В главе вводится понятие качества, описывается технологический процесс тестирования и обсуждается связь качества и тестирования с различными технологическими процессами. Приводится традиционный взгляд на тестирование как на механизм оценки качества продукта, а также описывается, как на ранних этапах цикла разработки тестирование помогает усилить и упрочить архитектуру.

Цель

Целью тестирования является оценка качества продукта. Под этим подразумевается не только оценка окончательного продукта, но и оценка архитектуры с ранних этапов процесса и вплоть до окончательной передачи продукта раказчикам. включает следующее.

Проверку взаимодействий компонентов

Проверку правильности интеграции компонентов

Проверку точности реализации всех требований

Выявление дефектов и принятие мер, необходимых для их устранения до
развертывания программного обеспечения

Качество

Стандартное употребление термина качество включает в себя многое: как правило, этим словом обозначают отсутствие дефектов и (что гораздо важнее!) соответствие поставленной цели; с понятием качества мы связываем то, что нам нужно от продукта. В продукте (или его компоненте) могут отсутствовать дефекты, но если он не делает то, что необходимо нам, то он так же бесполезен, как и несовершенный продукт. Основной целью тестирования является оценка качества конечного продукта, а также оценка качества компонентов, составляющих его, и архитектуры, определяющей форму этих компонентов. Это нужно для того, чтобы убедиться, что продукт со-

Глава 12. Г67

ответствует определенным требованиям или превышает их (оценка производится согласно мерам и критериям приемлемости).

Качество продукта невозможно полностью оценить само по себе; программное обеспечение разрабатывается организацией с использованием технологического процесса, поэтому причиной плохого качества может стать некачественный процесс или процесс, которого трудно придерживаться. Как следствие, при оценке качества часто рассматривается не только качество самого продукта, но и организационные факторы и качество процесса.

Кто отвечает за качество продукта

За производство качественного продукта отвечают все члены проектной команды. Если качество не было изначально заложено в продукт, то его уже нельзя будет "добавить позднее" посредством выполнения некоторых активных действий, гарантирующих качество.

Задача тестирования - не гарантировать качество, а оценить его, одновременно обеспечивая обратную связь, позволяющую разрешить вопросы качества за разумную цену и в приемлемое время. Задача испытателя, выполняющего тестирование, - это оценивать качество и организовывать обратную связь, а задача проектной команды - создавать артефакты, удовлетворяющие требованиям и заданным параметрам качества.

Тестирование в итеративном жизненном цикле

Тестирование - это не обособленный вид деятельности и не фаза проекта, в которой выполняется оценка качества. Если разработчикам нужна своевременная обратная связь по вопросам качества продукта, то тестирование должно производиться в течение всего жизненного цикла: тестировать можно функциональные возможности ранних прототипов; устойчивость, охват и производительность архитектуры (при этом всегда можно подкорректировать неудачные решения); кроме того, можно протестировать конечный продукт и оценить его готовность к передаче в руки заказчиков. Существует распространенная точка зрения, что тестирование- это финальная проверка глобальной работоспособности; однако в данной ситуации упускается основное преимущество тестирования: возможность организации обратной связи, когда еще есть время (и ресурсы) для принятия необходимых мер.

Классификация тестов

Для оценки качества продукта требуются тесты различных типов. Для классификации тестов можно использовать следующие характеристики.

Тестируемый параметр качества - какой параметр качества проходит испытания

Этап тестирования- момент жизненного цикла, в котором выполняется
тестирование

Тип теста - конкретная задача отдельного теста, как правило, связанная с одним
параметром качества

Параметры качества

Существуют шаблоны, позволяющие выявить проблемы, связанные с качеством (как правило, практически во всех системах возникают однотипные проблемы). В результате для каждого продукта следует оценивать следующее.

Надежность

Программное обеспечение "сопротивляется" появлению ошибок в процессе выполнения: отсутствуют аварийные отказы, зависания, утечка памяти и т. п.

Функциональные возможности

Программное обеспечение реализует требуемые прецеденты или имеет ожидаемое поведение.

Я Производительность

Программное обеспечение и система работают, своевременно реагируют на предопределенные события и продолжают приемлемо функционировать в условиях реальных операционных характеристик (например, при значительной нагрузке, продолжительных периодах работы и т. д.). При тестировании производительности основное внимание уделяется обеспечению требуемых функциональных возможностей при удовлетворении нефункциональных требований системы.

Для каждого из указанных параметров качества требуется проведение одного или нескольких тестов на одном или нескольких этапах тестирования. Кроме того, существуют и другие параметры качества, оценка которых может быть более субъективной: удобство эксплуатации, расширяемость, гибкость и т.д. Качественную оценку этих параметров качества следует производить при каждой благоприятной возможности.

Этапы тестирования

Тестирование не следует считать обособленным видом деятельности, выполняемым целиком и сразу. Тестирование производится на разных этапах разработки программного обеспечения и направлено на проверку различных объектов (целевых объектов тестирования). Этапы тестирования прогрессируют - от тестирования небольших элементов системы, таких как компоненты (блочное тестирование), до тес- . тирования завершенных систем (системное тестирование). Перечислим существующие этапы тестирования и их задачи.

Блочное тестирование

Тестируются минимальные элементы системы. Время тестирования, как правило, совпадает со временем реализации элементов.

Интегральное тестирование

Тестируются интегральные блоки (или компоненты, или подсистемы).

Системное тестирование

Тестируются завершенные приложения и системы (состоящие из одного или нескольких приложений).

Приемочное тестирование

Конечными пользователями (или представителями конечных пользователей) тестируется завершенное приложение (или система). Цель тестирования: определить готовность к развертыванию продукта.

Следует помнить, что в разное время жизненного цикла этапы тестирования проходят с различными акцентами. Ранний концептуальный прототип, используемый в фазе исследования для оценки жизнеспособности видения продукта, будет подвергаться различным приемочным испытаниям. Архитектурный прототип, разрабатываемый в фазе уточнения плана, будет подвержен интегральным и системным испытаниям, направленным на проверку архитектурной целостности и производительности ключевых архитектурных элементов, несмотря на то что в это время большая часть кода системы имеет форму программ-суррогатов. Этапы тестирования - это не предопределенные "фазы", последовательно выполняемые ближе к концу проекта; наоборот, при итеративном жизненном цикле тестирование начинается рано и выполняется часто.

Типы тестов

Существует много типов тестов, каждый из которых акцентирует внимание на определенной задаче тестирования и тестирует только один параметр качества программного обеспечения. Поскольку тестирование производится в течение всего жизненного цикла, тестируемым программным обеспечением может быть отдельный фрагмент кода, интегральный блок или завершенное приложение (или система). Назовем наиболее распространенные типы тестов.

Аттестационный тест

Сравнивает производительность целевого объекта тестирования и некоторого стандартного объекта, например существующего программного обеспечения, или оценивает производительность согласно некоторой системе мер.

Конфигурационный тест

Проверяет приемлемость функционирования целевого объекта тестирования при различных конфигурациях (программных или аппаратных).

Функциональные испытания

Проверяется функционирование целевого объекта тестирования в общем, т.е. должная реализация требуемых прецедентов.

Установочные испытания

Проверяется правильность установки целевого объекта тестирования, возможность успешной установки при различных конфигурациях или в различных условиях (например, при недостатке дискового пространства).

Тестирование целостности

Проверяется надежность целевого объекта тестирования, его устойчивость и сопротивляемость ошибкам в процессе выполнения.

Испытание под нагрузкой

Проверяется приемлемость производительности целевого объекта тестирования в различных операционных условиях (включающих различное число пользователей, транзакций и т. д.) при неизменяемой конфигурации.

Эксплуатационные испытания

Проверяется приемлемость производительности целевого объекта тестирования в различных конфигурациях при постоянных операционных характеристиках.

Испытания в жестком режиме

Проверяется приемлемость производительности целевого объекта тестирования в аварийных или критических условиях, таких как ограниченные ресурсы или крайне большое число пользователей.

Регрессивное тестирование

Регрессивное тестирование - это методика испытаний, при которой тесты, производимые ранее, повторно выполняются на новой версии целевого объекта. Цель такого типа тестирования - обеспечить, чтобы качество целевого объекта не ухудшалось (не регрессировало) при добавлении к этому объекту новых функций. Регрессивное тестирование необходимо для

Максимально раннего выявления дефектов;

Проверки того, что изменения кода не приводят к новым дефектам или не
восстанавливают старые.

Регрессивное тестирование может включать повторное выполнение тестов любого типа. Как правило, такое тестирование выполняется в каждой итерации и состоит в повторном запуске тестов, произведенных при предыдущих итерациях.

Модель тестирования

Модель тестирования- это представление того, что будет тестироваться и как будет производиться тестирование. Эта модель является представлением моделей проектирования и реализации, изображающим собственно тесты и параметры целевых объектов, относящиеся к тестированию. Модель тестирования включает набор контрольных задач, методик испытания, сценариев испытаний и ожидаемых результатов тестирования, а также описание их взаимосвязи.

Рассмотрим подробнее составляющие модели тестирования.

Контрольные задачи

Набор тестовых данных, условий выполнения тестов и ожидаемых результатов, разработанный для конкретной задачи тестирования. Контрольные задачи могут определяться из прецедентов, проектной документации или программного кода. Контрольная задача может реализовываться с помощью одной или нескольких методик испытания.

Методики испытания

Набор подробных указаний по настройке и выполнению контрольных задач и оценке результатов, полученных при этом. С помощью одной методики испытаний может реализовываться одна или несколько контрольных задач. Методика испытаний также может использоваться для реализации только части контрольной задачи, например альтернативного потока прецедента.

Сценарии испытаний

Инструкции, автоматизирующие реализацию части или всей методики испытания (или методик испытания).

Классы и компоненты испытаний

Классы и компоненты, реализующие проекты тестов, в том числе драйверы и программы-суррогаты.

Взаимодействия тестов

Взаимодействия представляются в форме диаграммы взаимодействий или диаграммы последовательностей и отражают упорядоченный по времени поток сообщений между компонентами тестов и целевым объектом тестирования, имеющий место в процессе тестирования.

Примечания

Текстовая информация, описывающая ограничения, или дополнительная информация, используемая в модели тестирования. Примечания могут присоединяться к любому элементу модели тестирования.

Основные элементы модели тестирования и их взаимоотношения показаны на рис. 12.1.

Рис. 12.1. Контрольные задачи, методики испытаний и сценарии испытаний для банкомата

Исполнители и артефакты

В технологическом процессе тестирования задействованы два основных исполнителя.

Разработчик тестов отвечает за планирование, разработку, реализацию тестов и
оценку тестирования. В его обязанности входит создание плана и модели тести
рования, реализация методик испытания и оценка тестового покрытия, резуль
татов и эффективности теста.

Испытатель отвечает за выполнение системного тестирования. В его обязан
ности входит настройка и выполнение тестов, оценка выполнения теста, вос
становление после ошибок, оценка результатов тестирования и регистрация
выявленных дефектов.

Если для поддержки тестирования необходим специфический код (например, должны разрабатываться драйверы или программы-суррогаты), то в процессе должны участвовать еще разработчик и конструктор, исполняющие роли, подобные определенным в главах 10 и 11.

Исполнители и артефакты технологического процесса тестирования представлены на рис. 12.2. Давайте рассмотрим ключевые артефакты этого процесса.

План тестирования, содержащий информацию о целях и задачах тестирования.
План тестирования определяет, какие стратегии будут использоваться и какие
ресурсы требуются для выполнения тестирования.

Модель тестирования описывалась ранее.

Результаты тестирования и данные, собранные в процессе выполнения тестов.

Модель рабочей нагрузки для эксплуатационных испытаний; она определяет
переменные и их значения, используемые в различных эксплуатационных
испытаниях для моделирования или имитации характеристик внешних
исполнителей, функций, выполняемых конечными пользователями, объема
этих функций и нагрузки, создаваемой этими функциями.

Дефекты, полученные в результате "проваленных тестов" являются одним из
типов запросов на внесение изменений (см. главу 13).

Помимо перечисленных артефактов, при разработке программной поддержки теста должны создаваться следующие артефакты.

Пакеты и классы тестов

Подсистемы и компоненты тестов

Заключительная оценка тестов используется как часть оценки итерации проекта и периодической оценки состояния (см. главу 7, "Технологический процесс управления проектом").

Технологический процесс

Типичный технологический процесс тестирования, его основные элементы и зависимости между ними показаны на рис. 12.3.

Подготовка к тестированию

Целью этого элемента технологического процесса является определение и описание тестирования, которое будет выполняться. Для этого создается план тестирования, содержащий требования к тесту и стратегиям тестирования. Может разрабатываться единый план тестирования, в котором описаны все типы выполняемых тестов, или для каждого типа теста может создаваться отдельный план. Подготовка к тестированию выполняется таким образом, чтобы работы по тестированию были измеримыми и управляемыми.

Разработка теста

Целью этого элемента технологического процесса является определение, описание и создание модели тестирования и связанных с нею артефактов. Проект теста создается для того, чтобы убедиться в должной организации программного обеспечения, ис-пользуемого для тестирования, и в соответствии его заданным требованиям. При выполнении этого элемента технологического процесса разработчик тестов анализирует целевой объект тестирования, разрабатывает модель тестирования и (в случае эксплуатационных испытаний) модель рабочей нагрузки. Проект теста преобразовывает прецеденты в приемочные и системные контрольные задачи, которые затем направляют проектирование программных элементов, выполняющих тестирование.

Реализация теста

Цель этого элемента технологического процесса состоит в реализации методик испытания, определенных в разделе Подготовка к тестированию. Создание методик испытания производится, как правило, в среде средств автоматизации тестов или в среде программирования. Результирующим артефактом является электронная версия методики испытания, называемая сценарием испытания.

Если для поддержки или выполнения тестирования необходим специфический код (например, должны разрабатываться средства тестирования, драйверы или программы-суррогаты), то в работе по его созданию участвуют разработчик, конструктор и разработчик тестов.

Выполнение тестов на этапе интегрального тестирования

Цель этого элемента технологического процесса - обеспечение корректного объединения системных компонентов, а также проверка наличия у этого объединения правильного поведения. За компиляцию и объединение системы в увеличивающиеся функциональные блоки отвечает системный интегратор. Для каждого такого блока тестируются добавленные функции, выполняются регрессивные тесты и извлекаются результаты тестирования.

В ходе одной итерации интегральное тестирование выполняется несколько раз, пока не будет успешно интегрирована вся система (определяется целью итерации).

Выполнение тестов на этапе системного тестирования

Целью данного элемента технологического процесса является обеспечение должного функционирования всей системы. Системный интегратор компилирует и объединяет системы в увеличивающиеся функциональные блоки. Каждый добавляемый элемент

должен пройти тестирование функциональных возможностей; кроме того, выполняются все тесты, произведенные ранее над каждой конструкцией (регрессивные тесты).

В течение одной итерации системное тестирование выполняется несколько раз, пока не будет успешно интегрирована вся система (определяется целью итерации) и пока не будут удовлетворены критерии успеха тестирования или завершенности системы.

Оценка тестирования

Цель данного элемента технологического процесса - выработка и оценка количественных мер тестирования, позволяющих определить качество целевого объекта теста и процесса тестирования. Это выполняется посредством рецензирования и оценки результатов тестирования, определения и регистрации запросов на внесение изменений, а также вычисления основных мер теста.

Инструментальная поддержка

Поскольку тестирование - это итеративная работа, выполняемая в течение всего цикла разработки, инструментальная поддержка необходима для того, чтобы тестирование начать рано и выполнять часто; ручное тестирование недостаточно эффективно и не позволяет тщательно оценить разрабатываемое программное обеспечение. Последнее утверждение особенно справедливо для эксплуатационных испытаний и испытаний под нагрузкой, в которых должна моделироваться рабочая нагрузка и должен накапливаться значительный объем данных.

Корпорация Rational Software предлагает следующие инструментальные средства, поддерживающие автоматизацию тестов и процесс тестирования в целом.

TestStudio - это набор инструментальных средств, поддерживающих выполне
ние тестов и оценку результатов тестирования. Средства TestStudio позволяй
испытателю создавать сценарии тестирования, имеющие графический интер
фейс пользователя. Эти сценарии акцентируют внимание на таких параметра
качества, как надежность, функционирование и производительность. В набор
TestStudio входят следующие инструменты.

Robot поддерживает выполнение тестов, позволяя испытателям создавать и воспроизводить сценарии тестирования с графическим интерфейсом пользователя и сравнивать полученные и ожидаемые результаты.

LogViewer фиксирует результаты тестирования и представляет отчет для оценки выполнения теста.

TestManager поддерживает планирование, проектирование и оценку тестов, позволяет определить тестовое покрытие и генерирует отчеты о состоянии тестов.

TestFactory поддерживает тестирование надежности путем автоматического создания и выполнения сценариев тестирования. Кроме того, этот инструмент в программной форме сообщает о тестовом покрытии.

PerformanceStudio выполняет сценарии тестирования виртуального пользова
теля, используя для этого эксплуатационные испытания и некоторые функци
ональные испытания.

DevelopmentStudio поддерживает технологический процесс тестирования и
включает следующие инструментальные средства.

Rational Purify для локализации труднообнаруживаемых ошибок времени выполнения.

Rational PureCoverage* для определения участков кода, не прошедших тестирование, и выполнения анализа покрытия кода.

Rational Quantify* для выявления фрагментов кода, ограничивающих производительность.

Кроме того, для большинства из названных средств Rational Unified Process предлагает инструментальные наставники.

Резюме

Тестирование позволяет оценить качество производимого продукта.

Тестирование - это итеративный процесс, выполняемый во всех фазах жизнен
ного цикла; он позволяет рано организовать обратную связь по вопросам качест
ва, используемую для улучшения продукта в процессе его разработки и построе
ния. Тестирование должно выполняться не только в конце жизненного цикла
(для принятия или отклонения конечного продукта); оно должно быть неотъем
лемой частью механизма постоянной обратной связи.

За качество отвечают все. Качество не может вноситься тестирующей органи
зацией. Тестирование направлено только на оценку качества и организацию
своевременной обратной связи, позволяющей повысить качество системы.

Предлагает механизм обратной связи,
позволяющий измерять качество и определять дефекты. Тестирование выпол
няется на ранних стадиях проекта - начинается с планирования тестов и неко
торой оценки (иногда производимых даже в фазе исследования) и продол
жается по ходу реализации проекта.

Тестовая модель - это логическая структура, описывающая функциональность системы и/или поведения пользователя, по которой генерируются тест-кейсы. Построение тестовой модели начинается с построения структуры, а затем утвержденная структура наполняется тест-кейсами.

Модели обычно строятся на основе требований и/или ожидаемого поведения системы. Построение тестовой модели и управление ею подходят для больших систем со сложной бизнес-логикой и сложно применимы к проектам, работающим по гибким методологиям, т.к. затраты на поддержание процесса управления тестовой моделью и обеспечения качества будут слишком высокими.

Под управлением тестовой моделью понимается процесс, контролирующий покрытие тестовой модели, качество сценариев, описывающих тестовую модель и ее актуализацию.

Управление тестовой моделью - непрерывный процесс на протяжении всего жизненного цикла продукта.

Покрытие тестовой модели

Для контроля покрытия всех требований можно использовать матрицы трассировки, которые определяют покрытие требований тестовыми сценариями (см. пример).
Перед тем как тест-кейсы будут описаны, структура тестовой модели должна быть утверждена с заказчиком.

Качество сценариев

Для управления качеством сценариев необходимо контролировать не только уровень описания тест-кейсов, но и их качество.

До начала описания тест-кейсов необходимо определить требования для каждого уровня описания и критерии качества описания тест-кейсов.

Возможные уровни описания тест-кейсов:

На 4-м уровне согласование с заказчиком может быть заменено на согласование .

Критерии качества описания тест-кейсов могут быть следующими:

  • Тест-кейсы необходимо писать по требованиям

Тестирование - это процесс проверки соответствия продукта предъявляемым к нему требованиям. Поэтому в части общего описания тест-кейса (в тест-трекинговых системах обычно употребляется термин «Summary») необходимо ссылаться на конкретное требование в связке с фрагментами текста требований. Таким образом, для всех участников проекта будет понятно, на основании чего написан данный тест-кейс.

  • Используйте детальные предусловия

Как сэкономить время на выполнении тест-кейсов?

Установите правила форматирования для всех тест-кейсов. Так тест-кейс будет удобен для понимания и чтения для любого участника проекта. Например, на проекте можно ввести следующие правила:

  • Все входные параметры должны быть отмечены красным цветом.
  • Все скрипты необходимо выделять синим цветом,
  • Все названия кнопок, полей, блоков выделяются курсивом и полужирным шрифтом.
  • Важные места выделяются подчеркиванием.
  • Каждому выполняемому шагу должен соответствовать ожидаемый результат.
  • Каждый шаг в тест-кейсах должен описывать только одно действие и ожидаемый результат к нему. Т.е. при получении проваленного тест-кейса в конкретном шаге должно быть однозначно понятно, на каком именно действии возникает ошибка.
  • Ожидаемый результат должен быть однозначным.

Тест-кейсы должны быть однозначными, т.е. должны быть составлены и сформулированы таким образом, чтобы они не допускали двусмысленного толкования, а четко понимались всеми участниками.

Если написание тест-кейсов занимает продолжительное время, то может возникнуть ситуация, когда специалист перестает видеть свои ошибки. Для этого необходим взгляд со стороны – здесь поможет проведение кроссс-ревью . Этот этап рекомендуется проводить в тех случаях, когда разработка тестовой модели растянута в сроках и длительна по времени. Например, когда разработка тестовых сценариев занимает более 1 месяца.

Процесс контроля качества сценариев можно вести с помощью Test Model Control – специально заготовленного шаблона.

Актуализация тестовой модели

Необходимо регулярно проводить актуализацию тестовой модели и самих тест-кейсов на соответствие требованиям, а также пересматривать приоритеты тест-кейсов.

Для актуализации можно вести «Матрицу требований» (Requirement Traceability Matrix): после каждого изменения в определенном требовании из тест-трекинговой системы делается выборка всех связанных с этим требованием тестовых сценариев, и проводится их обновление.

Средства управления тестовой моделью:

  • TestRail
  • TestLink
  • Jira+Zephyr
  • Microsoft Test Manager (MTM)
  • Excel

| Планирование уроков на учебный год | Основные этапы моделирования

Урок 2
Основные этапы моделирования





Изучив эту тему, вы узнаете:

Что такое моделирование;
- что может служить прототипом для моделирования;
- какое место занимает моделирование в деятельности человека;
- каковы основные этапы моделирования;
- что такое компьютерная модель;
- что такое компьютерный эксперимент.

Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. Эксперимент - это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий и определении, как реагирует экспериментальный образец на эти действия.

В школе вы проводите опыты на уроках биологии, химии, физики, географии.

Эксперименты проводят при испытании новых образцов продукции на предприятиях. Обычно для этого используется специально создаваемая установка, позволяющая провести эксперимент в лабораторных условиях, либо сам реальный продукт подвергается всякого рода испытаниям (натурный эксперимент). Для исследования, к примеру, эксплуатационных свойств какого-либо агрегата или узла его помещают в термостат, замораживают в специальных камерах, испытывают на вибростендах, роняют и т. п. Хорошо, если это новые часы или пылесос - не велика потеря при разрушении. А если самолет или ракета?

Лабораторные и натурные эксперименты требуют больших материальных затрат и времени, но их значение, тем не менее, очень велико.

С развитием компьютерной техники появился новый уникальный метод исследования - компьютерный эксперимент. В помощь, а иногда и на смену экспериментальным образцам и испытательным стендам во многих случаях пришли компьютерные исследования моделей. Этап проведения компьютерного эксперимента включает две стадии: составление плана эксперимента и проведение исследования.

План эксперимента

План эксперимента должен четко отражать последовательность работы с моделью. Первым пунктом такого плана всегда является тестирование модели. 

Тестирование - процесс проверки правильности построенной модели.

Тест - набор исходных данных, позволяющий определить пра- - вильность построения мЪдели.

Чтобы быть уверенным в правильности получаемых результатов моделирования, надо: ♦ проверить разработанный алгоритм построения модели; ♦ убедиться, что построенная модель правильно отражает свойства оригинала, которые учитывались при моделировании.

Для проверки правильности алгоритма построения модели используется тестовый набор исходных данных, для которых конечный результат заранее известен или предварительно определен другими способами.

Например, если вы используете при моделировании расчетные формулы, то надо подобрать несколько вариантов исходных данных и просчитать их «вручную». Это тестовые задания. Когда модель построена, вы проводите тестирование с теми же вариантами исходных данных и сравниваете результаты моделирования с выводами, полученными расчетным путем. Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину их расхождения. Тестовые данные могут совершенно не отражать реальную ситуацию и не нести смыслового содержания. Однако полученные в процессе тестирования результаты могут натолкнуть вас на мысль об изменении исходной информационной или знаковой модели, прежде всего в той ее части, где заложено смысловое содержание.

Чтобы убедиться, что построенная модель отражает свойства оригинала, которые учитывались при моделировании, надо подобрать тестовый пример с реальными исходными данными.

Проведение исследования

После тестирования, когда у вас появилась уверенность в правильности построенной модели, можно переходить непосредственно к проведению исследования. 

В плане должен быть предусмотрен эксперимент или серия экспериментов, удовлетворяющих целям моделирования. Каждый эксперимент должен сопровождаться осмыслением итогов, что служит основой анализа результатов моделирования и принятия решений.

Схема подготовки и проведения компьютерного эксперимента приведена на рисунке 11.7.

Рис. 11.7. Схема компьютерного эксперимента

Анализ результатов моделирования

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа результатов моделирования. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. На рисунке 11.2 видно, что этап анализа результатов не может существовать автономно. Полученные выводы часто способствуют проведению дополнительной серии экспериментов, а подчас и изменению задачи.

Основой выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. Это может быть либо неправильная постановка задачи, либо слишком упрощённое построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели у то есть возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

Главное, надо всегда помнить: выявленная ошибка - тоже результат. Как гласит народная мудрость, на ошибках учатся. Об этом писал и великий русский поэт А. С. Пушкин:

О, сколько нам открытий чудных Готовят просвещенья дух И опыт, сын ошибок трудных, И гений, парадоксов друг, И случай, бог изобретатель...

Контрольные вопросы и задания

1. Назовите два основных типа постановки задач моделирования.

2. В известном «Задачнике» Г. Остера есть следущая задача:

Злая колдунья, работая не покладая рук, превращает в гусениц по 30 принцесс в день. Сколько дней ей понадобится, чтобы превратить в гусениц 810 принцесс? Сколько принцесс в день придется превращать в гусениц, чтобы управиться с работой за 15 дней?
Какой вопрос можно отнести к типу «что будет, если...», а какой - к типу «как сделать, чтобы...»?

3. Перечислите наиболее известные цели моделирования.

4. Формализуйте шутливую задачу из «Задачника» Г. Остера:

Из двух будок, находящихся на расстоянии 27 км одна от другой, навстречу друг другу выскочили в одно и то же время две драчливые собачки. Первая бежит со скоростью 4 км/час, а вторая - 5 км/час.
Через сколько времени начнется драка? 

5. Назовите как можно больше характеристик объекта «пара ботинок ». Составьте информационную модель объекта для разных целей:

■ выбор обуви для туристского похода; ■ подбор подходящей коробки для обуви; ■ покупка крема для ухода за обувью.


6. Какие характеристики подростка существенны для рекомендации по выбору профессии?

7. По каким причинам компьютер широко используется в моделировании?

8. Назовите известные вам инструменты компьютерного моделирования.

9. Что такое компьютерный эксперимент? Приведите пример.

10. Что такое тестирование модели?

11. Какие ошибки встречаются в процессе моделирования? Что надо делать, когда ошибка обнаружена?

12. В чем заключается анализ результатов моделирования? Какие выводы обычно делаются?

Ваша цель как системного администратора
состоит во внедрении эффективных стратегий для
максимизации своих компьютерных ресурсов.


Д. Гантер, С. Барнет, Л. Гантер.
Интеграция Windows NT и Unix

Специалистам в области IT приходится не только знакомиться с многочисленными тестированиями, публикуемыми в компьютерной прессе, но и самим разрабатывать процедуры испытаний, необходимые и при выборе поставщика, и при создании собственного решения. Поэтому попытаемся ответить на вопросы, возникающие в многотрудном процессе тестирования, особенно когда это касается таких сложных систем, как серверы .

Что и зачем тестируется

Часто в компьютерной периодике встречаются разного рода обзоры программ, аппаратных средств и решений. Особый интерес, как правило, представляют сравнительные обзоры функционально однородных продуктов, где приводятся результаты тестирования. Считается, что эти развернутые таблицы помогают пользователю, администратору и IT-профессионалу как минимум быть в курсе происходящего в данной области и даже определиться с выбором продукта.

Итак, какие факторы учитываются в таких случаях, что является объектом исследований и какого рода испытания наиболее популярны?

Критерии тестирования обычно таковы:

  • функциональные возможности продукта;
  • простота освоения;
  • легкость установки;
  • качество документации и поддержки;
  • производительность;
  • для аппаратуры иногда учитывается конструктивное исполнение.

Встречаются и весьма двусмысленные критерии. Не так давно в одном из обзоров Web-серверов при выставлении общей оценки в качестве положительного фактора рассматривалась "высокая степень интеграции с операционной системой". Но если сбой приложения вызывает сбой операционной системы (вероятность чего пропорциональна степени интегрированности) — то такое ли уж это преимущество?

Равна ли сотня кроликов одному тигру?

Отдельно хотелось бы остановиться на соотношении цена/производительность, типичном при оценке аппаратных средств. На первый взгляд, это действительно единственный объективный критерий, связывающий технические характеристики исследуемой системы с кошельком потребителя. Однако и здесь не все так просто, как кажется. Дело в том, что вышеупомянутый подход срабатывает лишь на момент покупки и не учитывает ни цену владения, ни сохранность инвестиций в оборудование или ПО, ни возможность дальнейшей модернизации.

Типичный пример — сравнение старших моделей систем на процессорах Intel с младшими в линии RISC-платформ. Да, действительно, в заданном ценовом диапазоне машины с Intel-архитектурой сопоставимы или, в некоторых случаях, даже превосходят RISC-системы. Однако то, что является потолком для одних платформ, — лишь начальный уровень для других и т. д.

Выводы: относитесь критически к критериям, по которым оценивается продукт, — у вас и у тестеров могут оказаться разные вкусы. Попробуйте сказать приверженцам Unix, что ради удобства графического интерфейса конфигурирования системы стоит смириться с необходимостью перезагрузки после изменения IP-параметров. Что же касается компактности исполнения системного блока, то это хорошо до тех пор, пока вам не понадобится вставить в slim-корпус дополнительный винчестер.

Одним словом — переосмысливайте результаты тестов в соответствии со своими нуждами.

Специфика тестирования серверов

Если компьютер не включается — он неисправен.
Если не выключается — он сервер.
Народная примета

На наш взгляд, одно из фундаментальных требований к серверам — надежность. Производительность, конечно, тоже важна, поскольку она влияет на время отклика системы — важнейшую с точки зрения пользователя характеристику, но доступность сервиса определяется именно надежностью. Своевременность его предоставления, актуальность и целостность информации также зависят от надежности.

Кроме того, следует учитывать, что специализированные, т. е. обеспечивающие только один сервис, серверы пока являются скорее исключением, чем правилом. Обычно один такой компьютер совмещает ряд функций — например, сервер приложений может служить также и файл-сервером, сервером печати, контроллером службы резервного копирования и т. д. Для коммуникационных серверов типична работа с несколькими протоколами прикладного уровня, каждый из которых обслуживается собственным "демоном".

И наконец, характерной особенностью функционирования серверов является наличие пиковых нагрузок. Причины их появления могут быть самыми разными — от начала рабочего дня в большой организации (особенно если все пользователи приходят на работу вовремя) до восстановления "упавшего" соединения у поставщика услуг Internet, когда на коммуникационные серверы обрушиваются накопившаяся почта и группы новостей.

Эти факторы, т. е. требование к повышенной надежности в условиях обеспечения множества сервисов и пиковых нагрузок, должны быть ключевыми при определении идеологии тестирования серверов.

К сожалению, большинство обзоров, публикуемых в компьютерной периодике, посвящено либо сопоставлению производительности разных аппаратных решений на наборе тестовых задач, выполняемых последовательно, либо сравнительному тестированию того или иного сервиса (например, испытание Web-серверов разных производителей). Один из наихудших вариантов такого подхода — когда сравнительный обзор возможностей аналогичных решений называют тестированием только потому, что автор публикации провел инсталляцию и немного "погонял" продукт.

Условия проведения тестирования

Для начала немного теории. Гленфорд Майерс в своей работе "Надежность программного обеспечения" приводит несколько "аксиом тестирования". Попробуем, следуя им, рассмотреть, что и как надо тестировать.

Время от времени в компьютерной прессе появляются сообщения почти спортивного характера: продукт фирмы N показал рекордное быстродействие в тесте M. Насколько информативны тесты, проведенные фирмами-производителями?

Невозможно тестировать свою собственную программу

Зачастую тесты пишутся сотрудниками фирмы под конкретный продукт. Притчей во языцех стали тесты производительности процессоров, написанные так, чтобы реализовать преимущества конкретного процессора. Например, размер тестирующей программы подбирается с учетом ее размещения в кэш-памяти и т. д. Часто достаточно тенденциозным является и графическое представление таких результатов.

Знание особенностей архитектуры приложений и использования ими ресурсов ОС позволяет разработчикам ПО настроить систему таким образом, чтобы получить максимальные результаты для их программы. Совершенно не важно, будет ли другое ПО или сервисы чувствовать себя комфортно при таких установках операционной системы и не произойдет ли "захват ресурсов" испытуемым приложением.

С таким явлением автор столкнулся, пытаясь настроить Netscape Enterprise Web Server под Solaris (SPARC). Производительность сервера по http-протоколу удалось поднять почти в 6 (!) раз (по данным тестирования с MS InetLoad), однако на комплексном тесте увеличение оказалось трехкратным, в то время как быстродействие POP3-сервера возросло вдвое, News-сервера — осталось неизменным, а SMTP показал в два раза худшие результаты, чем до внесения изменений.

Кроме того, производители, зная характеристики того или иного тестового набора, могут оптимизировать параметры системы именно под него. Пример тому — Web-страничка Netscape, где приведены рекомендации, как настроить Netscape Enterprise Server для проведения тестирования с помощью SPECweb96 .

Тестирование проводится для обнаружения ошибок

В случае серверов и серверного программного обеспечения это значит, что устройство следует заставить работать в максимально неблагоприятном режиме — провести тест на "живучесть". Этого можно достичь проведением тестирования сервера в следующей рабочей конфигурации:

  • все сервисы должны быть запущены;
  • все сервисы должны тестироваться одновременно (комплексный тест);
  • к каждому из сервисов направляется поток запросов, имитирующий типичную активность пользователей;
  • эта активность должна в процессе теста периодически возрастать до тех пор, пока по меньшей мере один сервис не перестанет справляться с обработкой запросов.

Здесь уместны два примечания:

1. Модель поведения пользователя.

По отношению к пользователям администратор должен быть пессимистом. Соответственно должно строиться и тестирование "на выживание".

Предусмотрите максимальное количество действий, совершить которые вам в нормальном состоянии просто не пришло бы в голову. Прикиньте (или проверьте), нормально ли будет функционировать система в данной ситуации. И что не менее важно, получит ли пользователь от нее вразумительное сообщение о том, что так делать больше не стоит и почему.

2. Сервис перестал справляться с обработкой запросов: возможные варианты.

По степени серьезности такие отказы можно разделить на 4 группы:

  • снижение производительности — сервис не успевает провести обработку, но отвечает корректно (возвращает соответствующий код ошибки — "Too many connections" и т. п.);
  • аварийное завершение работы сервиса, не влекущее за собой негативных последствий для системы: соответствующая программа завершила работу, выгружена из памяти, системные ресурсы освобождены;
  • аварийное завершение работы сервиса, отрицательно влияющее на производительность системы. Программа либо "висит" в списке процессов, не высвобождая ресурсы, либо в процессе завершения захватывает дополнительные ресурсы;
  • крах системы — в лучшем случае с последующей перезагрузкой, в худшем — с зависанием.

Готовьте тесты как для правильных, так и для неправильных входных данных

Эта аксиома детализирует предыдущую с точки зрения входных информационных потоков.

Как отреагирует система на отправление письма размером несколько десятков мегабайт? Застрянет ли оно в очереди, заблокировав тем самым на неопределенное время вашу почтовую систему (особенно если связь с хостом-получателем регулярно обрывается), или будет уничтожено, а пользователь уведомлен о недопустимости таких действий?

Совет, взятый из той же книги Г. Майерса: "старайтесь, чтобы система не рассердила пользователя, ибо это может привести к некоторым неожиданным ситуациям на входе — правило # 5 минимизации ошибок пользователя в диалоговых системах. Быть пессимистом — не значит быть мизантропом!".

А как насчет news-сервера — установлен ли там максимальный размер статьи?

Может ли кто-то, вознамерившись загрузить половину вашего FTP-сайта, открыть три десятка параллельных ftp-сессий, и если да, то как это повлияет на ваш канал и работу других желающих посетить FTP?

В качестве примера, подтверждающего корректность такого подхода, можно упомянуть инцидент с ракетным крейсером Yorktown, где ошибка ввода оператора повлекла за собой отказ системы управления двигателями . Или еще один, приведенный самим Майерсом: "Операторы Нью-Йоркской системы диспетчеризации полицейских машин SPRINT в свободное время развлекались тем, что пытались вывести ее из строя, вводя заведомо неправильные сообщения". Это происходило в начале 70-х. Может, с тех пор нравы и смягчились, но это маловероятно.

Избегайте невоспроизводимых тестов

В случае тестирования серверов и серверного ПО эта аксиома особенно актуальна. Во-первых, для их тестирования необходимо наличие аппаратно разделенных генераторов нагрузки (Client-Side Load Generators, CSLG) — обычно это группы рабочих станций, выполняющих клиентскую часть теста и обеспечивающих поток запросов на сервер. Во-вторых, на результаты может повлиять состояние сети, соединяющей сервер и CSLG. Кроме того, во многих случаях производительность зависит от предыстории обращений к серверу. Большинство серверных приложений использует кэширование. Скорость обращения к кэш-памяти значительно выше скорости обращения к дисковой подсистеме. Кэш приложения может наполняться вследствие предварительных или отладочных прогонов тест-программ — и соответственно могут меняться результаты. Более того, при комплексном тестировании возможно перекрестное влияние приложений — так, количество обработанных за единицу времени сложных запросов к POP3- или IMAP-серверам зависит от размера почтового спула, который может быть увеличен предыдущим проведением SMTP-теста. И наконец, на производительность влияют настройки операционной системы.

Во всех приличных обзорах есть раздел "Как проводились испытания". В одних публикациях он более подробен, в других менее — стандарта на описание и протоколирование тестирования, кажется, до сих пор не существует. Прекрасным образцом тому может служить тест SPECweb96 . В этом документе учтена специфика тестирования именно серверного приложения. В отличие от традиционных описаний там есть требования к протоколированию дополнительных настроек операционной системы и исследуемого приложения — то, что обычно лишь вскользь упоминается даже в лучших образцах описаний тестирования.

Возможно, вы сами придете к осознанию необходимости провести собственное испытание. Такая потребность может возникнуть в следующих случаях:

  • вы планируете расширить вашу сеть, что приведет к повышению нагрузки на размещенные в ней серверы;
  • вы намереваетесь обновить (или сменить) программное обеспечение;
  • вы решили сменить ваш сервер (или серверы) на более производительные;
  • наконец, может быть, вы просто решили выяснить "пределы роста" вашей системы.

Вашим первым шагом, вероятно, станет изучение опубликованных обзоров. Поэтому для того, чтобы воспользоваться полученными кем-то другим данными, относитесь к ним критически и попытайтесь понять в том числе мотивацию людей, выполнявших это тестирование. А далее все зависит от вас — осознание цели, выбор или написание адекватного набора тестов и корректное проведение самого тестирования. Надеюсь, что изложенные в настоящей статье соображения помогут вам в этом.

  • Tutorial

Доброго времени суток!

Хочу собрать всю самую необходимую теорию по тестирвоанию, которую спрашивают на собеседованиях у trainee, junior и немножко middle. Собственно, я собрал уже не мало. Цель сего поста в том, чтобы сообща добавить упущенное и исправить/перефразировать/добавить/сделатьЧтоТоЕщё с тем, что уже есть, чтобы стало хорошо и можно было взять всё это и повторить перед очередным собеседованием про всяк случай. Вообщем, коллеги, прошу под кат, кому почерпнуть что-то новое, кому систематизировать старое, а кому внести свою лепту.

В итоге должна получиться исчерпывающая шпаргалка, которую нужно перечитать по дороге на собеседование.

Всё ниже перечисленное не выдумано мной лично, а взято с разных источников, где мне лично формулировка и определение понравилось больше. В конце список источников.

В теме: определение тестирования, качество, верификация / валидация, цели, этапы, тест план, пункты тест плана, тест дизайн, техники тест дизайна, traceability matrix, tets case, чек-лист, дефект, error/deffect/failure, баг репорт, severity vs priority, уровни тестирования, виды / типы, подходы к интеграционному тестированию, принципы тестирования, статическое и динамическое тестирование, исследовательское / ad-hoc тестирование, требования, жизненный цикл бага, стадии разработки ПО, decision table, qa/qc/test engineer, диаграмма связей.

Поехали!

Тестирование программного обеспечения - проверка соответствия между реальным и ожидаемым поведением программы, осуществляемая на конечном наборе тестов, выбранном определенным образом. В более широком смысле, тестирование - это одна из техник контроля качества, включающая в себя активности по планированию работ (Test Management), проектированию тестов (Test Design), выполнению тестирования (Test Execution) и анализу полученных результатов (Test Analysis).

Качество программного обеспечения (Software Quality) - это совокупность характеристик программного обеспечения, относящихся к его способности удовлетворять установленные и предполагаемые потребности.

Верификация (verification) - это процесс оценки системы или её компонентов с целью определения удовлетворяют ли результаты текущего этапа разработки условиям, сформированным в начале этого этапа. Т.е. выполняются ли наши цели, сроки, задачи по разработке проекта, определенные в начале текущей фазы.
Валидация (validation) - это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, требованиям к системе .
Также можно встретить иную интерпритацию:
Процесс оценки соответствия продукта явным требованиям (спецификациям) и есть верификация (verification), в то же время оценка соответствия продукта ожиданиям и требованиям пользователей - есть валидация (validation). Также часто можно встретить следующее определение этих понятий:
Validation - ’is this the right specification?’.
Verification - ’is the system correct to specification?’.

Цели тестирвоания
Повысить вероятность того, что приложение, предназначенное для тестирования, будет работать правильно при любых обстоятельствах.
Повысить вероятность того, что приложение, предназначенное для тестирования, будет соответствовать всем описанным требованиям.
Предоставление актуальной информации о состоянии продукта на данный момент.

Этапы тестирования:
1. Анализ
2. Разработка стратегии тестирования
и планирование процедур контроля качества
3. Работа с требованиями
4. Создание тестовой документации
5. Тестирование прототипа
6. Основное тестирование
7. Стабилизация
8. Эксплуатация

Тест план (Test Plan) - это документ, описывающий весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков с вариантами их разрешения.
Отвечает на вопросы:
Что надо тестировать?
Что будете тестировать?
Как будете тестировать?
Когда будете тестировать?
Критерии начала тестирования.
Критерии окончания тестирования.

Основные пункты тест плана
В стандарте IEEE 829 перечислены пункты, из которых должен (пусть - может) состоять тест-план:
a) Test plan identifier;
b) Introduction;
c) Test items;
d) Features to be tested;
e) Features not to be tested;
f) Approach;
g) Item pass/fail criteria;
h) Suspension criteria and resumption requirements;
i) Test deliverables;
j) Testing tasks;
k) Environmental needs;
l) Responsibilities;
m) StafÞng and training needs;
n) Schedule;
o) Risks and contingencies;
p) Approvals.

Тест дизайн - это этап процесса тестирования ПО, на котором проектируются и создаются тестовые случаи (тест кейсы), в соответствии с определёнными ранее критериями качества и целями тестирования.
Роли, ответственные за тест дизайн:
Тест аналитик - определяет «ЧТО тестировать?»
Тест дизайнер - определяет «КАК тестировать?»

Техники тест дизайна

Эквивалентное Разделение (Equivalence Partitioning - EP) . Как пример, у вас есть диапазон допустимых значений от 1 до 10, вы должны выбрать одно верное значение внутри интервала, скажем, 5, и одно неверное значение вне интервала - 0.

Анализ Граничных Значений (Boundary Value Analysis - BVA) . Если взять пример выше, в качестве значений для позитивного тестирования выберем минимальную и максимальную границы (1 и 10), и значения больше и меньше границ (0 и 11). Анализ Граничный значений может быть применен к полям, записям, файлам, или к любого рода сущностям имеющим ограничения.

Причина / Следствие (Cause/Effect - CE) . Это, как правило, ввод комбинаций условий (причин), для получения ответа от системы (Следствие). Например, вы проверяете возможность добавлять клиента, используя определенную экранную форму. Для этого вам необходимо будет ввести несколько полей, таких как «Имя», «Адрес», «Номер Телефона» а затем, нажать кнопку «Добавить» - эта «Причина». После нажатия кнопки «Добавить», система добавляет клиента в базу данных и показывает его номер на экране - это «Следствие».

Исчерпывающее тестирование (Exhaustive Testing - ET) - это крайний случай. В пределах этой техники вы должны проверить все возможные комбинации входных значений, и в принципе, это должно найти все проблемы. На практике применение этого метода не представляется возможным, из-за огромного количества входных значений.

Traceability matrix - Матрица соответствия требований - это двумерная таблица, содержащая соответсвие функциональных требований (functional requirements) продукта и подготовленных тестовых сценариев (test cases). В заголовках колонок таблицы расположены требования, а в заголовках строк - тестовые сценарии. На пересечении - отметка, означающая, что требование текущей колонки покрыто тестовым сценарием текущей строки.
Матрица соответсвия требований используется QA-инженерами для валидации покрытия продукта тестами. МСТ является неотъемлемой частью тест-плана.

Тестовый случай (Test Case) - это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.
Пример:
Action Expected Result Test Result
(passed/failed/blocked)
Open page «login» Login page is opened Passed

Каждый тест кейс должен иметь 3 части:
PreConditions Список действий, которые приводят систему к состоянию пригодному для проведения основной проверки. Либо список условий, выполнение которых говорит о том, что система находится в пригодном для проведения основного теста состояния.
Test Case Description Список действий, переводящих систему из одного состояния в другое, для получения результата, на основании которого можно сделать вывод о удовлетворении реализации, поставленным требованиям
PostConditions Список действий, переводящих систему в первоначальное состояние (состояние до проведения теста - initial state)
Виды Тестовых Случаев:
Тест кейсы разделяются по ожидаемому результату на позитивные и негативные:
Позитивный тест кейс использует только корректные данные и проверяет, что приложение правильно выполнило вызываемую функцию.
Негативный тест кейс оперирует как корректными так и некорректными данными (минимум 1 некорректный параметр) и ставит целью проверку исключительных ситуаций (срабатывание валидаторов), а также проверяет, что вызываемая приложением функция не выполняется при срабатывании валидатора.

Чек-лист (check list) - это документ, описывающий что должно быть протестировано. При этом чек-лист может быть абсолютно разного уровня детализации. На сколько детальным будет чек-лист зависит от требований к отчетности, уровня знания продукта сотрудниками и сложности продукта.
Как правило, чек-лист содержит только действия (шаги), без ожидаемого результата. Чек-лист менее формализован чем тестовый сценарий. Его уместно использовать тогда, когда тестовые сценарии будут избыточны. Также чек-лист ассоциируются с гибкими подходами в тестировании.

Дефект (он же баг) - это несоответствие фактического результата выполнения программы ожидаемому результату. Дефекты обнаруживаются на этапе тестирования программного обеспечения (ПО), когда тестировщик проводит сравнение полученных результатов работы программы (компонента или дизайна) с ожидаемым результатом, описанным в спецификации требований.

Error - ошибка пользователя, то есть он пытается использовать программу иным способом.
Пример - вводит буквы в поля, где требуется вводить цифры (возраст, количество товара и т.п.).
В качественной программе предусмотрены такие ситуации и выдаются сообщение об ошибке (error message), с красным крестиком которые.
Bug (defect) - ошибка программиста (или дизайнера или ещё кого, кто принимает участие в разработке), то есть когда в программе, что-то идёт не так как планировалось и программа выходит из-под контроля. Например, когда никак не контроллируется ввод пользователя, в результате неверные данные вызывают краши или иные «радости» в работе программы. Либо внутри программа построена так, что изначально не соответствует тому, что от неё ожидается.
Failure - сбой (причём не обязательно аппаратный) в работе компонента, всей программы или системы. То есть, существуют такие дефекты, которые приводят к сбоям (A defect caused the failure) и существуют такие, которые не приводят. UI-дефекты например. Но аппаратный сбой, никак не связанный с software, тоже является failure.

Баг Репорт (Bug Report) - это документ, описывающий ситуацию или последовательность действий приведшую к некорректной работе объекта тестирования, с указанием причин и ожидаемого результата.
Шапка
Короткое описание (Summary) Короткое описание проблемы, явно указывающее на причину и тип ошибочной ситуации.
Проект (Project) Название тестируемого проекта
Компонент приложения (Component) Название части или функции тестируемого продукта
Номер версии (Version) Версия на которой была найдена ошибка
Серьезность (Severity) Наиболее распространена пятиуровневая система градации серьезности дефекта:
S1 Блокирующий (Blocker)
S2 Критический (Critical)
S3 Значительный (Major)
S4 Незначительный (Minor)
S5 Тривиальный (Trivial)
Приоритет (Priority) Приоритет дефекта:
P1 Высокий (High)
P2 Средний (Medium)
P3 Низкий (Low)
Статус (Status) Статус бага. Зависит от используемой процедуры и жизненного цикла бага (bug workflow and life cycle)

Автор (Author) Создатель баг репорта
Назначен на (Assigned To) Имя сотрудника, назначенного на решение проблемы
Окружение
ОС / Сервис Пак и т.д. / Браузера + версия /… Информация об окружении, на котором был найден баг: операционная система, сервис пак, для WEB тестирования - имя и версия браузера и т.д.

Описание
Шаги воспроизведения (Steps to Reproduce) Шаги, по которым можно легко воспроизвести ситуацию, приведшую к ошибке.
Фактический Результат (Result) Результат, полученный после прохождения шагов к воспроизведению
Ожидаемый результат (Expected Result) Ожидаемый правильный результат
Дополнения
Прикрепленный файл (Attachment) Файл с логами, скриншот или любой другой документ, который может помочь прояснить причину ошибки или указать на способ решения проблемы.

Severity vs Priority
Серьезность (Severity) - это атрибут, характеризующий влияние дефекта на работоспособность приложения.
Приоритет (Priority) - это атрибут, указывающий на очередность выполнения задачи или устранения дефекта. Можно сказать, что это инструмент менеджера по планированию работ. Чем выше приоритет, тем быстрее нужно исправить дефект.
Severity выставляется тестировщиком
Priority - менеджером, тимлидом или заказчиком

Градация Серьезности дефекта (Severity)

S1 Блокирующая (Blocker)
Блокирующая ошибка, приводящая приложение в нерабочее состояние, в результате которого дальнейшая работа с тестируемой системой или ее ключевыми функциями становится невозможна. Решение проблемы необходимо для дальнейшего функционирования системы.

S2 Критическая (Critical)
Критическая ошибка, неправильно работающая ключевая бизнес логика, дыра в системе безопасности, проблема, приведшая к временному падению сервера или приводящая в нерабочее состояние некоторую часть системы, без возможности решения проблемы, используя другие входные точки. Решение проблемы необходимо для дальнейшей работы с ключевыми функциями тестируемой системой.

S3 Значительная (Major)
Значительная ошибка, часть основной бизнес логики работает некорректно. Ошибка не критична или есть возможность для работы с тестируемой функцией, используя другие входные точки.

S4 Незначительная (Minor)
Незначительная ошибка, не нарушающая бизнес логику тестируемой части приложения, очевидная проблема пользовательского интерфейса.

S5 Тривиальная (Trivial)
Тривиальная ошибка, не касающаяся бизнес логики приложения, плохо воспроизводимая проблема, малозаметная посредствам пользовательского интерфейса, проблема сторонних библиотек или сервисов, проблема, не оказывающая никакого влияния на общее качество продукта.

Градация Приоритета дефекта (Priority)
P1 Высокий (High)
Ошибка должна быть исправлена как можно быстрее, т.к. ее наличие является критической для проекта.
P2 Средний (Medium)
Ошибка должна быть исправлена, ее наличие не является критичной, но требует обязательного решения.
P3 Низкий (Low)
Ошибка должна быть исправлена, ее наличие не является критичной, и не требует срочного решения.

Уровни Тестирования

1. Модульное тестирование (Unit Testing)
Компонентное (модульное) тестирование проверяет функциональность и ищет дефекты в частях приложения, которые доступны и могут быть протестированы по-отдельности (модули программ, объекты, классы, функции и т.д.).

2. Интеграционное тестирование (Integration Testing)
Проверяется взаимодействие между компонентами системы после проведения компонентного тестирования.

3. Системное тестирование (System Testing)
Основной задачей системного тестирования является проверка как функциональных, так и не функциональных требований в системе в целом. При этом выявляются дефекты, такие как неверное использование ресурсов системы, непредусмотренные комбинации данных пользовательского уровня, несовместимость с окружением, непредусмотренные сценарии использования, отсутствующая или неверная функциональность, неудобство использования и т.д.

4. Операционное тестирование (Release Testing).
Даже если система удовлетворяет всем требованиям, важно убедиться в том, что она удовлетворяет нуждам пользователя и выполняет свою роль в среде своей эксплуатации, как это было определено в бизнес моделе системы. Следует учесть, что и бизнес модель может содержать ошибки. Поэтому так важно провести операционное тестирование как финальный шаг валидации. Кроме этого, тестирование в среде эксплуатации позволяет выявить и нефункциональные проблемы, такие как: конфликт с другими системами, смежными в области бизнеса или в программных и электронных окружениях; недостаточная производительность системы в среде эксплуатации и др. Очевидно, что нахождение подобных вещей на стадии внедрения - критичная и дорогостоящая проблема. Поэтому так важно проведение не только верификации, но и валидации, с самых ранних этапов разработки ПО.

5. Приемочное тестирование (Acceptance Testing)
Формальный процесс тестирования, который проверяет соответствие системы требованиям и проводится с целью:
определения удовлетворяет ли система приемочным критериям;
вынесения решения заказчиком или другим уполномоченным лицом принимается приложение или нет.

Виды / типы тестирования

Функциональные виды тестирования
Функциональное тестирование (Functional testing)
Тестирование безопасности (Security and Access Control Testing)
Тестирование взаимодействия (Interoperability Testing)

Нефункциональные виды тестирования
Все виды тестирования производительности:
o нагрузочное тестирование (Performance and Load Testing)
o стрессовое тестирование (Stress Testing)
o тестирование стабильности или надежности (Stability / Reliability Testing)
o объемное тестирование (Volume Testing)
Тестирование установки (Installation testing)
Тестирование удобства пользования (Usability Testing)
Тестирование на отказ и восстановление (Failover and Recovery Testing)
Конфигурационное тестирование (Configuration Testing)

Связанные с изменениями виды тестирования
Дымовое тестирование (Smoke Testing)
Регрессионное тестирование (Regression Testing)
Повторное тестирование (Re-testing)
Тестирование сборки (Build Verification Test)
Санитарное тестирование или проверка согласованности/исправности (Sanity Testing)

Функциональное тестирование рассматривает заранее указанное поведение и основывается на анализе спецификаций функциональности компонента или системы в целом.

Тестирование безопасности - это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.

Тестирование взаимодействия (Interoperability Testing) - это функциональное тестирование, проверяющее способность приложения взаимодействовать с одним и более компонентами или системами и включающее в себя тестирование совместимости (compatibility testing) и интеграционное тестирование

Нагрузочное тестирование - это автоматизированное тестирование, имитирующее работу определенного количества бизнес пользователей на каком-либо общем (разделяемом ими) ресурсе.

Стрессовое тестирование (Stress Testing) позволяет проверить насколько приложение и система в целом работоспособны в условиях стресса и также оценить способность системы к регенерации, т.е. к возвращению к нормальному состоянию после прекращения воздействия стресса. Стрессом в данном контексте может быть повышение интенсивности выполнения операций до очень высоких значений или аварийное изменение конфигурации сервера. Также одной из задач при стрессовом тестировании может быть оценка деградации производительности, таким образом цели стрессового тестирования могут пересекаться с целями тестирования производительности.

Объемное тестирование (Volume Testing) . Задачей объемного тестирования является получение оценки производительности при увеличении объемов данных в базе данных приложения

Тестирование стабильности или надежности (Stability / Reliability Testing) . Задачей тестирования стабильности (надежности) является проверка работоспособности приложения при длительном (многочасовом) тестировании со средним уровнем нагрузки.

Тестирование установки направленно на проверку успешной инсталляции и настройки, а также обновления или удаления программного обеспечения.

Тестирование удобства пользования - это метод тестирования, направленный на установление степени удобства использования, обучаемости, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий. Сюда также входит:
Тестирование пользовательского интерфейса (англ. UI Testing) - это вид тестирования исследования, выполняемого с целью определения, удобен ли некоторый искусственный объект (такой как веб-страница, пользовательский интерфейс или устройство) для его предполагаемого применения.
User eXperience (UX) - ощущение, испытываемое пользователем во время использования цифрового продукта, в то время как User interface - это инструмент, позволяющий осуществлять интеракцию «пользователь - веб-ресурс».

Тестирование на отказ и восстановление (Failover and Recovery Testing) проверяет тестируемый продукт с точки зрения способности противостоять и успешно восстанавливаться после возможных сбоев, возникших в связи с ошибками программного обеспечения, отказами оборудования или проблемами связи (например, отказ сети). Целью данного вида тестирования является проверка систем восстановления (или дублирующих основной функционал систем), которые, в случае возникновения сбоев, обеспечат сохранность и целостность данных тестируемого продукта.

Конфигурационное тестирование (Configuration Testing) - специальный вид тестирования, направленный на проверку работы программного обеспечения при различных конфигурациях системы (заявленных платформах, поддерживаемых драйверах, при различных конфигурациях компьютеров и т.д.)

Дымовое (Smoke) тестирование рассматривается как короткий цикл тестов, выполняемый для подтверждения того, что после сборки кода (нового или исправленного) устанавливаемое приложение, стартует и выполняет основные функции.

Регрессионное тестирование - это вид тестирования направленный на проверку изменений, сделанных в приложении или окружающей среде (починка дефекта, слияние кода, миграция на другую операционную систему, базу данных, веб сервер или сервер приложения), для подтверждения того факта, что существующая ранее функциональность работает как и прежде. Регрессионными могут быть как функциональные, так и нефункциональные тесты.

Повторное тестирование - тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок.
В чем разница между regression testing и re-testing?
Re-testing - проверяется исправление багов
Regression testing - проверяется то, что исправление багов не повлияло на другие модули ПО и не вызвало новых багов.

Тестирование сборки или Build Verification Test - тестирование направленное на определение соответствия, выпущенной версии, критериям качества для начала тестирования. По своим целям является аналогом Дымового Тестирования, направленного на приемку новой версии в дальнейшее тестирование или эксплуатацию. Вглубь оно может проникать дальше, в зависимости от требований к качеству выпущенной версии.

Санитарное тестирование - это узконаправленное тестирование достаточное для доказательства того, что конкретная функция работает согласно заявленным в спецификации требованиям. Является подмножеством регрессионного тестирования. Используется для определения работоспособности определенной части приложения после изменений произведенных в ней или окружающей среде. Обычно выполняется вручную.

Предугадывание ошибки (Error Guessing - EG) . Это когда тест аналитик использует свои знания системы и способность к интерпретации спецификации на предмет того, чтобы «предугадать» при каких входных условиях система может выдать ошибку. Например, спецификация говорит: «пользователь должен ввести код». Тест аналитик, будет думать: «Что, если я не введу код?», «Что, если я введу неправильный код? », и так далее. Это и есть предугадывание ошибки.

Подходы к интеграционному тестированию:

Снизу вверх (Bottom Up Integration)
Все низкоуровневые модули, процедуры или функции собираются воедино и затем тестируются. После чего собирается следующий уровень модулей для проведения интеграционного тестирования. Данный подход считается полезным, если все или практически все модули, разрабатываемого уровня, готовы. Также данный подход помогает определить по результатам тестирования уровень готовности приложения.

Сверху вниз (Top Down Integration)
Вначале тестируются все высокоуровневые модули, и постепенно один за другим добавляются низкоуровневые. Все модули более низкого уровня симулируются заглушками с аналогичной функциональностью, затем по мере готовности они заменяются реальными активными компонентами. Таким образом мы проводим тестирование сверху вниз.

Большой взрыв («Big Bang» Integration)
Все или практически все разработанные модули собираются вместе в виде законченной системы или ее основной части, и затем проводится интеграционное тестирование. Такой подход очень хорош для сохранения времени. Однако если тест кейсы и их результаты записаны не верно, то сам процесс интеграции сильно осложнится, что станет преградой для команды тестирования при достижении основной цели интеграционного тестирования.

Принципы тестирования

Принцип 1 - Тестирование демонстрирует наличие дефектов (Testing shows presence of defects)
Тестирование может показать, что дефекты присутствуют, но не может доказать, что их нет. Тестирование снижает вероятность наличия дефектов, находящихся в программном обеспечении, но, даже если дефекты не были обнаружены, это не доказывает его корректности.

Принцип 2 - Исчерпывающее тестирование недостижимо (Exhaustive testing is impossible)
Полное тестирование с использованием всех комбинаций вводов и предусловий физически невыполнимо, за исключением тривиальных случаев. Вместо исчерпывающего тестирования должны использоваться анализ рисков и расстановка приоритетов, чтобы более точно сфокусировать усилия по тестированию.

Принцип 3 - Раннее тестирование (Early testing)
Чтобы найти дефекты как можно раньше, активности по тестированию должны быть начаты как можно раньше в жизненном цикле разработки программного обеспечения или системы, и должны быть сфокусированы на определенных целях.

Принцип 4 - Скопление дефектов (Defects clustering)
Усилия тестирования должны быть сосредоточены пропорционально ожидаемой, а позже реальной плотности дефектов по модулям. Как правило, большая часть дефектов, обнаруженных при тестировании или повлекших за собой основное количество сбоев системы, содержится в небольшом количестве модулей.

Принцип 5 - Парадокс пестицида (Pesticide paradox)
Если одни и те же тесты будут прогоняться много раз, в конечном счете этот набор тестовых сценариев больше не будет находить новых дефектов. Чтобы преодолеть этот «парадокс пестицида», тестовые сценарии должны регулярно рецензироваться и корректироваться, новые тесты должны быть разносторонними, чтобы охватить все компоненты программного обеспечения, или системы, и найти как можно больше дефектов.

Принцип 6 - Тестирование зависит от контекста (Testing is concept depending)
Тестирование выполняется по-разному в зависимости от контекста. Например, программное обеспечение, в котором критически важна безопасность, тестируется иначе, чем сайт электронной коммерции.

Принцип 7 - Заблуждение об отсутствии ошибок (Absence-of-errors fallacy)
Обнаружение и исправление дефектов не помогут, если созданная система не подходит пользователю и не удовлетворяет его ожиданиям и потребностям.

Cтатическое и динамическое тестирование
Статическое тестирование отличается от динамического тем, что производится без запуска программного кода продукта. Тестирование осуществляется путем анализа программного кода (code review) или скомпилированного кода. Анализ может производиться как вручную, так и с помощью специальных инструментальных средств. Целью анализа является раннее выявление ошибок и потенциальных проблем в продукте. Также к статическому тестирвоанию относится тестирования спецификации и прочей документации.

Исследовательское / ad-hoc тестирование
Простейшее определение исследовательского тестирования - это разработка и выполнения тестов в одно и то же время. Что является противоположностью сценарного подхода (с его предопределенными процедурами тестирования, неважно ручными или автоматизированными). Исследовательские тесты, в отличие от сценарных тестов, не определены заранее и не выполняются в точном соответствии с планом.

Разница между ad hoc и exploratory testing в том, что теоретически, ad hoc может провести кто угодно, а для проведения exploratory необходимо мастерство и владение определенными техниками. Обратите внимание, что определенные техники это не только техники тестирования.

Требования - это спецификация (описание) того, что должно быть реализовано.
Требования описывают то, что необходимо реализовать, без детализации технической стороны решения. Что, а не как.

Требования к требованиям:
Корректность
Недвусмысленность
Полнота набора требований
Непротиворечивость набора требований
Проверяемость (тестопригодность)
Трассируемость
Понимаемость

Жизненный цикл бага

Стадии разработки ПО - это этапы, которые проходят команды разработчиков ПО, прежде чем программа станет доступной для широко круга пользователей. Разработка ПО начинается с первоначального этапа разработки (стадия «пре-альфа») и продолжается стадиями, на которых продукт дорабатывается и модернизируется. Финальным этапом этого процесса становится выпуск на рынок окончательной версии программного обеспечения («общедоступного релиза»).

Программный продукт проходит следующие стадии:
анализ требований к проекту;
проектирование;
реализация;
тестирование продукта;
внедрение и поддержка.

Каждой стадии разработки ПО присваивается определенный порядковый номер. Также каждый этап имеет свое собственное название, которое характеризует готовность продукта на этой стадии.

Жизненный цикл разработки ПО:
Пре-альфа
Альфа
Бета
Релиз-кандидат
Релиз
Пост-релиз

Таблица принятия решений (decision table) - великолепный инструмент для упорядочения сложных бизнес требований, которые должны быть реализованы в продукте. В таблицах решений представлен набор условий, одновременное выполнение которых должно привести к определенному действию.

QA/QC/Test Engineer


Таким образом, мы можем построить модель иерархии процессов обеспечения качества: Тестирование - часть QC. QC - часть QA.

Диаграмма связей - это инструмент управления качеством, основанный на определении логических взаимосвязей между различными данными. Применяется этот инструмент для сопоставления причин и следствий по исследуемой проблеме.