Сервоприводы - это устройства, которые предназначены для управления приборами. Осуществляется этот процесс при помощи обратной связи. На сегодняшний день различают асинхронные и синхронные модификации. По устройству модели могут довольно сильно различаться. Также следует учитывать, что существуют модификации линейного типа. Отличаются они большим параметром ускорения.

По принципу действия сервоприводы бывают электромеханического и электрогидромеханического типов. Встретить вышеуказанные приборы чаще всего можно в промышленной сфере. Там они отвечают за работу различного оборудования. В частности, сервоприводы занимаются управлением станков.

Устройство

Схема сервопривода включает в себя датчик, блок питания, а также плату управления. Дополнительно в моделях можно встретить конвертер. Чаще всего он устанавливается линейного типа. В данном случае многое зависит от привода. Представлен он в сервоприводе, как правило, в виде электромотора с редуктором. Однако на сегодняшний день имеется множество модификаций с пневмоцилиндрами.

Как собрать модель?

Сделать сервопривод своими руками довольно просто. Если рассматривать простую модификацию, то в первую очередь следует подобрать корпус для устройства. В данном случае многое зависит от габаритов привода. Для самодельного устройства целесообразнее использовать маломощный электродвигатель. При этом редукторная коробка должна быть установлена рядом.

Далее, чтобы собрать сервопривод своими руками, нужно подобрать потенциометр аналогового типа. В магазине его найти не составит труда. После этого следует заняться установкой датчика. Как правило, плата управления подбирается серии РР20. Для поворотных регуляторов она подходит хорошо. В конце работы останется только установить конвертер. Все это необходимо для того, чтобы подсоединить устройство к сети.

Модель для отопления

Сервопривод для отопления в наше время является очень востребованным. Отличаются данные устройства высоким параметром предельной частоты. Двигатели чаще всего в моделях используются асинхронного типа. При этом мощность их находится на уровне 2 кВт. Для передачи вращательного момента на вал используются малые шестерни. На сегодняшний день наиболее распространенным принято считать сервопривод для отопления с аналоговыми потенциометрами.

Однако цифровые модели также не являются редкостью. Для повышения пропускной способности устройства применяются специальные контроллеры. При этом управленческие платы устанавливаются самые разнообразные. Для подключения устройства к сети стандартно используются конвертеры. В наше время чаще всего их можно встретить линейного типа. Ремонт сервопривода для отопления может делаться только в сервисном центре.

Устройство с клапаном

Клапан с сервоприводом, как правило, используется в промышленной сфере. Там он способен отвечать за регулировку станков. Отличительной особенностью данных моделей принято считать мощные двигатели. При этом параметр предельной частоты у них достигает 22 Гц. Все это, в конечном счете, дает приборам хорошее ускорение. Непосредственно моторы можно встретить в основном асинхронного типа. Соединение с валом клапан с сервоприводом имеет шестерного типа. Регуляторы в таких устройствах встречаются поворотного и кнопочного вида. В данном случае клапаны могут использоваться только односторонние.

Модель для печки

Сервопривод печки в среднем мощность имеет на уроне 2 кВт. Двигатели чаще всего устанавливаются асинхронного типа с предельной частотой на отметке в 31 Гц. Отличительной особенностью таких устройств принято считать наличие резистивного элемента. В его обязанности входит повышение пропускной способности модели. Редукторы чаще всего устанавливаются низкочастотного типа. Дополнительно следует отметить, что на рынке представлено множество модификаций с потенциометрами.

Управленческие платы, как правило, имеются серии РР20. Для многофункционального контроля печки они подходят идеально. В данной ситуации выходные валы подсоединяются напрямую к коробке редуктора. Все это необходимо для того, чтобы повысить крутящий момент. В качестве рычага производители используют плечо. Устанавливается оно, как правило, не большого размера. Подключается сервопривод печки к сети через специальные контакты на конвертере. В данном случае статор к устройству подсоединять можно. Дополнительно сервопривод отлично способен выполнять функции усилителя.

Устройство для регулировки заслонки

Сервопривод заслонки можно сделать даже самостоятельно. В данной ситуации электромотор имеет смысл подбирать с мощностью не более 2 кВт. В противном случае выходной вал не выдержит больших нагрузок и поломается. При сборке в первую очередь устанавливается коробка редуктора. Пневмоцилиндрические устройства используются довольно редко.

Статоры в сервопривод заслонки монтируются часто электронного типа. Конвертер устанавливается в модель только после плеча. Затем необходимо уделить внимание управленческой плате. Выходной вал в данном случае должен быть закреплен на оси. Для этого подбирают металлическую проволоку не больших размеров. В последнюю очередь останется только подсоединить проводы к конвертеру. Далее их напрямую появится возможность подключить к блоку управления.

Модель с краном

Кран с сервоприводом позволяет регулировать напор воды. Встретить прибор данного типа чаще всего можно в промышленной сфере. В данном случае используются только пневмоцилиндры. В свою очередь электромоторы встречаются довольно редко. Статорные коробки для сервопривода подходят ручного типа. Для регулировки устройства обязана быть предусмотрена специальная плата.

На сегодняшний день многие производители отдают предпочтение модификации РР20. Непосредственно контроллеры устанавливаются поворотного типа. Подключение сервопривода к сети осуществляется при помощи конвертера. На рынке в наше время представлены как нелинейные, так и линейные его типы.

Синхронные модификации

Синхронный сервопривод - что это? На самом деле указанное устройство используется для регулировки станков. При этом в вентиляционных системах они также являются востребованным. Датчики у моделей устанавливаются, как правило, проворного типа. В данном случае мощность двигателя может варьироваться от 1 до 3 кВт. Отдельного внимания в устройствах заслуживает конвертер. Устанавливается он, как правило, на два контакта. Однако имеются и другие модификации.

Статоры используются цифрового типа, и регулировать их можно при помощи котроллера. Еще одной отличительной чертой данных устройств принято считать наличие энкодеров. Данные детали необходимы для обратной связи. Параметр предельной частоты у сервоприводов не превышает 35 Гц. Подключение устройства к сети осуществляется только через клеммы. Дополнительно следует отметить, что резистивные механизмы используются, как правило, низкочастотного типа. Самостоятельно сложить сервопривод довольно сложно. Однако в данном случае многое зависит от типа управленческой платы.

Асинхронные сервоприводы

Асинхронный сервопривод - что это? В действительности указанное устройство предназначено исключительно для оборудования, которое блок питания имеет на 15 В. В этом случае мощность прибора, как правило, не превышает 2 кВт. Нагрузку максимум потенциометр в моделях способен выдерживать на уровне 23 А. Для передачи крутящего момента от мотора используются не большого диаметра выходные валы. При этом рычаг двигается за счет шестерни.

Изменение частоты вращения происходит благодаря котроллеру. Управление сервоприводом осуществляется при помощи специальной платы. В некоторых случаях для изменения положения регулятора используется плечо. Резистивные устройства чаще всего устанавливаются низкочастотные. При этом сервоприводы на пневмоцилиндрах в наше время встречаются довольно редко. Чтобы самостоятельно собрать такую модификацию, потребуется мощный редуктор. Также для него следует подобрать статор ручного типа.

Сервоприводные модификации линейного движения

Линейного движения сервопривод - что это? На самом деле указанное устройство является регулятором с обратной связью. На сегодняшний день модели очень востребованы. Для различных систем отопления они подходят идеально. Конвертеры в них чаще всего используются на три контакта. Статорные коробки устанавливаются различной мощности. Двигатели могут использоваться только синхронного типа.

В противном случае блоки питания не выдерживают предельного напряжения. В качестве приводов в данной ситуации применяются редукторные коробки. Для передачи крутящего момента от двигателя используются шестерни. Да сегодняшний день на рынке представлено множество модификаций с выходным валом. В данном случае регулировать скорость оборотов можно при помощи котроллера. Также следует помнить, что в устройствах имеются специальные платы. Устанавливаются они с маркировкой Р20. Смена режима в данном случае производится за счет контроллера. Роторные модификации сервоприводов в наше время встречаются довольно редко. Используются они чаще всего для управления станками.

Устройства для промышленных роботов

Для сервопривод - что это? В действительности указанное устройство является многофункциональным котроллером. В данном случае платы используются серии РР30. За счет этого у пользователя открывается возможность регулировать параметр предельной частоты. В среднем он колеблется в районе 25 Гц. Работают устройства данного типа от блоков питания на 15 В.

Управление сервоприводом осуществляется часто при помощи регулятора поворотного типа. Однако цифровые аналоги в наше время не являются редкостью. Роторы применяются в устройствах исключительно низкочастотные. Все это необходимо для быстрого ускорения сервопривода. Потенциометры можно встретить как аналогового, так и цифрового типа. Редукторные коробки по конструкции могут довольно сильно отличаться. Самостоятельно собрать сервопривод указанного типа сложно. В данном случае проблема заключается в поиске нужного контролера.

Сервоприводные модели для полиграфических станков

Для полиграфических станков модели необходимы с синхронными типами моторов. Мощность их обязана достигать 2 кВт. Параметр предельной частоты приветствуется на уровне 30 Гц. На сегодняшний день большинство производителей выпускают сервоприводы с аналоговыми потенциометрами. Также следует отметить, что редукторные коробки, как правило, используются плоские. Все это необходимо для того, чтобы устройство было компактным.

Отдельного внимания в сервоприводах данного типа заслуживают роторы. Показатель проводимости у них обязан минимум составлять 3 мк. Все это необходимо для хорошего ускорения. Выходные валы в данном случае используются небольшого диаметра. Конвертеры чаще всего можно встретить на три контакта. Для блоков питания на 20 В они подходят идеально. Статорные коробки устанавливаются различной формы и по конструкции могут сильно различаться. В этой ситуации многое зависит от энкодера, который установлен в сервоприводе.

Устройства для швейных машин

Сервоприводы данного типа отличаются от прочих устройств своей компактностью. Двигатели у таких моделей чаще всего можно встретить асинхронного типа. От сети с напряжением 220 В они работают без каких-либо проблем. Регулятор в данном случае используется поворотного типа. Максимум параметр предельной мощности достигает 1.2 кВт. Пороговая частота в этой ситуации едва доходит до отметки 20 Гц. Потенциометры используются только аналогового типа.

Редукторные коробки для этой модификации подходят маломощные. Сервоприводы на две шестерни попадаются довольно часто. Однако в основном устанавливаются роторы для передачи крутящего момента от мотора. Выходные валы обладают малой частотой вращения. При этом нагрузка на плечо оказывается небольшая. Контроллеры в данном случае используются одноканальные. При этом менять параметр мощности у пользователя нет возможности. Датчик обратной связи в сервоприводах данного типа располагается возле статора.

Сервоприводные модификации для упаковочных станков

Модель данного типа чаще всего работает от движения пневмоцилиндров. При этом блоки питания часто используются на 12 В. В данном случае системы защиты устанавливаются довольно часто. Конвертеры можно встретить на два и три контакта. Статорные коробки устанавливаются различной конфигурации. В некоторых случаях датчики обратной связи в сервоприводах заменяются энкодерами. Роторные коробки на предельное напряжение должны быть рассчитаны в районе 12 В. Резистивные механизмы в устройствах встречаются довольно редко.

Самостоятельно собрать сервопривод данного типа можно. С этой целью лучше всего подобрать аналоговый потенциометр. При этом конвертер лучше использовать на два контакта. Вместо энкодера многие специалисты рекомендуют применять датчики обратной связи. Однако для их успешной эксплуатации необходимо проверить устройство на чувствительность. Регулятор проще всего использовать поворотного типа из пластика. Модуляторы применяются только одноканальные.

Учимся управлять сервомотором с использованием Arduino.

Сначала мы рассмотрим как обеспечить вращение выходного вала серводвигателя в автоматическом режиме "вперед" и в обратном направлении. После этого дополнительно включим в схему потенциометр, который обеспечит управление поворотом сервопривода.

Необходимые узлы

Для того, чтобы освоить приведенные в статье методики управления сервоприводом вам понадобятся:

1 переменный резистор (потенциометр) на 10 кОм



1 микроконтроллер Arduino Uno



1 конденсатор на 100 мкФ (не обязательно)


Схема подключения для "Sweep" (автоматическое вращение)

Для этого эксперимента вам надо подключить к Arduino только сервомотор.


На сервомоторе 3 контакта. Цвет контактов может отличаться в зависимости от фирмы производителя, но красный - это всегда контакт 5 В. Контакт GND (земля) может быть черным или коричневым. Оставшийся третий контакт - это сигнал, который используется для управления положением ротора сервы. Обычно он желтого или желтого цветов. Этот контакт мы подключаем к цифровому пину 9 на Arduino.

На контактах сервы предусмотрены разъемы, в которые можно установить коннекторы (провода) и соединить из макетной платой, а потом с Arduino.


Серводвигатель дергается

Иногда при подключении сервы не отрабатывают заданные команды или отрабатывают некорректно. Причем происходить это может только при подключении к определенным USB портам. Причина в том, что сервы требуют достаточно большую мощность для питания, особенно в начале движения ротора. Эти резкие скачки потребляемой мощности могут сильно "просаживать" напряжение на Arduino. Может произойти даже перезагрузка платы.

Если подобное происходит, вам надо добавить конденсатор (470 мкФ или больше) между рельсами GND и 5V на вашей макетке.


Конденсатор выполняет роль своебразного резервуара для электрического тока. Когда серводвигатель начинает работать, он получает остатки заряда с конденсатора и от источника питания Arduino одновременно.

Длинная нога конденсатора - это позитивный контакт, она подключается к 5V. Отрицательный контакт часто маркируется символом "-".

Скетч Arduino "Sweep" (автоматическое вращение)

Загрузите на Arduino скетч, который рассмотрен ниже. После загрузки ротор сервы должен начать вращаться в одном направлении, а потом в противоположном.

Программа основана на стандартном скетче "sweep", который вы можете найти в меню Arduino Examples в папке "servo".

#include <Servo.h>

int servoPin = 9;

int angle = 0; // угол сервы в градусах

servo.attach(servoPin);

// инкремент от 0 до 180 градусов

for(angle = 0; angle < 180; angle++)

servo.write(angle);

// теперь в обратном направлении от 180 до 0 градусов

for(angle = 180; angle > 0; angle--)

servo.write(angle);

Сервомоторы управляются серией импульсов. Для того, чтобы упростить управление сервами, написана специальная библиотека (Arduino library). С помощью этой библиотеки вы можете управлять сервой, задавая фактический угол поворота вала на выходе.

Управляющие команды для серв подобны встроенным в Arduino, но так как вы используете их далеко не во всех проектах, они хранятся в отдельной библиотеке. Если вы хотите использовать команды из библиотеки для серводвигателей, вам надо включить библиотеку в ваш скетч в Arduino IDE с помощью следующей строки:

#include <Servo.h>

Используем переменную "servoPin" для определения порта, который управляет сервой.

Следующая строка:

инициализирует новую переменную "servo" типа "Servo". Библиотека предоставляет нам новый тип данных наподобие "int" или "float", который отвечает за серву. Таким образом вы можете инициализировать восемь серводвигателей. Например, если у нас две сервы, можно записать следующее:

В теле функции "setup" мы должны согласовать переменную "servo" с пином, который будет управлять серводвигателем, используя команду:

servo.attach(servoPin);

Переменная "angle" используется для указания текущего угла поворота сервы в градусах. В теле функции "loop" мы используем используем два цикла "for". Один - для увеличения угла поворота в одном направлении и второй - для возврата, когда мы совершили поворот на 180 градусов.

servo.write(angle);

Сообщает серве, что надо обновить угол поворота выходного вала сервомотора в соответствии с углом, который указан в качестве параметра.

Схема подключения сервы с потенциометром ("Knob")

Следующий этап - добавить , чтобы управлять положением выходного вала сервы с помощью поворота ручки переменного резистора.

Надо просто добавить на макетную плату потенциометр и проводник от контакта сигнала с потенциометра на пин A0 на Arduino.


Скетч Arduino "Knob" (управление сервой с помошью потенциометра)

Программа, в которой положение выходного вала сервы контролируется углом поворота ручки потенциометра даже проще, чем рассмотренный ранее автоматический поворот и возврат в исходное положение.

#include <Servo.h>

int servoPin = 9;

servo.attach(servoPin);

int reading = analogRead(potPin); // от 0 до 1023

int angle = reading / 6; // от 0 до 180

servo.write(angle);

В скетче добавлена переменная с именем "potPin".

Для того, чтобы вывести вал сервы в положение, мы считываем значение с контакта Arduino A0. Значение с этого контакта будет находится в диапазоне между 0 и 1023. Так как серва может поворачиваться только на 180 градусов, нам надо масштабировать полученные значения. Разделив значения с контакта A0 на 6 мы получаем угол в диапазоне от 0 до 170, что нас вполне устраивает.

Сервомоторы - общая информация

Сервомоторы - один из типов двигателей , коотрые часто используются в робототехнике, мехатронных проектах, проектах на Arduino.

Положение выходного вала сервомотора определяется длиной импульса. Серва может получать импульсы каждые 20 миллисекунд. Если импульс high длится 1 миллисекунду, угол поворота сервы будет равен нулю. Если 1.5 миллисекунды, тогда серва выйдет в свое центральное положение, а если 2 миллисекунды - выйдет в положение, которое соответствует 180 градусам.


Крайние положения сервомоторов могут отличаться. Кроме того, многие сервы могут поворачиваться на 170 градусов. Есть и "continuous" сервы, которые совершают оборот на полные 360 градусов.

Внутри сервы

На видео, которое приведено ниже, показано, что происходит внутри сервомотора.

Будьте аккуратны. Если вы разберете серву подобным образом, есть вероятность, что собрать обратно ее не получится.

Дальнейшие эксперименты с сервой и Arduino

Откройте скетч "sweep" и попробуйте сократить задержки с 15 миллисекунд до, скажем, 5 миллисекунд. Обратите внимание, насколько быстрее начали вращаться сервы.

Попробуйте изменить скетч "knob". Вместо того, чтобы ориентироваться на значения с потенциометра, реализуйте управление сервой с помощью значений, которые вы указываете в окне серийного моитора Arduino IDE.

Небольшая подсказка: для того, чтоьы скетч считывал значения угла с серийного монитора, вы можете использовать функцию Serial.parseInt(). Эта функция парсит (считывает) числовые значения с серийного монитора.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

В конструкциях современного оборудования, создаваемого на базе высоких технологий, постоянно развиваются и совершенствуются различные автоматические процессы. Среди них широкое распространение получил сервопривод, устанавливаемый с целью совершения отдельными элементами и деталями постоянных динамических движений. Эти устройства обеспечивают постоянный контроль над углами поворота вала, устанавливают нужную скорость в приборах электромеханического типа.

Составной частью этих систем являются серводвигатели, которые дают возможность управлять скоростями в нужном диапазоне в установленный промежуток времени. Таким образом, все процессы и движения могут периодически повторяться, а частота этих повторов закладывается в системе управления.

Устройство сервопривода

Основные детали, из которых состоит типовой серводвигатель - ротор и статор. Для коммутации применяются специальные комплектующие в виде штекеров и клеммных коробок. Управление, контроль и коррекция процессов осуществляется с помощью отдельного управляющего узла. Для включения и выключения сервопривода используется отдельная система. Все детали, помещаются в общем корпусе.

Практически во всех сервоприводах имеется датчик, работающий и отслеживающий определенные параметры, такие как положение, усилие или скорость вращения. С помощью управляющего блока поддерживается автоматический режим необходимых параметров при работе устройства. Выбор того или иного параметра происходит в зависимости от сигналов, поступающих от датчика в установленные промежутки времени.

Разница между сервоприводом и обычным электродвигателем заключается в возможности установки вала в точно заданное положение, измеряемое в градусах. Установленное положение, так же, как и другие параметры, поддерживаются блоком управления.

Их принцип работы заключается в преобразовании электрической энергии в механическую, с помощью электродвигателя. В качестве привода используется редуктор, позволяющий снизить скорость вращения до требуемого значения. В состав данного устройства входят валы с шестернями, преобразующими и передающими крутящий момент.

Как работает сервопривод

Вращение выходного вала редуктора, связанного шестернями с сервоприводом, осуществляется путем запуска и остановки электродвигателя. Сам редуктор необходим для регулировки числа оборотов. Выходной вал может быть соединен с механизмами или устройствами, которыми необходимо управлять. Положение вала контролируется с помощью датчика обратной связи, способного преобразовывать угол поворота в электрические сигналы и на котором построен принцип работы всего устройства.

Этот датчик известен также, под названием энкодера или потенциометра. При повороте бегунка, его сопротивление будет изменяться. Изменения сопротивления находится в прямой пропорциональной зависимости с углом поворота энкодера. Данный принцип работы позволяет устанавливать и фиксировать механизмы в определенном положении.

Дополнительно каждый серводвигатель имеет электронную плату, обрабатывающую внешние сигналы, поступающие от потенциометра. Далее выполняется сравнение параметров, по результатам которого производится запуск или остановка электродвигателя. Следовательно, с помощью электронной платы поддерживается отрицательная обратная связь.

Подключить серводвигатель можно с помощью трех проводников. По двум из них подается питание к электродвигателю, а третий служит для прохождения сигналов управления, приводящих вал в определенное положение.

Предотвратить чрезмерные динамические нагрузки на электродвигатель возможно с помощью плавного разгона или такого же плавного торможения. Для этого применяются более сложные микроконтроллеры, обеспечивающие более точный контроль и управление позицией рабочего элемента. В качестве примера можно привести жесткий диск компьютера, в котором головки устанавливаются в нужную позицию с помощью точного привода.

Управление серводвигателем

Основное условие, чтобы серводвигатель мог нормально работать, заключается в их функционировании совместно с так называемой системой G-кодов. Эти коды представляют собой набор команд управления, заложенный в специальную программу.

Если в качестве примера взять ЧПУ - числовое программное управление, то в данном случае сервоприводы будут взаимодействовать с . В соответствии с уровнем входного напряжения они способны изменить значение напряжения на возбуждающей обмотке или якоре электродвигателя.

Непосредственное управление серводвигателем и всей системой осуществляется из одного места - блока управления. Когда отсюда поступает команда на прохождение определенного расстояния по оси координат Х, в цифровом аналоговом преобразователе возникает напряжение определенной величины, которое и поступает в качестве питания привода этой координаты. В серводвигателе начинается вращательное движение ходового винта, связанного с энкодером и исполнительным органом основного механизма.

В энкодере вырабатываются импульсы, подсчитываемые блоком, выполняющим управление сервоприводом. В программе заложено соответствие определенного количества сигналов с энкодера, установленному расстоянию, которое должен пройти исполняющий механизм. В нужное время аналоговый преобразователь, получив установленное число импульсов, прекращает выдачу выходного напряжения, в результате, серводвигатель останавливается. Точно так же под влиянием импульсов восстанавливается напряжение, и возобновляется работа всей системы.

Виды и характеристики

Серводвигатели выпускаются в самых разных вариантах, позволяющих использовать их во многих областях. Основные конструкции разделяются на коллекторные и , предназначенные для работы от постоянного и переменного тока.

Кроме того, каждый сервомотор может быть синхронным и асинхронным. Синхронные устройства обладают способностью задавать высокоточную скорость вращения, а также углы поворотов и ускорение. Эти приводы очень быстро набирают номинальную скорость вращения. Сервоприводы в асинхронном исполнении управляются за счет изменения параметров питающего тока, когда его частота меняется с помощью инвертора. Они с высокой точностью выдерживают заданную скорость даже при самых низких оборотах.

В зависимости от принципиальной схемы и конструкции, сервоприводы могут быть электромеханическими и электрогидромеханическими. Первый вариант, включающий редуктор и двигатель, отличается низким быстродействием. Во втором случае действие происходит очень быстро за счет движения поршня в цилиндре.

Каждый сервопривод характеризуется определенными параметрами:

  • Крутящий момент или усилие, создаваемое на валу. Считается наиболее важным показателем работы сервопривода. Для каждой величины напряжения существует собственный крутящий момент, отражаемый в паспорте изделия.
  • Скорость поворота. Данный параметр представляет собой определенный период времени, который требуется, чтобы изменить позицию выходного вала на 600. Эта характеристика также зависит от конкретного значения напряжения.
  • Максимальный угол поворота, на который может развернуться выходной вал. Чаще всего эта величина составляет 180 или 3600.
  • Все сервоприводы разделяются на цифровые и аналоговые. В зависимости от этого и осуществляется управление сервоприводом.
  • Питание серводвигателей. В большинстве моделей используется напряжение от 4,8 до 7,2В. Питание и управление осуществляется с помощью трех проводников.
  • Возможность модернизации в сервопривод постоянного вращения.
  • Материалы для редуктора могут использоваться самые разные. Шестерни изготавливаются из металла, карбона, пластика или комбинированных составов. Каждый из них обладает своими преимуществами и недостатками. Например, пластиковые детали плохо выдерживают ударные нагрузки, но устойчивы к износу в процессе длительной эксплуатации. Металлические шестерни, наоборот, быстро изнашиваются, зато они обладают высокой устойчивостью к динамическим нагрузкам.

Плюсы и минусы сервомоторов

Благодаря унифицированным размерам, эти устройства легко и просто устанавливаются в любые конструкции. Они безотказны и надежны, каждый из них работает практически бесшумно, что имеет большое значение при их эксплуатации на сложных и ответственных участках. Даже на невысоких скоростях можно добиться точности и плавных перемещений. Каждый сервопривод может быть настроен персоналом, в зависимости решения тех или иных задач.

В качестве недостатков отмечаются определенные сложности при настройках и сравнительно высокая стоимость.

Сервоприводом (англ. servo) называется такой привод, точное управление которым осуществляется через отрицательную обратную связь, и позволяет таким образом добиться требуемых параметров движения рабочего органа.

Механизмы этого типа имеют датчик, отслеживающий конкретный параметр, например скорость, положение или усилие, а также блок управления (механические тяги или электронную схему), задача которого - поддерживать в автоматическом режиме необходимый параметр в процессе работы устройства, в зависимости от сигнала с датчика в каждый момент времени.

Исходное значение рабочего параметра задается посредством управления, например или при помощи другой внешней системы, куда вводится численное значение. Так, сервопривод автоматически исполняет поставленную задачу, - опираясь на сигнал с датчика, он точно подстраивает заданный параметр, и поддерживает его устойчиво на исполнительном органе.

Многие усилители и регуляторы с отрицательной обратной связью могут быть отнесены к сервоприводам. Например, к сервоприводам относятся тормозная система и рулевое управление в автомобилях, где усилитель ручного привода обязательно имеет отрицательную обратную связь по положению.

Основные компоненты сервопривода:

    Привод;

    Датчик;

    Блок управления;

    Конвертер.

В качестве привода может использоваться например пневмоцилиндр со штоком или электродвигатель с редуктором. Датчиком обратной связи может быть или, например, . Блок управления - индивидуальный инвертор, преобразователь частоты, сервоусилитель (англ. Servodrive). В блок управления может сразу входить и датчик управляющего сигнала (конвертер, вход, датчик воздействия).


В самом простом виде блок управления для электрического сервопривода строится на базе схемы сравнения значений сигналов задаваемого и сигнала, идущего с датчика обратной связи, по результатам которого на электродвигатель подается напряжение соответствующей полярности.

Если требуется плавный разгон или плавное торможение, с целью избежать динамических перегрузок электродвигателя, то реализуют более сложные схемы управления на микропроцессорах, способные позиционировать рабочий орган более точно. Так к примеру устроен привод позиционирования головок в жестких дисках.

Точное управление группами или одиночными сервоприводами достигается применением контроллеров ЧПУ, которые, кстати, могут быть построены на программируемых логических контроллерах. Сервоприводы на основе таких контроллеров достигают по мощности 15 кВт, и могут развивать крутящий момент до 50 Нм.

Сервоприводы вращательного движения бывают синхронными, с возможностью исключительно точного задания скорости вращения, угла поворота и ускорения, и асинхронными, в которых скорость очень точно поддерживается даже на предельно низких оборотах.

Синхронные сервоприводы способны весьма быстро разгоняться до номинальных оборотов. Также распространены круглые и плоские сервоприводы линейного движения, позволяющие достигать ускорений вплоть до 70 м/с².

Принципиально сервоприводы подразделяются на электрогидромеханические и электромеханические. У первых движение порождается системой поршень-цилиндр, и быстродействие получается очень высоким. Вторые используют просто электромотор с редуктором, однако быстродействие получается ниже на порядок.

Область применения сервоприводов сегодня весьма широка, благодаря возможности исключительно точного позиционирования рабочего органа.

Здесь и механические задвижки, и клапаны, и рабочие органы различных инструментов и станков, особенно с ЧПУ, включая автоматы для заводского изготовления печатных плат, и различные промышленные роботы, и многие другие точные приборы. Очень популярны высокоскоростные сервоприводы в среде авиамоделистов. Конкретно у сервомоторов примечательна характерная равномерность движения и эффективность в плане энергопотребления.

Изначально в качестве приводов сервомоторов применялись моторы трехполюсные коллекторные, где ротор содержал обмотки, а статор - постоянные магниты. Мало того, имелся коллекторно-щеточный узел. Позже количество обмоток возросло до пяти, и крутящий момент стал больше, а разгон - быстрее.

Следующая стадия совершенствования - обмотки разместили снаружи магнитов, так уменьшился вес ротора, и сократилось время разгона, однако возросла стоимость. В итоге был сделан ключевой шаг совершенствования - отказались от коллектора (в частности распространение получили приводные моторы с постоянными магнитами на роторе), и двигатель получился бесщеточным, еще более эффективным, поскольку ускорение, скорость, и крутящий момент стали теперь еще выше.

В последние годы весьма популярными становятся сервомоторы , благодаря чему открываются широкие возможности как для любительского авиа и роботостроения (квадрокоптеры и т.д.), так и для создания точных станков.

В большинстве своем обычные сервоприводы для работы использует три провода. Один из них для питания, второй сигнальный, третий - общий. На сигнальный провод подается управляющий сигнал, согласно которому требуется установить положение выходного вала. Положение вала определяется схемой с потенциометром.

Контроллер по сопротивлению и значению сигнала управления определяет, в каком направлении нужно осуществить вращение, чтобы вал пришел в требуемое положение. Выше напряжение снимаемое с потенциометра - больше крутящий момент.

Благодаря высокой энергоэффективности, возможности точного управления, и отличным рабочим характеристикам, именно сервоприводы на базе бесколлекторных моторов все чаще можно встретить как в игрушках, так и в бытовой технике (сверхмощные пылесосы с фильтрами HEPA) и в промышленном оборудовании.

Попался под руку популярный недорогой сервопривод SG90. И задумалось управлять им, но без микроконтроллера. В этой статье я изложу ход мыслей разработчика при реализации одного из вариантов решения.

Кому интересно, прошу под кат.

Идея

Надо управлять сервоприводом, но без микроконтроллера.

Знания

Всем известно, что опыт и знания помогают творить и находить решения. На страницах Гиктаймса немало примеров использования сервопривода с применением контроллеров. В них подробно рассказано про систему управления сервоприводом. Примем этот опыт других разработчиков за знания необходимые нам для решения задачи. Сервопривод SG90 управляется ШИМ сигналом, параметры которого определяют положение ротора. Период ШИМ около 20 мС, длительность сигнала управления от 500 до 2100 мкС.

Задача

Идея и знания порождают задачу, которую необходимо решить. Сформулируем задачу для воплощения идеи. Это что-то вроде Технического Задания. Кажется, все просто, надо взять генератор импульсов с изменяемой скважностью, подключить питание к сервоприводу, а с генератора подать управляющий сигнал. Особо отметим, что в требованиях есть изменения скважности - то есть должны быть органы управления или пользовательский интерфейс.

Реализация

Вот тут и начинаются муки творчества: что взять и где взять? Можно найти готовый лабораторный импульсный генератор, например Г5-54 с ручками, кнопками, выставить нужные параметры, подключить генератор к сервоприводу. Однако это громоздко и не все могут позволить себе такую роскошь. Поэтому разработчики, опираясь на свой опыт и знания, пытаются совместить желание (идею-задачу) и возможности (материальные и творческие) для реализации задачи. Материальные возможности - это та “жаба” “А сколько и чего я хочу потратить на реализацию идеи?” Творческие возможности - это, “посмотрю-ка я, что у меня уже есть”. Это не обязательно какие-то материальные ценности, а опыт и знания предыдущих разработок, которые можно приспособить под реализацию. Также не лишним будет поискать (погуглить), что кто-то уже реализовывал что-то подобное. Для сокращения вариантов решения необходимо самому добавлять дополнительные требования, ограничивающие фантазии реализации. Например, добавим к требованиям еще одно условие, пусть это будет материальное ограничение, реализация должна быть недорогой .

Поиск альтернатив

Воспользовавшись интернетом, поищем варианты, которые предлагает СЕТЬ. Зададим в поиске: “генератор прямоугольных импульсов с переменной скважностью”. Получим очень много вариантов, как с применением интегральных таймеров NE555 (отечественный аналог КР1006ВИ1), так и на логических микросхемах. Из всего разнообразия я выбрал вариант генератора на инверторе с триггером Шмитта на входе. Во-первых, он самый простой, во-вторых, требует минимум деталей и самое интересное использует единственный логический элемент из шести, если, например, использовать микросхему 74HC14.

Схема такого генератора выглядит так:

Немного теории

Теория гласит, что частота такого генератора равна f = 1/T = 1/(0.8*R*C). Для получения требуемой частоты требуется выбрать номинал одного из элементов, задающих частоту. Так как логический элемент выполнен по технологии КМОП, то имеет большое входное сопротивление, поэтому можно применять элементы задающие небольшие рабочие токи. Выберем емкость С1 из ряда распространенных номиналов, например 0.47 мкФ. Тогда для получения требуемой частоты (50Гц) резистор должен быть приблизительно 53 кОм, но такого резистора в стандартном ряду нет, поэтому выберем 51 кОм.


На выходе такого генератора формируется сигнал близкий к меандру, поэтому нам необходимо скорректировать схему таким образом, чтобы она удовлетворяла требованиям задания. Для получения регулируемой длительности импульса на выходе необходимо изменить режим перезарядки конденсатора от высокого уровня на выходе, а именно, сократить время перезарядки. Для этого добавим в схему еще два элемента: диод и переменный резистор. Подойдет любой маломощный импульсный диод.

Тогда схема примет следующий вид:


Казалось бы: все, задача решена, но в крайних положениях переменного резистора поведение сервопривода нестабильно. Это связано с тем, что значение длительности импульсов, в крайних положениях переменного резистора, не соответствует требуемым. Лично мне также не по душе применение переменного резистора, поэтому я хочу изменить интерфейс управления, добавив новую “хотелку” в техническое задание, например чтобы скважность менялась в зависимости от освещенности. Для этого есть простое и недорогое решение: применить в качестве регулирующего элемента фоторезистор GL55xx (используют в проектах Arduino), изменение сопротивления которого лежит в широком диапазоне.

Далее начинается самое интересное. Расчетных формул для получения значений сопротивлений обеспечивающих требуемые длительности импульсов нет, поэтому на уровне интуиции (опытным путем, с помощью переменного резистора) определяем значения сопротивления, при которых устанавливаются требуемые значения длительностей импульсов. Затем изменяем схему так, чтобы при изменении сопротивления фоторезистора общее сопротивление изменялось, устанавливая требуемые значения длительностей импульсов.

Итоговая схема принимает следующий вид:

Пояснения к итоговой схеме

Конденсатор С1 номиналом 0.47 мкФ, определяет время перезаряда. Резистор R1 номиналом 51 кОм задает основную частоту повторения импульсов в районе 50 Гц. Комбинация резисторов R2-R4 в сумме будет изменяться в диапазоне от 2.5 кОм до 24 кОм в зависимости от освещенности. Вместе с диодом D1 эти резисторы будут влиять на время перезаряда конденсатора С1 при действии положительного импульса на выходе логического элемента, тем самым определять его длительность.

Результат

Подключив данный генератор к входу управления сервопривода получим возможность управлять им, изменяя освещенность фоторезистора. На видео можно посмотреть, что из этого получилось: