, не зависает и не появляется синий экран смерти, значит, эти настройки разгона оперативной памяти вам подошли.

Отсеивайте те комбинации настроек, при которых компьютер работает нестабильно. А те, которые работают стабильно, проверяйте на производительность и сравнивайте.

Можно использовать многочисленные бенчмарки (в том числе встроенными в AIDA64 или Everest) и проверять с какими настройками сколько баллов наберет ваша система. А можно использовать старый добрый архиватор. Создайте папку для теста, накидайте в нее всякого хлама (файлы среднего и маленького размера) и заархивируйте ее архиватором. При этом засеките, сколько времени на это уйдет. Победит, конечно же, та настройка, при которой архиватор справится с тестовой папкой максимально быстро.

Тестирование моей оперативной памяти в бенчмарке Everest’a

Резюме:

Чем же можно резюмировать эту статью. Первое, что я хочу вам сказать – разгон оперативной памяти – это не так уж и просто . И, если вы прочитали даже 20 статей на эту тему – это еще не означает, что вы знаете, как разогнать оперативную память .

Второе – разгон оперативной памяти не повысит производительность вашей системы так же сильно, как , если только вы не обладатель процессора AMD Ryzen. В случае с этой линейкой процессоров от компании AMD, скорость оперативной памяти очень сильно влияет на быстродействие процессора. Это обусловлено принципиально новой архитектурой процессора, в которой кэш память процессора оказалась слабым звеном.

ОЗУ не самая дорогая вещь в компьютере. Вот и подумайте, может быть вам лучше не разгонять, а просто ?

В любом случае, удачи вам в экспериментах и делитесь своими результатами, нам тоже интересно!

Вы дочитали до самого конца?

Была ли эта статься полезной?

Да Нет

Что именно вам не понравилось? Статья была неполной или неправдивой?
Напишите в клмментариях и мы обещаем исправиться!