Я хочу рассказать о том, как мы строили свой собственный, хороший WLAN - Wireless LAN.

Эта статья будет полезна тем, кто собирается построить в своей компании WLAN, причем не простой, а хорошо управляемый и такой, чтобы пользователи этого WLAN были довольны, т. е. не замечали бы его после начального подключения.

Как это все начиналось

WLAN в нашей компании существует очень давно, с 2002 года, когда вся беспроводная сеть в офисе была представлена всего одной SOHO точкой 3COM стандарта 802.11b, которая покрывала весь офис. Нагрузка на нее была невелика, WiFi-устройств было очень мало.

Шли годы, офис увеличивался, появился стандарт 802.11g. Мы шли по пути постепенного увеличения количества SOHO точек с одинаковым SSID-ом. Задача была в том, чтобы WiFi просто был. Сначала был один этаж с 6 точками LinkSys WAP54G, затем появился второй этаж, куда мы начали ставить точки Cisco (они же LinkSys) стандарта gn. Если где-то не хватало покрытия, мы просто добавляли точку.

Пока клиентских устройств было не очень много, такая схема работала неплохо. Да, были проблемы с роумингом, когда клиент до последнего цеплялся за точку, с которой соединился вначале и не хотел переходить на другую точку, сигнал от которой лучше. Да, такой сетью было неудобно управлять: замена SSID-а или добавление нового, требовало обойти все точки, которых было в максимуме этой сети - 12 штук. Да, понять, что происходит в WLAN сети, было непросто, т. к. все точки работали «сами по себе» без централизованного управления. Даже определить количество одновременно подключенных клиентов было непросто. Отказоустойчивость такой сети также была не на высоте. Достаточно было «зависнуть» одной точке - и сразу появлялась дырка в покрытии. Но все это компенсировалось низкой стоимостью этой сети. Одна точка стоила $130-$150, собственно только из стоимости точек и складывалась стоимость сети.

Одновременно росло количество WiFi-клиентов, которых уже не устраивал «просто WiFi в офисе». Они хотели высокопроизводительный WiFi, с возможностью перемещаться по офису и при этом не терять связь. Также стало понятно, что наша компания будет переезжать в новый офис. Это было начало-середина 2012 года, соответственно, перед нашим отделом встала задача построить качественный WiFi в новом офисе до переезда.

План был такой:
1. Определиться с задачами, которые должен был решать наш WLAN.
2. Выбрать производителя WLAN.
3. Спроектировать расположение точек, т. к. это нужно было сделать до окончания прокладки СКС в здании, чтобы не превращать установку точек в отдельный строительный проект.
4. Составить точный список оборудования для заказа.
5. Смонтировать, настроить и протестировать сеть.

Задачи

Нам нужен в первую очередь надежный WLAN, чтобы пользователи не задумывались о решении проблем с подключением к сети. Скорость WLAN должна обеспечивать комфортный software development и доступ в Интернет. Задачу по замене проводной сети на беспроводную мы перед собой не ставили, т. к. никакой WLAN не заменит девелоперу проводное подключение на 1 Gbit, которое мы и так обеспечиваем на каждом рабочем месте.

Нужна возможность удобного управления WLAN - для быстрого создания новых беспроводных сетей, например для гостей или проводимых в офисе конференций. Возможность централизованного управления сетями в географически разнесенных офисах, т. е. чтобы пользователь, подключившись в одном из офисов и переехав со своими мобильными устройствами в другой офис, подключился к сети уже автоматически.

Разумеется, нужна возможность удаленного управления WLAN сетями в других наших офисах, которые по странному стечению обстоятельств также переезжали в новые помещения примерно в это же время и в которых старая WLAN также нуждалась в замене.

Выбор производителя
Это была одна из наиболее сложных задач. Все производители обещают, что именно их решение самое лучшее. Понятно, что для наших задач (централизованное управление сетью, да еще и в нескольких офисах) нужен WLAN с контроллером, т. к. вариант без контроллера мы уже использовали, а новая сеть должна быть в 2-3 раза больше.

Я рассматривал таких производителей: Cisco, Motorola и Aruba. Вначале еще рассматривал HP, т. к. наша проводная сеть построена именно на HP, но после прочтения нескольких тестов производительности, где HP занимал последние места, я исключил его из рассмотрения.

Итак, Cisco - лидер сетевой индустрии. Любое сетевое решение, построенное на Cisco, должно работать хорошо. Обратная сторона - цена решения, которая обычно выше, чем у конкурентов. В обычном WLAN решении от Cisco весь трафик с точек доступа поступает на контроллер, который занимается дальнейшей обработкой пакетов. В этом варианте есть как плюсы (весь трафик проходит через одну точку), так и минусы: жесткая зависимость от работоспособности контроллера и ширина канала, по которому подключен контроллер к проводной сети. По этой же причине в каждом офисе нужно ставить свой собственный контроллер WLAN.

Aruba Networks . Один из основных конкурентов Cisco в сегменте беспроводных сетей. Продвигают свое решение без контроллера, т. е. контроллер находится где-то в облаке, а точки находятся у вас в офисе. Год назад я не был готов ставить свою беспроводную сеть в зависимость от облачного сервиса.

Motorola . WLAN решение от Motorola - WiNG 5 - делает упор на децентрализованность. Каждая точка является достаточно умной, чтобы авторизовать клиента и затем пропускать трафик между беспроводным и проводным сегментами сети в соответствии с настройками, которые точка получает с контроллера. Т. е. в этом случае мы получаем сегмент проводной сети, обычно это VLAN с трафиком от беспроводных клиентов, и затем мы можем управлять этим трафиком с помощью инфраструктуры обычного LAN. Контроллер используется только для управления точками доступа и сбора статистики. Также есть очень полезный для нас режим работы, когда контроллером становится одна из точек доступа, а при ее недоступности производится процедура выбора точки-контроллера из оставшихся точек сети.

Здесь Моторола показывает, как ходят данные в сети WiNG5 по сравнению с другими архитектурами:

Также в процессе выбора производителя на меня повлияли советы товарища apcsb , который прислал ссылки на очень хорошие мануалы по развертыванию и настройке WiNG 5. После прочтения этих документов стало ясно, что архитектура WiNG 5 с вариантом подключения NOC (Network Operations Center) подходит нам больше всего.

Схема сети вырисовывалась такая: в самом большом офисе, где нужно поставить больше всего точек, мы устанавливаем контроллер и самые простые, «зависимые» точки, которые без контроллера могут работать только несколько минут. В удаленных офисах мы устанавливаем «независимые» точки, которые могут брать на себя функции контроллера в случае недоступности основного контроллера, но управлять удаленными офисами мы все равно будем с центрального контроллера. Это было особенно удобно, т. к. удаленным офисам уже была нужна новая беспроводная сеть, которую мы уже могли развернуть с помощью независимых точек, а главный офис был еще не готов. После запуска главного офиса, в котором и будет находиться WLAN контроллер, мы переключим удаленные офисы на работу с ним.

Как же расположить WiFi-точки?

Нам предстояло обеспечить отличное WiFi-покрытие в новом офисе, который представляет собой новое 7-этажное здание. Нужен был WiFi на каждом этаже, а также на крыше здания, которая является эксплуатируемой, т. е. там могут находиться люди. То, что здание новое, в процессе проектирования WiFi-сети, очень полезно знать, т. к. именно в новых зданиях используются хорошие железобетонные перекрытия, которые отлично экранируют WiFi-сигнал. Все этажи имеют одинаковую форму - почти прямоугольник 45x30 метров с железобетонной конструкцией в центре (туалеты, лестницы и лифтовые шахты).

Сложность заключалась в следующем: на этажах полностью отсутствовали внутренние перегородки, т. к. их еще предстояло построить. Но WLAN-оборудование надо было уже заказывать, т. к. обычные сроки поставки - от 2 месяцев. Соответственно, мы не могли сделать полноценное радиообследование уже готового помещения, как советуют во всех руководствах, и пришлось положиться только на чертежи будущих перегородок. Небольшое радиообследование мы все-таки провели: выяснили, что можно покрыть практически весь этаж двумя WiFi-точками 2,4 Ггц мощностью 17 dBm и получить уровень сигнала в большинстве мест этажа не менее -70d Bm. Также мы выяснили, что посторонних WLAN-сетей в здании и поблизости нет, а железобетонное перекрытие между этажами экранирует сигнал до уровня -80-90 dBm.

Стало понятно, что с помощью двух, а лучше трех WiFi-точек мы худо-бедно обеспечим покрытие одного этажа в диапазоне 2,4 Ггц при отсутствии перегородок. Однако полной уверенности, что это будет хороший WiFi, не было. Поэтому я решил смоделировать этаж в какой-либо системе для проектирования беспроводных сетей. У Motorola есть такой софт, специально предназначенный для таких задач, - LANPlanner. Наверняка система хорошая, но стоит в районе 300 тыс. руб. и невозможно посмотреть даже демо-версию. После некоторых поисков я нашел программу TamoGraph Site Survey , которая позволяет составлять карту покрытия WLAN, а также проводить моделирование с использованием виртуальных WiFi-точек и виртуальных стен. Цена на эту программу была в 10 раз меньше по сравнению с LANPlanner, и, учитывая, что неправильное расположение WiFi-точек обойдется значительно дороже, я решил воспользоваться именно TamoGraph.

Вооружившись строительными планами будущих перегородок и TamoGraph Site Survey, я нарисовал план одного этажа, используя виртуальные материалы стен с теми же характеристиками, которые будут у наших будущих перегородок. После размещения на плане виртуальных WiFi-точек стало понятно, что программа моделирования - вещь чрезвычайно полезная. Она сразу показала, как будут влиять на распространение сигнала бетонные колонны, которые также были на этаже, но которые учесть «на глаз» было очень сложно. После моделирования стало ясно, что даже для диапазона 2,4 Ггц очень желательно поставить 4 точки на этаж. А если мы хотим использовать диапазон 5 Ггц, то точек нужно больше и ставить их нужно чаще. В итоге мы остановились на схеме с 6 точками на этаж, при этом мощность каждой точки в диапазоне 5 Ггц не превышает 17 dB и основные части этажа покрываются одновременно как минимум 2 точками. Тем самым мы обеспечиваем надежность работы WLAN в случае выхода из строя одной из точек на этаже.

Вот пример того, как выглядит результат моделирования одного из этажей (цветом показан уровень сигнала на 5 Ггц):

Итак, расположение точек известно, схема сети в целом понятна.

Что же нужно купить?

В главный офис нужно 39 «зависимых» dependent или thin точек, т. к. контроллер будет рядом. Это будут двухдиапазонные точки Motorola AP-650 «AP-0650-66030-WW» со встроенными антеннами. Это оптимальные двухдиапазонные точки от Motorola с поддержкой a/b/g/n стандартов. Они не могут работать без контроллера, и настроить без контроллера их нельзя.

В удаленные офисы нужно покупать полноценные точки AP-6532 «AP-6532-66030-WW». Эта точка по WiFi-характеристикам является копией AP-650. Но эти точки могут работать как сами по себе, так и под управлением контроллера. Если они теряют связь с контроллером, то продолжают обслуживать WiFi-клиентов. Если же контроллера изначально нет, то его функции на себя берет одна из точек (выбирается автоматически). Софт на WiFi-точках и на контроллере - один и тот же. Стоимость точки AP-6532 примерно на 150$ выше, чем AP-650.

Так выглядит эта точка на столе:

А вот так уже установленная на потолке:

Удобно, что на многих типах подвесных потолков эти точки можно закрепить без сверления отверстий: точка крепится к T-профилю потолка на защелках.

В качестве контроллера, а точнее двух контроллеров для работы в кластере, я выбрал RFS6000 . Здесь выбор был довольно прост: более простая версия RFS4000 не поддерживает нужного нам количества точек, а RFS7000 просто дороже. Также на контроллеры нужно купить сервисный контракт, по которому можно получать обновление софта и получить гарантийное обслуживание в течении 3 лет.

Казалось бы, всё купили: точки, контроллеры, гарантию на контроллеры. Но нет: еще нужно купить лицензии для подключения точек к контроллеру. Выгоднее всего покупать лицензии пакетами, в нашем случае это 4 пакета по 16 лицензий, т. е. наши контроллеры смогут обслуживать 64 точки с учетом всех удаленных офисов. Интересная деталь: лицензии и контроллеры покупаются независимо, а потом на сайте Motorola вы связываете лицензии с определенным контроллером или контроллерами. В нашем случае все лицензии привязаны на один контроллер, а второй контроллер объединен с ним в кластер. Так вот в случае выхода из строя первого контроллера (с лицензиями), второй продолжит обслуживание с этими же лицензиями.

Теперь разберемся с гарантией на точки. Гарантия на замену неисправных точек для всех Motorola точек стандарта «N» - пожизненная. Пожизненная - это значит не в течении Вашей жизни, а в течении жизненного цикла этих точек от компании Motorola. Как только они прекратят выпуск этих точек + сколько-то лет, и точку уже не поменяют. Думаю, что у других производителей точно такая же «пожизненная» гарантия, так что это не особенность именно Motorola. Еще можно приобрести дополнительную гарантию на точки, при которой, если у вас точка выходит из строя, вам сначала привозят новую, а затем вы отправляете старую обратно.

Но и это еще не все. Еще нужен сервисный контракт на точки, чтобы можно было обновлять прошивки. В случае точек AP-650 стоимость сервисного контракта на точки уже заложена в сервисном контракте на контроллер и, соответственно, зависит от количества точек, которые подключаются к контроллеру. А вот на точки AP-6532, которые были куплены в других странах для удаленных офисов, нужно было покупать сервисный контракт на эти точки.

Возможно, кому-то будут интересны цены на оборудование в России:

Подключение и настройка

С подключением никаких проблем не было. Сначала нам нужно было запустить WLAN в удаленных офисах, т. к. центральный офис был еще не готов. Для этого мы подключали несколько независимых точек AP-6532 в обычный сегмент сети на PoE-порты. Точки включались, самостоятельно находили друг друга в пределах LAN сегмента и самостоятельно выбирали одну из них как Virtual Controller. Соответственно, все настройки нужно проводить, подключившись именно к точке с функцией контроллера. Для обновления прошивки достаточно обновить ее на точке-контроллере, а она уже перепрошьет остальные точки.

Порты на LAN-свитчах мы настроили в режим trunk, чтобы они принимали тегированные пакеты и распределяли их по соответствующим VLAN-ам. VLAN у нас настроено 2: для внутренних пользователей и для гостей. В каждом VLAN своя IP-адресация, и маршрутизируются они по-разному, но все это уже делается на обычном проводном оборудовании. На контроллере мы также создали 2 WLAN-сети: для сотрудников и для гостей, каждую со своим SSID-ом, которые отобразили на соответствующий VLAN. Т. е. клиент, подключаясь к одному из WLAN, попадает в соответствующий этой сети VLAN. Если говорить просто, то WiFi-точки выступают в виде распределенного WLAN-свитча и передают пакеты между WLAN и LAN сетями.

Настроек на точках в этот момент нужно было сделать немного:
1. Задать страну для rf-domain, чтобы точки работали в разрешенном для этой страны диапазоне.
2. Создать нужное количество WLA-сетей (в нашем случае две) с соответствующими настройками security. При создании WLAN нужно указать VLAN, которым она будет тегироваться.
3. Включить технологию SMART-RF, которая поможет автоматически выбрать каналы и мощность радиомодулей в точках, основываясь на зашумленности эфира и взаимном расположении точек. В дальнейшем SMART-RF может менять канал или мощность точки в случае появления помех или, например, повысить свою мощность при отключении соседней точки, чтобы увеличить покрытие. Технология довольно удобна, хотя наверняка есть случаи, когда она мешает.

В общем-то, это все. Можно еще задать конкретные параметры радиомодулей любой из точек или всех сразу, но для этого надо хорошо представлять, что вы делаете. Для этого очень полезно почитать книгу CWDP Certified Wireless Design Professional Official Study Guide , которую рекомендует TamoSoft вместе со своей программой проектирования сетей. Похоже, что авторы программы разрабатывали ее, основываясь на этой книге, т. к. многие термины совпадают. В нашем случае мы отключили поддержку скоростей ниже 6 Мбит, чтобы медленные WiFi-подключения не мешали.

Хочу сказать пару слов о том, что такое rf-domain (Radio Frequency domain). Это физическая область, которая объединяет в себе группу WiFi-точек. Внутри этой группы может происходить роуминг клиентов. Например: если офис должен быть полностью покрыт WLAN, то все точки этого офиса имеет смысл объединить в один rf-domain. Если же в офисе есть 2 разнесенных между собой конференц-зала и точки установлены только для обслуживания клиентов в этих залах, то надо сделать два rf-domain"а, по одному для каждого зала. В случае использования независимых точек с виртуальным контроллером вы можете создать только один rf-domain.

На этом этапе мы получили несколько совершенно независимых WLAN-сетей в удаленных офисах, каждую из которых нужно было настраивать отдельно. Но зато каждая из этих сетей работала очень хорошо, роуминг между точками работал, статистика собиралась, пользователи были довольны.

Настройка центрального офиса (NOC)

Для запуска всей WLAN-инфраструктуры у Motorola есть отличный документ «WiNG 5.X How-To Guide Centralized Deployments», в котором по шагам расписано, как и что нужно делать. Каждый шаг описан в двух вариантах: для любителей GUI есть картинки, для любителей SSH консоли есть соответствующие команды. Я же опишу процесс настройки общими словами.

Сначала подключаем контроллеры, их у нас 2 штуки. Чтобы при выходе из строя одного из них сеть продолжала работать, их нужно объединить в кластер. Контроллеры подключаются к сети обычным 1 Gb Ethernet, хотя можно подключить и оптикой через SFP-коннектор. Настраиваем один из контроллеров: IP-адреса, DNS имя, пароли. Затем настраиваем IP-адрес для второго контроллера и прошиваем в него прошивку той же версии, что и у первого контроллера, - это совершенно необходимо для объединения в кластер. Именно поэтому нужно покупать сервисный контракт на контроллеры. Без контракта вы не получите доступа к прошивкам, ни к старым ни к новым, а в моем случае контроллеры пришли с разными версиями прошивок.

Затем на «втором» контроллере выполняете команду «join cluster» с указанием адреса первого контроллера. Второй контроллер перезагружается - и готово, кластер из двух контроллеров работает с идентичными настройками. Кластер бывает двух типов: Active-Active - когда оба контроллера обслуживают точки одновременно, и Active-Passive - когда точки обслуживает только первый контроллер, а второй включается в работу только при выходе из строя первого. В любом случае все точки сети знают IP-адреса обоих контроллеров.

Теперь на контроллере необходимо создать нужные нам rf-domain"ы. В нашем случае мы создаем каждому офису по одному rf-domain: spb-office, munich-office и т.д. У каждого rf-domain"а указана своя страна и своя настройка технологии SMART-RF, что логично: в разных областях нам может понадобиться настраивать радиомодули точек по-разному.

Далее на контроллере создаем WLAN-сети. Любую из созданных WLAN можно будет включить в любом из офисов, что, конечно же, очень удобно и являлось одним из наших первоначальных требований. Составной частью WLAN является настройка ее security, т. е. тип аутентификации, шифрования и QoS. Важно понять, что rf-domain и WLAN являются совершенно независимыми друг от друга сущностями. Также в WLAN задается ее SSID и тег VLAN, которые можно переопределить для каждого rf-domain. Это удобно, т. к. не в каждом офисе у нас совпадает нумерация VLAN-ов, а здесь мы можем задать нужный VLAN определенной WLAN для конкретного rf-domain.

Теперь переходим к настройке точек. Исходим из того, что каждая точка при включении должна подключаться к контроллеру и получать все настройки с него. Для этого на DHCP-сервере нужно прописать определенные vendor specific опции, в которых указываем IP-адреса контроллеров и некоторые настройки таймаутов. Эти опции никак не влияют на других клиентов сети, т. к. DHCP-сервер их отправляет только тем, кто запрашивает именно эти опции. Такая схема позволяет быстро подключать новые точки к сети: взяли новую точку из коробки, подключили к нужному порту на свитче, и всё. Точка получает с контроллера нужную прошивку и все необходимые настройки. При выключении точки она теряет все свои настройки и становится «чистенькой», как с завода (сохраняется только прошивка).

В момент самого первого подключения к контроллеру контроллер запоминает эту точку по MAC-адресу в своем конфиге и уменьшает количество свободных лицензий на 1. Затем контроллер находит подходящий профиль для настройки этой точки и отдает настройки этого профиля точке. Если это не первое подключение точки, то на контроллере могут храниться дополнительные настройки для этой конкретной точки, которые он объединяет с настройками подходящего профиля и отправляет точке.

Что же такое профили (Profiles) в WiNG 5? Профили позволяют выдать одинаковые настройки сразу группе WiFi-точек или контроллеров. Профили хранятся на контроллере и представляют собой полные наборы параметров для точки определенного типа. Например если нам нужно производить автоматическую настройку точек AP-650 и AP-6532 в одной и той же сети, то нам понадобится как минимум 2 профиля: для AP-650 и для AP-6532. Именно в профиле указано, какие WLAN будет обслуживать наша точка, в каких диапазонах будут работать радиомодули и на каких скоростях. Также на настройки профиля накладываются ограничения rf-domain, в котором находится конкретная точка.

Как контроллер определяет, какой профиль нужно выдавать конкретной точке? Для этого у контроллера есть «Automatic Provisioning Policies». Не могу придумать хорошего русского аналога. Этих Policies на контроллере может быть несколько штук, в каждом из них записано определенное условие, по которому эта policy применяется к точке или нет. Условиями могут быть: диапазон IP-адресов, в котором находится точка, диапазон MAC-адресов точек и многие другие. Но мне достаточно различать точки по типу и по IP сети. Также в policy указано, какой профиль применять к точке и в каком rf-domain эта точка находится. В итоге, при подключении точки контроллер идет по списку policies и первая подходящая к этой точке policy применяется.

Теперь собираем все это вместе

В центральном офисе у нас 3 типа точек: AP-650, AP-6532 и AP-7161 (уличное исполнение). Значит, нужно создать 3 профиля и 3 Automatic Provisioning Policies. Так как точек в этом офисе у нас относительно много, то мы сделали отдельный VLAN (WiFi Management VLAN), в который подключаем сами точки. В удаленных офисах точки подключены в обычный сегмент сети вместе с пользователями, т. к. там точек обычно немного. Точки получают IP-адрес, подключаются к контроллеру и, в зависимости от типа точки, получают свой профиль для настройки, а также получают указание от контроллера, в каком именно rf-domain они находятся. После этого точка приступает к обслуживанию клиентов тех WLAN, которые определены в ее профиле.

При подключении каждой новой точки технология SMART-RF определяет лучший номер канала для радиомодулей этой точки и мощность. Этот выбор производится в зависимости от каналов, на которых работают соседние точки и от расстояния до них. Области радиопокрытия соседних точек перекрываются, поэтому каждая точка «видит» несколько соседних (в нашем случае видно 3-4 соседних точки на этаже).

Как я уже упоминал, для связи WLAN и LAN у нас сделано 2 VLAN: рабочий и гостевой. В рабочий VLAN отображается WLAN для сотрудников, а в гостевой отображается 1 или более гостевых WLAN. Мы поднимаем дополнительные гостевые WLAN в случае каких-либо мероприятий в офисе, чтобы после окончания мероприятия можно было этот дополнительный гостевой WLAN отключить вместе с гостями. :-)

А вот так выглядит этаж в веб-интерфейсе при работе сети:

Итоги

В результате, к моменту переезда в новый офис мы построили очень хорошую WiFi-сеть. Пользователи, ради которых и строили эту сеть, полностью довольны ее работой. Характерен один из комментариев наших пользователей: «Как это вам удалось построить такой быстрый WiFi?» Мы не старались сделать максимально быстрый WiFi, нам был нужен максимально стабильный WiFi, и я уверен, что эта задача решена. Пользователи перемещаются по всему офису с ноутбуками, планшетами и телефонами и не задумываются о том, будет ли работать WiFi в этой точке. Мы пока не проводили полноценных тестов на скорость, но файлы можно качать со скоростью примерно 15 Мбайт/сек. Не всегда и не на любом клиенте, но такую скорость мы наблюдаем при обычной работе. В данный момент сеть работает уже 5 месяцев, днем в главном офисе к ней подключено до 200 клиентов и никаких нареканий на ее работу нет.

WiNG 5 от Motorola полностью оправдал мои ожидания. Настройка производится быстро и просто, хоть из консоли, хоть из браузера. Работает стабильно, никаких «странностей» в работе нет. WLAN в удаленных офисах можно было запускать без выезда на место. Нужно, чтобы кто-то только подключил точки к LAN, а все остальные настройки можно делать удаленно. В дальнейшем поверх этой сети можно развернуть систему AirDefense - контроль безопасности WLAN и удаленое решение проблем с WLAN. При этом некоторые точки в сети превращаются в сенсоры, которые мониторят радиоэфир.

Я опустил многие детали и возможности WiNG5: например, уже в базовой версии есть система защиты от вторжений (тоже базовая), можно докупить лицензии на систему защиты Advanced. Можно захватывать WiFi-трафик из радиоэфира и смотреть на него с помощью Wireshark. И многое, многое другое, но статья должна быть разумных размеров. Еще хочу заметить, что, по моему мнению, WiNG5 незаслуженно обойден вниманием в России, т. к. практически никаких материалов на русском языке мне найти не удалось, поставщиков и интеграторов также найти непросто.

SergeyZh 19 сентября 2013 в 12:25

Как мы строили свою WiFi-сеть

  • Блог компании JetBrains

Я хочу рассказать о том, как мы строили свой собственный, хороший WLAN - Wireless LAN.

Эта статья будет полезна тем, кто собирается построить в своей компании WLAN, причем не простой, а хорошо управляемый и такой, чтобы пользователи этого WLAN были довольны, т. е. не замечали бы его после начального подключения.

Как это все начиналось

WLAN в нашей компании существует очень давно, с 2002 года, когда вся беспроводная сеть в офисе была представлена всего одной SOHO точкой 3COM стандарта 802.11b, которая покрывала весь офис. Нагрузка на нее была невелика, WiFi-устройств было очень мало.

Шли годы, офис увеличивался, появился стандарт 802.11g. Мы шли по пути постепенного увеличения количества SOHO точек с одинаковым SSID-ом. Задача была в том, чтобы WiFi просто был. Сначала был один этаж с 6 точками LinkSys WAP54G, затем появился второй этаж, куда мы начали ставить точки Cisco (они же LinkSys) стандарта gn. Если где-то не хватало покрытия, мы просто добавляли точку.

Пока клиентских устройств было не очень много, такая схема работала неплохо. Да, были проблемы с роумингом, когда клиент до последнего цеплялся за точку, с которой соединился вначале и не хотел переходить на другую точку, сигнал от которой лучше. Да, такой сетью было неудобно управлять: замена SSID-а или добавление нового, требовало обойти все точки, которых было в максимуме этой сети - 12 штук. Да, понять, что происходит в WLAN сети, было непросто, т. к. все точки работали «сами по себе» без централизованного управления. Даже определить количество одновременно подключенных клиентов было непросто. Отказоустойчивость такой сети также была не на высоте. Достаточно было «зависнуть» одной точке - и сразу появлялась дырка в покрытии. Но все это компенсировалось низкой стоимостью этой сети. Одна точка стоила $130-$150, собственно только из стоимости точек и складывалась стоимость сети.

Одновременно росло количество WiFi-клиентов, которых уже не устраивал «просто WiFi в офисе». Они хотели высокопроизводительный WiFi, с возможностью перемещаться по офису и при этом не терять связь. Также стало понятно, что наша компания будет переезжать в новый офис. Это было начало-середина 2012 года, соответственно, перед нашим отделом встала задача построить качественный WiFi в новом офисе до переезда.

План был такой:
1. Определиться с задачами, которые должен был решать наш WLAN.
2. Выбрать производителя WLAN.
3. Спроектировать расположение точек, т. к. это нужно было сделать до окончания прокладки СКС в здании, чтобы не превращать установку точек в отдельный строительный проект.
4. Составить точный список оборудования для заказа.
5. Смонтировать, настроить и протестировать сеть.

Задачи

Нам нужен в первую очередь надежный WLAN, чтобы пользователи не задумывались о решении проблем с подключением к сети. Скорость WLAN должна обеспечивать комфортный software development и доступ в Интернет. Задачу по замене проводной сети на беспроводную мы перед собой не ставили, т. к. никакой WLAN не заменит девелоперу проводное подключение на 1 Gbit, которое мы и так обеспечиваем на каждом рабочем месте.

Нужна возможность удобного управления WLAN - для быстрого создания новых беспроводных сетей, например для гостей или проводимых в офисе конференций. Возможность централизованного управления сетями в географически разнесенных офисах, т. е. чтобы пользователь, подключившись в одном из офисов и переехав со своими мобильными устройствами в другой офис, подключился к сети уже автоматически.

Разумеется, нужна возможность удаленного управления WLAN сетями в других наших офисах, которые по странному стечению обстоятельств также переезжали в новые помещения примерно в это же время и в которых старая WLAN также нуждалась в замене.

Выбор производителя
Это была одна из наиболее сложных задач. Все производители обещают, что именно их решение самое лучшее. Понятно, что для наших задач (централизованное управление сетью, да еще и в нескольких офисах) нужен WLAN с контроллером, т. к. вариант без контроллера мы уже использовали, а новая сеть должна быть в 2-3 раза больше.

Я рассматривал таких производителей: Cisco, Motorola и Aruba. Вначале еще рассматривал HP, т. к. наша проводная сеть построена именно на HP, но после прочтения нескольких тестов производительности, где HP занимал последние места, я исключил его из рассмотрения.

Итак, Cisco - лидер сетевой индустрии. Любое сетевое решение, построенное на Cisco, должно работать хорошо. Обратная сторона - цена решения, которая обычно выше, чем у конкурентов. В обычном WLAN решении от Cisco весь трафик с точек доступа поступает на контроллер, который занимается дальнейшей обработкой пакетов. В этом варианте есть как плюсы (весь трафик проходит через одну точку), так и минусы: жесткая зависимость от работоспособности контроллера и ширина канала, по которому подключен контроллер к проводной сети. По этой же причине в каждом офисе нужно ставить свой собственный контроллер WLAN.

Aruba Networks . Один из основных конкурентов Cisco в сегменте беспроводных сетей. Продвигают свое решение без контроллера, т. е. контроллер находится где-то в облаке, а точки находятся у вас в офисе. Год назад я не был готов ставить свою беспроводную сеть в зависимость от облачного сервиса.

Motorola . WLAN решение от Motorola - WiNG 5 - делает упор на децентрализованность. Каждая точка является достаточно умной, чтобы авторизовать клиента и затем пропускать трафик между беспроводным и проводным сегментами сети в соответствии с настройками, которые точка получает с контроллера. Т. е. в этом случае мы получаем сегмент проводной сети, обычно это VLAN с трафиком от беспроводных клиентов, и затем мы можем управлять этим трафиком с помощью инфраструктуры обычного LAN. Контроллер используется только для управления точками доступа и сбора статистики. Также есть очень полезный для нас режим работы, когда контроллером становится одна из точек доступа, а при ее недоступности производится процедура выбора точки-контроллера из оставшихся точек сети.

Здесь Моторола показывает, как ходят данные в сети WiNG5 по сравнению с другими архитектурами:

Также в процессе выбора производителя на меня повлияли советы товарища , который прислал ссылки на очень хорошие мануалы по развертыванию и настройке WiNG 5. После прочтения этих документов стало ясно, что архитектура WiNG 5 с вариантом подключения NOC (Network Operations Center) подходит нам больше всего.

Схема сети вырисовывалась такая: в самом большом офисе, где нужно поставить больше всего точек, мы устанавливаем контроллер и самые простые, «зависимые» точки, которые без контроллера могут работать только несколько минут. В удаленных офисах мы устанавливаем «независимые» точки, которые могут брать на себя функции контроллера в случае недоступности основного контроллера, но управлять удаленными офисами мы все равно будем с центрального контроллера. Это было особенно удобно, т. к. удаленным офисам уже была нужна новая беспроводная сеть, которую мы уже могли развернуть с помощью независимых точек, а главный офис был еще не готов. После запуска главного офиса, в котором и будет находиться WLAN контроллер, мы переключим удаленные офисы на работу с ним.

Как же расположить WiFi-точки?

Нам предстояло обеспечить отличное WiFi-покрытие в новом офисе, который представляет собой новое 7-этажное здание. Нужен был WiFi на каждом этаже, а также на крыше здания, которая является эксплуатируемой, т. е. там могут находиться люди. То, что здание новое, в процессе проектирования WiFi-сети, очень полезно знать, т. к. именно в новых зданиях используются хорошие железобетонные перекрытия, которые отлично экранируют WiFi-сигнал. Все этажи имеют одинаковую форму - почти прямоугольник 45x30 метров с железобетонной конструкцией в центре (туалеты, лестницы и лифтовые шахты).

Сложность заключалась в следующем: на этажах полностью отсутствовали внутренние перегородки, т. к. их еще предстояло построить. Но WLAN-оборудование надо было уже заказывать, т. к. обычные сроки поставки - от 2 месяцев. Соответственно, мы не могли сделать полноценное радиообследование уже готового помещения, как советуют во всех руководствах, и пришлось положиться только на чертежи будущих перегородок. Небольшое радиообследование мы все-таки провели: выяснили, что можно покрыть практически весь этаж двумя WiFi-точками 2,4 Ггц мощностью 17 dBm и получить уровень сигнала в большинстве мест этажа не менее -70d Bm. Также мы выяснили, что посторонних WLAN-сетей в здании и поблизости нет, а железобетонное перекрытие между этажами экранирует сигнал до уровня -80-90 dBm.

Стало понятно, что с помощью двух, а лучше трех WiFi-точек мы худо-бедно обеспечим покрытие одного этажа в диапазоне 2,4 Ггц при отсутствии перегородок. Однако полной уверенности, что это будет хороший WiFi, не было. Поэтому я решил смоделировать этаж в какой-либо системе для проектирования беспроводных сетей. У Motorola есть такой софт, специально предназначенный для таких задач, - LANPlanner. Наверняка система хорошая, но стоит в районе 300 тыс. руб. и невозможно посмотреть даже демо-версию. После некоторых поисков я нашел программу TamoGraph Site Survey , которая позволяет составлять карту покрытия WLAN, а также проводить моделирование с использованием виртуальных WiFi-точек и виртуальных стен. Цена на эту программу была в 10 раз меньше по сравнению с LANPlanner, и, учитывая, что неправильное расположение WiFi-точек обойдется значительно дороже, я решил воспользоваться именно TamoGraph.

Вооружившись строительными планами будущих перегородок и TamoGraph Site Survey, я нарисовал план одного этажа, используя виртуальные материалы стен с теми же характеристиками, которые будут у наших будущих перегородок. После размещения на плане виртуальных WiFi-точек стало понятно, что программа моделирования - вещь чрезвычайно полезная. Она сразу показала, как будут влиять на распространение сигнала бетонные колонны, которые также были на этаже, но которые учесть «на глаз» было очень сложно. После моделирования стало ясно, что даже для диапазона 2,4 Ггц очень желательно поставить 4 точки на этаж. А если мы хотим использовать диапазон 5 Ггц, то точек нужно больше и ставить их нужно чаще. В итоге мы остановились на схеме с 6 точками на этаж, при этом мощность каждой точки в диапазоне 5 Ггц не превышает 17 dB и основные части этажа покрываются одновременно как минимум 2 точками. Тем самым мы обеспечиваем надежность работы WLAN в случае выхода из строя одной из точек на этаже.

Вот пример того, как выглядит результат моделирования одного из этажей (цветом показан уровень сигнала на 5 Ггц):

Итак, расположение точек известно, схема сети в целом понятна.

Что же нужно купить?

В главный офис нужно 39 «зависимых» dependent или thin точек, т. к. контроллер будет рядом. Это будут двухдиапазонные точки Motorola AP-650 «AP-0650-66030-WW» со встроенными антеннами. Это оптимальные двухдиапазонные точки от Motorola с поддержкой a/b/g/n стандартов. Они не могут работать без контроллера, и настроить без контроллера их нельзя.

В удаленные офисы нужно покупать полноценные точки AP-6532 «AP-6532-66030-WW». Эта точка по WiFi-характеристикам является копией AP-650. Но эти точки могут работать как сами по себе, так и под управлением контроллера. Если они теряют связь с контроллером, то продолжают обслуживать WiFi-клиентов. Если же контроллера изначально нет, то его функции на себя берет одна из точек (выбирается автоматически). Софт на WiFi-точках и на контроллере - один и тот же. Стоимость точки AP-6532 примерно на 150$ выше, чем AP-650.

Так выглядит эта точка на столе:

А вот так уже установленная на потолке:

Удобно, что на многих типах подвесных потолков эти точки можно закрепить без сверления отверстий: точка крепится к T-профилю потолка на защелках.

В качестве контроллера, а точнее двух контроллеров для работы в кластере, я выбрал RFS6000 . Здесь выбор был довольно прост: более простая версия RFS4000 не поддерживает нужного нам количества точек, а RFS7000 просто дороже. Также на контроллеры нужно купить сервисный контракт, по которому можно получать обновление софта и получить гарантийное обслуживание в течении 3 лет.

Казалось бы, всё купили: точки, контроллеры, гарантию на контроллеры. Но нет: еще нужно купить лицензии для подключения точек к контроллеру. Выгоднее всего покупать лицензии пакетами, в нашем случае это 4 пакета по 16 лицензий, т. е. наши контроллеры смогут обслуживать 64 точки с учетом всех удаленных офисов. Интересная деталь: лицензии и контроллеры покупаются независимо, а потом на сайте Motorola вы связываете лицензии с определенным контроллером или контроллерами. В нашем случае все лицензии привязаны на один контроллер, а второй контроллер объединен с ним в кластер. Так вот в случае выхода из строя первого контроллера (с лицензиями), второй продолжит обслуживание с этими же лицензиями.

Теперь разберемся с гарантией на точки. Гарантия на замену неисправных точек для всех Motorola точек стандарта «N» - пожизненная. Пожизненная - это значит не в течении Вашей жизни, а в течении жизненного цикла этих точек от компании Motorola. Как только они прекратят выпуск этих точек + сколько-то лет, и точку уже не поменяют. Думаю, что у других производителей точно такая же «пожизненная» гарантия, так что это не особенность именно Motorola. Еще можно приобрести дополнительную гарантию на точки, при которой, если у вас точка выходит из строя, вам сначала привозят новую, а затем вы отправляете старую обратно.

Но и это еще не все. Еще нужен сервисный контракт на точки, чтобы можно было обновлять прошивки. В случае точек AP-650 стоимость сервисного контракта на точки уже заложена в сервисном контракте на контроллер и, соответственно, зависит от количества точек, которые подключаются к контроллеру. А вот на точки AP-6532, которые были куплены в других странах для удаленных офисов, нужно было покупать сервисный контракт на эти точки.

Возможно, кому-то будут интересны цены на оборудование в России:

Подключение и настройка

С подключением никаких проблем не было. Сначала нам нужно было запустить WLAN в удаленных офисах, т. к. центральный офис был еще не готов. Для этого мы подключали несколько независимых точек AP-6532 в обычный сегмент сети на PoE-порты. Точки включались, самостоятельно находили друг друга в пределах LAN сегмента и самостоятельно выбирали одну из них как Virtual Controller. Соответственно, все настройки нужно проводить, подключившись именно к точке с функцией контроллера. Для обновления прошивки достаточно обновить ее на точке-контроллере, а она уже перепрошьет остальные точки.

Порты на LAN-свитчах мы настроили в режим trunk, чтобы они принимали тегированные пакеты и распределяли их по соответствующим VLAN-ам. VLAN у нас настроено 2: для внутренних пользователей и для гостей. В каждом VLAN своя IP-адресация, и маршрутизируются они по-разному, но все это уже делается на обычном проводном оборудовании. На контроллере мы также создали 2 WLAN-сети: для сотрудников и для гостей, каждую со своим SSID-ом, которые отобразили на соответствующий VLAN. Т. е. клиент, подключаясь к одному из WLAN, попадает в соответствующий этой сети VLAN. Если говорить просто, то WiFi-точки выступают в виде распределенного WLAN-свитча и передают пакеты между WLAN и LAN сетями.

Настроек на точках в этот момент нужно было сделать немного:
1. Задать страну для rf-domain, чтобы точки работали в разрешенном для этой страны диапазоне.
2. Создать нужное количество WLA-сетей (в нашем случае две) с соответствующими настройками security. При создании WLAN нужно указать VLAN, которым она будет тегироваться.
3. Включить технологию SMART-RF, которая поможет автоматически выбрать каналы и мощность радиомодулей в точках, основываясь на зашумленности эфира и взаимном расположении точек. В дальнейшем SMART-RF может менять канал или мощность точки в случае появления помех или, например, повысить свою мощность при отключении соседней точки, чтобы увеличить покрытие. Технология довольно удобна, хотя наверняка есть случаи, когда она мешает.

В общем-то, это все. Можно еще задать конкретные параметры радиомодулей любой из точек или всех сразу, но для этого надо хорошо представлять, что вы делаете. Для этого очень полезно почитать книгу CWDP Certified Wireless Design Professional Official Study Guide , которую рекомендует TamoSoft вместе со своей программой проектирования сетей. Похоже, что авторы программы разрабатывали ее, основываясь на этой книге, т. к. многие термины совпадают. В нашем случае мы отключили поддержку скоростей ниже 6 Мбит, чтобы медленные WiFi-подключения не мешали.

Хочу сказать пару слов о том, что такое rf-domain (Radio Frequency domain). Это физическая область, которая объединяет в себе группу WiFi-точек. Внутри этой группы может происходить роуминг клиентов. Например: если офис должен быть полностью покрыт WLAN, то все точки этого офиса имеет смысл объединить в один rf-domain. Если же в офисе есть 2 разнесенных между собой конференц-зала и точки установлены только для обслуживания клиентов в этих залах, то надо сделать два rf-domain"а, по одному для каждого зала. В случае использования независимых точек с виртуальным контроллером вы можете создать только один rf-domain.

На этом этапе мы получили несколько совершенно независимых WLAN-сетей в удаленных офисах, каждую из которых нужно было настраивать отдельно. Но зато каждая из этих сетей работала очень хорошо, роуминг между точками работал, статистика собиралась, пользователи были довольны.

Настройка центрального офиса (NOC)

Для запуска всей WLAN-инфраструктуры у Motorola есть отличный документ «WiNG 5.X How-To Guide Centralized Deployments», в котором по шагам расписано, как и что нужно делать. Каждый шаг описан в двух вариантах: для любителей GUI есть картинки, для любителей SSH консоли есть соответствующие команды. Я же опишу процесс настройки общими словами.

Сначала подключаем контроллеры, их у нас 2 штуки. Чтобы при выходе из строя одного из них сеть продолжала работать, их нужно объединить в кластер. Контроллеры подключаются к сети обычным 1 Gb Ethernet, хотя можно подключить и оптикой через SFP-коннектор. Настраиваем один из контроллеров: IP-адреса, DNS имя, пароли. Затем настраиваем IP-адрес для второго контроллера и прошиваем в него прошивку той же версии, что и у первого контроллера, - это совершенно необходимо для объединения в кластер. Именно поэтому нужно покупать сервисный контракт на контроллеры. Без контракта вы не получите доступа к прошивкам, ни к старым ни к новым, а в моем случае контроллеры пришли с разными версиями прошивок.

Затем на «втором» контроллере выполняете команду «join cluster» с указанием адреса первого контроллера. Второй контроллер перезагружается - и готово, кластер из двух контроллеров работает с идентичными настройками. Кластер бывает двух типов: Active-Active - когда оба контроллера обслуживают точки одновременно, и Active-Passive - когда точки обслуживает только первый контроллер, а второй включается в работу только при выходе из строя первого. В любом случае все точки сети знают IP-адреса обоих контроллеров.

Теперь на контроллере необходимо создать нужные нам rf-domain"ы. В нашем случае мы создаем каждому офису по одному rf-domain: spb-office, munich-office и т.д. У каждого rf-domain"а указана своя страна и своя настройка технологии SMART-RF, что логично: в разных областях нам может понадобиться настраивать радиомодули точек по-разному.

Далее на контроллере создаем WLAN-сети. Любую из созданных WLAN можно будет включить в любом из офисов, что, конечно же, очень удобно и являлось одним из наших первоначальных требований. Составной частью WLAN является настройка ее security, т. е. тип аутентификации, шифрования и QoS. Важно понять, что rf-domain и WLAN являются совершенно независимыми друг от друга сущностями. Также в WLAN задается ее SSID и тег VLAN, которые можно переопределить для каждого rf-domain. Это удобно, т. к. не в каждом офисе у нас совпадает нумерация VLAN-ов, а здесь мы можем задать нужный VLAN определенной WLAN для конкретного rf-domain.

Теперь переходим к настройке точек. Исходим из того, что каждая точка при включении должна подключаться к контроллеру и получать все настройки с него. Для этого на DHCP-сервере нужно прописать определенные vendor specific опции, в которых указываем IP-адреса контроллеров и некоторые настройки таймаутов. Эти опции никак не влияют на других клиентов сети, т. к. DHCP-сервер их отправляет только тем, кто запрашивает именно эти опции. Такая схема позволяет быстро подключать новые точки к сети: взяли новую точку из коробки, подключили к нужному порту на свитче, и всё. Точка получает с контроллера нужную прошивку и все необходимые настройки. При выключении точки она теряет все свои настройки и становится «чистенькой», как с завода (сохраняется только прошивка).

В момент самого первого подключения к контроллеру контроллер запоминает эту точку по MAC-адресу в своем конфиге и уменьшает количество свободных лицензий на 1. Затем контроллер находит подходящий профиль для настройки этой точки и отдает настройки этого профиля точке. Если это не первое подключение точки, то на контроллере могут храниться дополнительные настройки для этой конкретной точки, которые он объединяет с настройками подходящего профиля и отправляет точке.

Что же такое профили (Profiles) в WiNG 5? Профили позволяют выдать одинаковые настройки сразу группе WiFi-точек или контроллеров. Профили хранятся на контроллере и представляют собой полные наборы параметров для точки определенного типа. Например если нам нужно производить автоматическую настройку точек AP-650 и AP-6532 в одной и той же сети, то нам понадобится как минимум 2 профиля: для AP-650 и для AP-6532. Именно в профиле указано, какие WLAN будет обслуживать наша точка, в каких диапазонах будут работать радиомодули и на каких скоростях. Также на настройки профиля накладываются ограничения rf-domain, в котором находится конкретная точка.

Как контроллер определяет, какой профиль нужно выдавать конкретной точке? Для этого у контроллера есть «Automatic Provisioning Policies». Не могу придумать хорошего русского аналога. Этих Policies на контроллере может быть несколько штук, в каждом из них записано определенное условие, по которому эта policy применяется к точке или нет. Условиями могут быть: диапазон IP-адресов, в котором находится точка, диапазон MAC-адресов точек и многие другие. Но мне достаточно различать точки по типу и по IP сети. Также в policy указано, какой профиль применять к точке и в каком rf-domain эта точка находится. В итоге, при подключении точки контроллер идет по списку policies и первая подходящая к этой точке policy применяется.

Теперь собираем все это вместе

В центральном офисе у нас 3 типа точек: AP-650, AP-6532 и AP-7161 (уличное исполнение). Значит, нужно создать 3 профиля и 3 Automatic Provisioning Policies. Так как точек в этом офисе у нас относительно много, то мы сделали отдельный VLAN (WiFi Management VLAN), в который подключаем сами точки. В удаленных офисах точки подключены в обычный сегмент сети вместе с пользователями, т. к. там точек обычно немного. Точки получают IP-адрес, подключаются к контроллеру и, в зависимости от типа точки, получают свой профиль для настройки, а также получают указание от контроллера, в каком именно rf-domain они находятся. После этого точка приступает к обслуживанию клиентов тех WLAN, которые определены в ее профиле.

При подключении каждой новой точки технология SMART-RF определяет лучший номер канала для радиомодулей этой точки и мощность. Этот выбор производится в зависимости от каналов, на которых работают соседние точки и от расстояния до них. Области радиопокрытия соседних точек перекрываются, поэтому каждая точка «видит» несколько соседних (в нашем случае видно 3-4 соседних точки на этаже).

Как я уже упоминал, для связи WLAN и LAN у нас сделано 2 VLAN: рабочий и гостевой. В рабочий VLAN отображается WLAN для сотрудников, а в гостевой отображается 1 или более гостевых WLAN. Мы поднимаем дополнительные гостевые WLAN в случае каких-либо мероприятий в офисе, чтобы после окончания мероприятия можно было этот дополнительный гостевой WLAN отключить вместе с гостями. :-)

А вот так выглядит этаж в веб-интерфейсе при работе сети:

Итоги

В результате, к моменту переезда в новый офис мы построили очень хорошую WiFi-сеть. Пользователи, ради которых и строили эту сеть, полностью довольны ее работой. Характерен один из комментариев наших пользователей: «Как это вам удалось построить такой быстрый WiFi?» Мы не старались сделать максимально быстрый WiFi, нам был нужен максимально стабильный WiFi, и я уверен, что эта задача решена. Пользователи перемещаются по всему офису с ноутбуками, планшетами и телефонами и не задумываются о том, будет ли работать WiFi в этой точке. Мы пока не проводили полноценных тестов на скорость, но файлы можно качать со скоростью примерно 15 Мбайт/сек. Не всегда и не на любом клиенте, но такую скорость мы наблюдаем при обычной работе. В данный момент сеть работает уже 5 месяцев, днем в главном офисе к ней подключено до 200 клиентов и никаких нареканий на ее работу нет.

WiNG 5 от Motorola полностью оправдал мои ожидания. Настройка производится быстро и просто, хоть из консоли, хоть из браузера. Работает стабильно, никаких «странностей» в работе нет. WLAN в удаленных офисах можно было запускать без выезда на место. Нужно, чтобы кто-то только подключил точки к LAN, а все остальные настройки можно делать удаленно. В дальнейшем поверх этой сети можно развернуть систему AirDefense - контроль безопасности WLAN и удаленое решение проблем с WLAN. При этом некоторые точки в сети превращаются в сенсоры, которые мониторят радиоэфир.

Я опустил многие детали и возможности WiNG5: например, уже в базовой версии есть система защиты от вторжений (тоже базовая), можно докупить лицензии на систему защиты Advanced. Можно захватывать WiFi-трафик из радиоэфира и смотреть на него с помощью Wireshark. И многое, многое другое, но статья должна быть разумных размеров. Еще хочу заметить, что, по моему мнению, WiNG5 незаслуженно обойден вниманием в России, т. к. практически никаких материалов на русском языке мне найти не удалось, поставщиков и интеграторов также найти непросто.

Беспроводные сети с каждым годом получают все большую популярность, однако многие администраторы сталкиваются с трудностями при построении подобных сетей. Действительно, технология Wi-Fi имеет свои особенности, которые следует учитывать еще на стадии планирования. Сегодня мы постараемся дать краткий ликбез, необходимый для успешного планирования и развертывания беспроводной сети.

Давайте прежде всего разберемся, что такое Wi-Fi, какие преимущества и недостатки имеет данная технология. Собственно термин Wi-Fi возник как игра слов и не имеет расшифровки, в настоящий момент он применяется для обозначения беспроводных сетей по стандарту IEEE 802.11, точнее группы стандартов. Наиболее распространены стандарт 802.11g предусматривающий работу на скорости до 54 Мб/с и 802.11n, теоретически допускающий работу на скоростях до 600 Мб/с, наиболее распространенные устройства стандарта n поддерживают скорости до 150 Мб/с.

В России для работы Wi-Fi устройств выделено 13 каналов в диапазоне 2,4 ГГц, без регистрации можно эксплуатировать сети только внутри помещений и производственных территорий, также с 15 июля 2010 года разрешено использование диапазона 5 ГГц, однако переход на него затруднен из-за необходимости обеспечивать совместимость с оборудованием не поддерживающим работу в этом диапазоне частот (а это практически все оборудование ввезенное, как минимум, до июля 2010 года). Поэтому в дальнейшем мы будем рассматривать работу в диапазоне 2,4 ГГц.

Сейчас мы подошли к очень важному моменту, понимание которого необходимо для грамотного планирования и развертывания сетей. Для передачи данных Wi-Fi использует некий частотный канал, шаг сетки каналов составляет 5 МГц, а ширина канала - 20 МГц. Это значит, что работающее на соседних каналах устройства будут оказывать взаимные помехи друг другу. Для лучшего понимания ситуации ниже приведено схематическое изображение распределения каналов в диапазоне 2,4 ГГц.

Как можно заметить, в диапазоне есть только три независимых канала, которые могут работать без взаимных помех, например 1, 6 и 11. В диапазоне 5 ГГц дела обстоят лучше, можно использовать 22 независимых канала, однако, как мы уже говорили, развертыванию сетей в этом диапазоне препятствуют проблемы совместимости. Стандарт 802.11n допускает использование широких каналов (шириной 40 МГц), которые используют полосу двух смежных непересекающихся каналов, например 1+5 или 5+9, таким образом можно организовать работу только двух, условно независимых каналов.

Почему мы уделяем этому так много внимания? Потому что данные факторы напрямую влияют на скорость работы беспроводного канала. Следует помнить, что полоса пропускания канала используется для передачи данных в обоих направлениях, в том числе служебной информации, также скорость сильно зависит от расстояния между точками и наличия помех. Максимально достижимая скорость на практике обычно не превышает половины доступной скорости канала, для 802.11g это значение редко превышает 20-22 Мб/с. Доступная полоса канала делится между использующими ее устройствами, что тоже следует учитывать при планировании сети и расчете ее пропускной способности.

Все это серьезно осложняет построение производительных Wi-Fi сетей, особенно при наличии соседних сетей, поэтому стоит использовать беспроводные сети в основном для доступа в интернет, электронной почте, терминальным службам и т.п. сервисам, не требующих высокой пропускной способности сети. Категорически не рекомендуем использовать беспроводное подключение для требовательных к скорости канала узлов сети.

Перед тем как приступить к планированию не помешает произвести разведку обстановки в эфире. Для этих целей можно использовать бесплатную программу inSSIDer , ниже показана ситуация в диапазоне 2,4 ГГц в обычном многоэтажном жилом доме.

Программа позволяет видеть, что по соседству работает большое количество устройств стандарта 802.11n, использующих широкий канал. В тоже время реальные помехи нашей сети способен создать передатчик стандарта 802.11g, работающий на канале 11. Располагая подобной информацией можно выбрать наименее загруженные участки диапазона для использования в своей сети. Однако не все так радужно, большинство оборудования "из коробки" настроено на автоматический выбор канала, поэтому через некоторое время ситуация может измениться.

Для построения беспроводной сети нам потребуется, как минимум, одна точка доступа. Если вы разворачиваете сеть масштаба предприятия или планируете в дальнейшем расширять область покрытия, то мы рекомендуем применять именно точки доступа, отказавшись от беспроводных маршрутизаторов и прочих комбинированных устройств. Дело в том, что стандарт не описывает взаимодействие между точками доступа и разные производители используют разные технологии, что делает их несовместимыми с оборудованием других производителей или даже собственным оборудованием других типов. Поэтому мы советуем использовать оборудование одного производителя и желательно одной модели, в противном случае необходимо дополнительно уточнять возможность совместной работы в интересующем режиме.

Первая и единственная точка доступа должна работать в одноименном режиме (Acceess Point), в этом случае устройство обслуживает клиентские подключения, но не устанавливает соединений с другими точками доступа. Отличительной чертой любой беспроводной сети является ее идентификатор SSID, уникальный для каждой сети, в пределах одной сети все устройства должны иметь одинаковый идентификатор, в тоже время несколько SSID позволяют разбить сеть на подсети, например с разным уровнем безопасности.

Дома или в малом офисе одной точки доступа обычно достаточно и большинство перечисленных нами проблем вряд ли окажутся актуальными, другое дело сети с относительно большой площадью покрытия, когда мощности одного устройства недостаточно. Здесь можно пойти двумя путями: использовать антенну с более высоким коэффициентом усиления или развертывать инфраструктуру используя несколько точек доступа. Первый путь при всей своей простоте таит ряд опасностей, ваша сеть может оказаться доступной за пределами здания (территории) и может создавать помехи соседним сетям, в этом случае не избежать проблем с контролирующими органами. Также это не всегда приемлемо с точки зрения безопасности.

Что-же делать когда одной точки доступа недостаточно? Поставить вторую. Ниже мы рассмотрим какими способами это можно сделать, их достоинства и недостатки.

Если вам нужна сеть с высокой пропускной способностью и в местах расположения точек доступа есть проводная сеть, то дополнительные точки также стоит включать в режиме "точки доступа" (Acceess Point), в этом режиме каждая точка доступа обеспечивает в зоне своего покрытия полную скорость канала, не разделяя его с другими точками.

Обе точки должны иметь одинаковый SSID и одинаковые параметры шифрования, но должны работать на разных каналах, лучше всего на независимых. Взаимное расположение точек следует подобрать таким образом, чтобы зоны покрытия пересекались без существенного ослабления сигнала. Клиентские устройства принимают решение о подключении к той или иной точке доступа автоматически, на основании уровня сигнала. Таким образом мобильные пользователи могут свободно перемещаться по все зоне покрытия без обрыва связи. Если необходимо использовать более 3 точек, то необходимо чередовать независимые каналы таким образом, чтобы зоны их покрытия не пересекались.

Данная схема оптимальна, когда требуется развернуть беспроводную сеть поверх проводной, например гостевой интернет для клиентов фирмы или в кафе. Однако ее реализация сопряжена с наибольшими сложностями, так как требуется использовать несколько независимых каналов, что может быть не всегда возможно.

Бывают ситуации когда надо расширить зону покрытия на площадь не имеющую проводных коммуникаций, что делает невозможным применение первой схемы, в таком случае дополнительную точку доступа можно сконфигурировать как повторитель (Repeater), которая будет ретранслировать сигнал основной точки доступа.

Обе точки должны иметь одинаковый SSID, одинаковые параметры шифрования и работать на одном канале, в настройках повторителя нужно указать MAC адрес точки доступа или другого повторителя, сигнал которого нужно ретранслировать. При этом повторитель должен находиться в зоне уверенного приема другого устройства, что несколько снижает общую площадь покрытия. Следует также помнить, что канал делится на все устройства в общей зоне покрытия. При использовании повторителей скорость работы каждого следующего звена падает, так как канал делится на передачу одной и той-же информации между участками сети (устройство-повторитель и повторитель-точка доступа). Т.е. если клиентское устройство, работающее через повторитель будет использовать канал на 1 Мб/с, общая загрузка канала составит 2 Мб/с, при использовании двух повторителей 3 Мб/с и т.д.

Существует еще один режим точки доступа - беспроводной мост, он может быть типов Point-to-point или Point-to-Multipoint, в этом случае точки доступа устанавливают соединение между собой. В режиме Point-to-point можно соединить только две точки доступа, в режиме Point-to-Multipoint одна точка может устанавливать соединение с несколькими. Данный режим обычно используют для связи двух участков сети, когда проложить кабель между ними невозможно или нецелесообразно, и не предъявляется особых требований к пропускной способности. Например для подключения тонких клиентов в отдельно стоящем складе на территории фирмы. В этом случае целесообразно использовать направленные антенны, чтобы уменьшить зону покрытия и не создавать помех другим сетям.

Каждая точка должна иметь одинаковый SSID, канал и параметры шифрования, в настройках потребуется указать MAC адрес точки, с которой нужно установить соединение. В этом режиме точки доступа не обслуживают беспроводных клиентов. Использование беспроводного моста имеет свои особенности, так как точки принимают передают пакеты только друг другу, то обнаружить работающий мост клиентским устройством невозможно, inSSIDer также покажет чистый диапазон. В то-же время сети использующие смежные каналы могут испытывать сильные помехи в зоне покрытия моста. Поэтому используйте данную схему только внутри своих помещений или территорий, не допуская пересечения иных зон, где могут быть развернуты другие беспроводные сети, также всегда старайтесь использовать направленные антенны с минимально необходимым коэффициентом усиления.

Ну и напоследок самое вкусное, режим WDS, он сочетает режим точки доступа и моста, в данном режиме точки могут устанавливать соединения друг с другом и одновременно обслуживать клиентов. Данный режим позволяет создавать самые разнообразные конфигурации беспроводных сетей абсолютно прозрачных для клиентских устройств, точка может работать как в режиме мост, так и в режиме мост+точка доступа, что позволяет, в отличии от цепочки повторителей, обеспечить беспроводное покрытие только там, где вам надо. Например вам нужно пробросить гостевой интернет в другой корпус, но вы совсем не хотите, чтобы он был доступен на стоянке, где придется расположить промежуточную точку.

В этом случае также следует использовать один канал, SSID и настройки шифрования для всех точек, а также помнить что с каждым звеном скорость работы будет падать за счет передачи повторяющихся данных в общей полосе. Также стоит избегать кольцевых схем соединения точек, если они не поддерживают Spanning Tree Protocol, так как скорость работы сети резко упадет из за широковещательного шторма. При настройке точек следует указать режим и MAC адреса точек с которыми надо установить соединение.

В заключение хочется дать общие рекомендации: при проектировании и развертывании сетей помните о том, что частотный диапазон выделенный для Wi-Fi весьма тесен, поэтому старайтесь не использовать антенн с коэффициентом усиления больше чем необходимо, а также примите меры для недопущения помех соседним сетям. Помните нарушение правил эксплуатации беспроводных сетей влечет административную ответственность по статьям 13.3 и 13.4 КоАП, предусматривающие штраф с возможной конфискацией оборудования.

  • Теги:

Please enable JavaScript to view the

В современном мире интернет используется в работе, досуге, образовании. А значит, что доступ к нему нужен огромному количеству людей. И в городах, где население в основной массе проживает во многоквартирных домах, с доступом к сети проблем не возникает. Но что делать людям, живущим в пригородных поселках или частном секторе? Есть несколько вариантов:

  • Использование 3G-доступа, предоставляемого операторами сотовой связи;
  • Построение Wi-Fi сети, обспечивающей широкое высокоскоростное покрытие.

О втором варианте я расскажу подробнее.

Что необходимо для построения подобной сети?

  1. Первое, и самое главное — получить лицензии:
    • Лицензию, дающую право заниматься операторской деятельностью
    • Лицензию(ии) на использование радиочастотного ресурса Украины
  2. Организовать транспорт до вашей базовой станции (далее БС):
    • Передача по оптическим линиям связи
    • Передача по радиоканалу
  3. Построить БС
  4. Теперь можно приступать к подключению клиентов.

Лицензии

На лицензиях, дающих право заниматься операторской деятельностью останавливаться не буду — она универсальна для всех.

А вот вторая для нас более интересна. Такие лицензии бывают двух типов — национальная и региональная. Национальная предоставляет право на использование радиочастотного ресурса на всей территории Украины. Региональная же выдается для построения БС на местах.

Для получения региональной лицензии нужно подать заявку в Укрчастотнадзор (УЧН). Специалисты УЧН приезжают на место, проводят сканирование диапазона и выделяют частоты в необходимом диапазоне.

Построение БС

Сперва нужно определить место, где будет установлена БС. Часто, это старые котельные в сельских школах. Оборудование устанавливается на верхушке трубы. Далее, в зависимости от того, как будут расположены клиенты, решается, сколько необходимо секторов и как они будут установлены. Возможны, например, такие варианты:

  • БС установлена в центре местности, на которой строится сеть. Это обычный вариант для построения сетей в селах.

  • БС устанавливается вне местности, на которой строится сеть. Например, на высотке для предоставления интернета в частном секторе большого города.

Пример оборудования, установленного на трубе:

Кроме того, оборудование может быть установлено во дворе на мачты, производимые под заказ. Например, те, что используются радиолюбителями:

Пример страницы статуса секторов Rocket M2:


Также на БС обычно устанавливается роутер или умный свич, в зависимости от топологии провайдера. Но самый простой вариант — установка роутера и настройка на нем NAT. Хорошо себя показали Mikrotik RB750UP и RB450 . В случае с UP, от него можно запитать еще и оборудование Ubiquiti. Кроме того, потратив немного времени, можно самому сделать еще систему резервирования питания на двух АКБ и БП от RB750UP. Такая система без нареканий у нас в селе рабоатет уже 4 месяца.

Скриншот ПО для работы с роутерами Mikrotik:

Подключение клиентов

По сути, самая сложная часть. Так как при подключении клиентов нужно учитывать многие параметры: расстояние от БС, необходимую скорость,

Вместо выводов

Из альтернатив, подобные системы производит Mikrotik. Данные компании производят оборудование высокого качества, довольно простое в настройке и за вменяемые деньги. Это отличный вариант для построения сетей там, куда не дошли кабельные провайдеры.

Ну и во вступлении я говорил о том, что есть два варианта для подключения — 3G и Wi-Fi. На самом деле, есть еще и третий — WiMAX, но он ничем, кроме оборудования не отличается от Wi-Fi, а стоит значительно дороже.

Из известных мне провайдеров, в Украине доступ к сети посредством Wi-Fi предоставляют: Инетертелеком , Пан-Телеком , черкасский МакЛаут (только они его называют preWiMAX).

Если будут возникать вопросы — задавайте в комментариях.

Wi-Fi - марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Под аббревиатурой Wi-Fi в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую».

Стандарт Wi-Fi не описывает всех аспектов построения беспроводных локальных сетей. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения.

По способу объединения точек доступа в единую систему можно выделить:

Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)

Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)

Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

Со статическими настройками радиоканалов

С динамическими (адаптивными) настройками радиоканалов

Со «слоистой» или многослойной структурой радиоканалов

Преимущества Wi-Fi:

Беспроводной Интернет позволяет развернуть сеть без прокладки кабеля. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.

Позволяет иметь доступ к сети мобильным устройствам так как совместима с оборудования благодаря обязательной сертификации с логотипом Wi-Fi.

Мобильность так как нет привязанностим к одному месту и можно пользоваться Интернетом в любой обстановке.

В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.

Излучение от Wi-Fi устройств в момент передачи данных на порядок (в 10 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi:

В диапазоне 2,4 GHz работает множество устройств, таких как устройства, поддерживающие Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.

В Wi-Fi весьма высоки служебные «накладные расходы». Получается, что скорость передачи данных в Wi-Fi сети всегда ниже заявленной скорости. Реальная скорость зависит от доли служебного трафика, которая зависит уже от наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.

Частотный диапазон и эксплуатационные ограничения в различных странах не одинаковы . К примеру - в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.

Стандарт шифрования WEP может быть взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенные протоколы шифрования данных WPA и WPA2. Принятие стандарта IEEE 802.11i (WPA2) в июне 2004 года сделало возможным применение более безопасной схемы связи, которая доступна в новом оборудовании.

В режиме точка-точка (Ad-hoc) стандарт предписывает реализовать скорость 11 Мбит/сек (802.11b). Шифрование WPA(2) недоступно, только легковзламываемый WEP.

Для использования в промышленности технологии Wi-Fi предлагаются пока ограниченным числом поставщиков.

Использование Wi-Fi устройств на предприятиях обусловлено высокой помехоустойчивостью, что делает их применимыми на предприятиях с множеством металлических конструкций. В настоящее время технология находит широкое применение на удаленном или опасном производстве, там где нахождение оперативного персонала связано с повышенной опасностью или вовсе затруднительно. К примеру, для задач телеметрии на нефтегазодобывающих предприятиях, а также для контроля за перемещением персонала и транспортных средств в шахтах и рудниках, для определения нахождения персонала в аварийных ситуациях.