Под ресурсами ПК будет пониматься любой из следу­ющих элементов:

Логические диски, включая накопители на CD-ROM, ZIP, DVD и другие аналогичные устройства;

Каталоги (папки) с подкаталогами (вложенными папками) или без них, а также содержащиеся в них файлы;

Подключенные к ПК устройства: принтеры, модемы и др.

Ресурс, доступный только с ПК, на котором он нахо­дится, называется локальным. Ресурс ПК, доступный для дру­гих компьютеров сети, называется разделяемым или сетевым (общим, совместно используемым). Локальный ресурс мож­но сделать разделяемым, и, наоборот, разделяемому ресурсу можно вернуть статус локального, т. е. запретить доступ к нему других пользователей сети.

Создание разделяемых сетевых ресурсов и доступ к ним обеспечиваются специальными сетевыми операционными системами . Базовые сетевые возможности сетевых ОС позволяют копировать файлы с одного ПК сети на другой, с одного компьютера сети обрабатывать данные (вводить, редактировать, удалять, про­изводить поиск), размещенные на другом. Для некоторых сетевых ОС можно также запустить программу, размещенную в памяти од­ного компьютера, которая будет оперировать данными, хра­нящимися на другом ПК.

Обычно используются один или несколько мощных ПК (выделенные серверы), которые предоставляют свои ресурсы для совместного использования в сети. Система коллективного доступа работает по принципу разделения времени работы главного компьютера.

В зависимости от используемых сетевых ресурсов в иерар­хических сетях различают серверы следующих типов.

Файловый сервер. В этом случае на сервере находятся со­вместно обрабатываемые файлы или (и) совместно исполь­зуемые программы. В этом случае на рабочих станциях находится только небольшая (клиентская) часть программ, требующая незна­чительных ресурсов. Программы, допускающие такой режим работы, называются программами с возможностью инсталля­ции в сети. Требования к мощности сервера и пропускной спо­собности сети при таком способе использования опреде­ляются количеством одновременно работающих рабочих станций и характером используемых программ.

Сервер баз данных. На сервере размещается база данных, которая может пополняться с различ­ных рабочих станций или (и) выдавать информацию по зап­росам с рабочей станции. Возможны два принципиально различающихся режима обработки запросов с рабочей станции или редактирования записей в базе данных:

С сервера последовательно пересылаются записи базы дан­ных на рабочую станцию, где производится собственно фильтрация записей и отбор необходимых;

Сервер сам отбирает необходимые записи из БД (реализует запрос) и пересылает их на рабочую станцию.

Во втором случае снижаются нагрузка на сеть и требования к рабочим станци­ям, но резко возрастают требования к вычислительной мощ­ности сервера. Тем не менее именно такой способ обработки запросов является наиболее эффективным. Указанный способ удовлетворения запросов с рабочих станций называется ре­жимом клиент-сервер, его реализуют специальные средства работы с современными сетевыми базами данных. В системах клиент-сервер обработка данных разделена между двумя объектами: клиентом и сервером. Клиент - это задача, рабочая станция, пользователь. Он может сформировать запрос для сервера: считать файл, осуществить поиск записи и т.п. Сервер - это устройство или компьютер, выполняющий обработку запроса. Он отвечает за хранение данных, организацию доступа к этим данным и передачу данных клиенту.

Принт-сервер. К компьютеру небольшой мощности под­ключается достаточно производительный принтер, на кото­ром может быть распечатана информация сразу с нескольких рабочих станций. Программное обеспечение организует оче­редь заданий на печать, а также идентифицирует отпечатан­ную информацию специальными страницами (закладками), которые разделяют печатные материалы различных пользо­вателей.

Почтовый сервер. На сервере хранится информация, от­правляемая и получаемая как по локальной сети, так и извне (например, по модему). В любое удобное для него время пользователь мо­жет просмотреть поступившую на его имя информацию или отправить через почтовый сервер свою.

Топологии

Топология – геометрическое отображение отношений в сети. По топологии ЛВС делятся: на общую шину, кольцо, звезду и др.

Топология “звезда”

Звездообразная топология сети – разновидность сети, где каждый терминал соединен с центральной станцией (рис. 2).

Эта топология взята из области больших электронных вычислительных ма­шин. Здесь файловый сервер находится в “центре”.

Достоинства сети:

Повреждение кабеля является проблемой для одного конкретного ком­пьютера и в целом не сказывается на работе сети;

Просто выполняется подключение, так как рабочая станция должна со­единяться только с сервером;

Механизмы защиты против несанкционированного доступа оптимальны;

Высокая скорость передачи данных от рабочей станции к серверу, так как оба ПК непосредственно соединены друг с другом.

Недостатки:

В то время как передача данных от рабочей станции к серверу (и обрат­но) происходит быстро, скорость передачи данных между отдельными рабочими станциями мала;

Мощность всей сети зависит от возможностей сервера, если он недоста­точно оснащен или плохо сконфигурирован, то будет являться тормозом для всей системы;

Невозможна коммуникация между отдельными рабочими станциями без помощи сервера.

Рис 2. Топология типа “звезда”

Топология с сервером в центре, практически, не реализуется, так как в этом случае сервер должен иметь много сетевых адаптеров, рабочие станции подключаются к концентратору (хабу).

Кольцевая топология

Сеть типа “кольцо” – разновидность сети, в которой каждый терминал подключен к двум другим соседним терминалам кольца.

В этом случае все рабочие станции и сервер соединены друг с другом по коль­цу, по которому посылается информация, снабженная адресом получателя. Рабочие станции получают соответствующие данные, анализируя адрес по­сланного сообщения (рис. 3).

Рис. 3. Кольцевая топология

Достоинство сети типа “кольцо”:

Недостатки:

Время передачи данных увеличивается пропорционально числу соеди­ненных в кольцо компьютеров;

Каждая рабочая станция причастна к передаче данных, выход из строя одной станции может парализовать всю сеть, если не используются спе­циальные переходные соединения;

При подключении новых рабочих станций сеть должна быть кратковре­менно выключена.

Шинная топология

Такая сеть похожа на центральную линию, к которой подключены сервер и отдельные рабочие станции. Шинная топологии имела широкое распро­странение в прежние годы, что, прежде всего, можно объяснить небольшими потребностями в кабеле (рис. 4).

Рис. 4. Шинная топология

Достоинства шинной топологии:

Небольшие затраты на кабели;

Рабочие станции в любой момент времени могут быть установлены или отключены без прерывания работы всей сети;

Рабочие станции могут коммутироваться друг с другом без помощи сер­вера.

Недостатки:

При обрыве кабеля выходит из строя весь участок сети от места разрыва;

Возможность несанкционированного подключения к сети, поскольку для увеличения числа рабочих станций нет необходимости в прерывании ра­боты сети.

Комбинированная структура ЛВС

Наряду с известными топологиями вычислительных сетей: кольцо, звезда и шина – на практике применяется и комбинированная. Она образуется в основном в виде комбинаций вы­шеназванных топологий вычислительных сетей (рис. 5).

Рис 5. Комбинированная структура

Вычислительные сети с комбинированной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций применяют сетевые усилители и(или) коммута­торы. Коммутатор, обладающий одновременно и функциями усилителя, на­зывают активным концентратором.

Пассивный концентратор обычно ис­пользуют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что максимальное возможное расстояние до рабочей станции не должно превышать несколь­ких десятков метров.

Семиуровневая модель ЛВС

ЛВС должна иметь надежную и быструю систему передачи данных, стоимость которой должна быть меньше по сравнению со стоимостью подключаемых рабочих станций. Иными словами, стоимость передаваемой единицы информации должна быть значительно ниже стоимости обработки информации в рабочих станциях. Исходя из этого ЛВС, как система распределенных ресурсов, должна основываться на следующих принципах:

Единой передающей среды;

Единого метода управления;

Единых протоколов;

Гибкой модульной организации;

Информационной и программной совместимости.

Международная организация по стандартизации (ISO), основываясь на опыте многомашинных систем, который был накоплен в разных странах, выдвинула концепцию архитектуры открытых систем – эталонную модель, используемую при разработке международных стандартов.

На основе этой модели вычислительная сеть предстает как распределенная вычислительная среда, включающая в себя большое число разнообразных аппаратных и программных средств. По вертикали данная среда представляется рядом логических уровней, на каждый из которых возложена одна из задач сети. По горизонтали информационно-вычислительная среда делится на локальные части (открытые системы), отвечающие требованиям и стандартам структуры открытых систем.

Часть открытой системы, выполняющая некоторую функцию и входящая в состав того или иного уровня, называется объектом .

Правила, по которым осуществляется взаимодействие объектов одного и того же уровня, называются протоколом.

Протокол – набор правил и процедур, регламентирующий обмен данными.

Протоколы определяют порядок обмена информацией между сетевыми объектами. Они позволяют взаимодействующим рабочим станциям посылать друг другу вызовы, интерпретировать данные, обрабатывать ошибочные ситуации и выполнять множество других различных функций. Суть протоколов заключается в регламентированных обменах точно специфицированными командами и ответами на них (например, назначение физического уровня связи – передача блоков данных между двумя устройствами, подключенными к одной физической среде).

Для протокола передачи данных требуется следующая информация:

Синхронизация. Под синхронизацией понимают механизм распознавания начала блока данных и его конца.

Инициализация. Под инициализацией понимают установление соединения между взаимодейст­вующими партнерами. При условии, что приемник и передатчик используют один и тот же протокол, синхронизация устанавливается автоматически.

Блокирование. Под блокированием понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опо­знава­тельные знаки начала блока и его конца).

Адресация. Адресация обеспечивает идентификацию различного используемого оборудо­вания, которое обменивается друг с другом информацией во время взаимодей­ствия.

Обнаружение ошибок. Под обнаружением ошибок понимают установку и проверку контрольных битов.

Нумерация блоков. Текущая нумерация блоков позволяет установить ошибочно переда­ваемую или поте­рявшуюся информацию.

Управление потоком данных. Управление потоком данных служит для распределения и синхрони­зации ин­формаци­онных потоков. Так, например, если не хватает места в бу­фере устройства данных или данные не достаточно быстро обрабатыва­ются в периферийных устройст­вах, со­общения и(или) за­просы накапливаются.

Методы восстановления. После прерывания процесса передачи данных используют методы восстанов­ления, чтобы вернуться к определенному положению для повтор­ной передачи инфор­мации.

Разрешение доступа. Распределение, контроль и управление ограничениями доступа к данным вме­няются в обязанность пункта разрешения доступа (например, “только передача” или “только прием”).

Каждый уровень подразделяется на две части:

Спецификация услуг;

Спецификация протокола.

Спецификация услуг определяет, что делает уровень , а спецификация протокола - как он это делает . Причем каждый конкретный уровень может иметь более одного протокола.

Большое число уровней, используемых в модели, обеспечивает декомпозицию информационно-вычислительного процесса на простые составляющие. В свою очередь, увеличение числа уровней вызывает необходимость включения дополнительных связей в соответствии с дополнительными протоколами и интерфейсами. Интерфейсы (макрокоманды, программы) зависят от возможностей используемой ОС.

Международная организация по стандартизации предложила семиуровневую модель , которой соответствует и программная структура (рис. 6).

Рис 6. Уровни управления и протоколы ЛВС

Рассмотрим функции, выполняемые каждым уровнем программного обеспечения.

1. Физический – осуществляет как соединения с физическим каналом, так и отсоединение, управление каналом, а также определяет скорость передачи данных и топологию сети.

2. Канальный – осуществляет обрамление передаваемых массивов информации вспомогательными символами и контроль передаваемых данных. В ЛВС передаваемая информация разбивается на несколько пакетов или кадров. Каждый пакет содержит адреса источника и места назначения, а также средства обнаружения ошибок.

3. Сетевой – определяет маршрут передачи информации между сетями (ПЭВМ), обеспечивает обработку ошибок, а также управление потоками данных. Основная задача сетевого уровня - маршрутизация данных (передача данных между сетями). Специальные устройства – маршрутизаторы (Router) определяют для, какой сети предназначено то или другое сообщение, и направляют эту посылку в заданную сеть. Для определения абонента внутри сети используется адрес узла (Node Address). Для определения пути передачи данных между сетями на маршрутизаторах строятся таблицы маршрутов (Routing Tables) , содержащие последовательность передачи данных через маршрутизаторы. Каждый маршрут содержит адрес конечной сети, адрес следующего маршрутизатора и стоимость передачи данных по этому маршруту. При оценке стоимости могут учитываться количество промежуточных маршрутизаторов, время, необходимое на передачу данных, денежная стоимость передачи данных по линии связи. Для построения таблиц маршрутов наиболее часто используют либо метод векторов либо статический метод . При выборе оптимального маршрута применяют динамические или статические методы. На сетевом уровне возможно применение одной из двух процедур передачи пакетов:

датаграмм – когда часть сообщения или пакет независимо доставляется адресату по различным маршрутам, определяемым сложившейся динамикой в сети. При этом каждый пакет включает в себя полный заголовок с адресом получателя. Процедуры управления передачей таких пакетов по сети называются датаграммной службой;

виртуальных соединений – когда установление маршрута передачи всего сообщения от отправителя до получателя осуществляется с помощью специального служебного пакета – запроса на соединение. В таком случае для этого пакета выбирается маршрут и, при положительном ответе получателя на соединение закрепляется для всего последующего трафика (потока сообщений в сети передачи данных) и получается номер соответствующего виртуального канала (соединения) для дальнейшего использования его другими пакетами того же сообщения. Пакеты, которые передаются по одному виртуальному каналу, не являются независимыми и поэтому включают сокращенный заголовок, включающий порядковый номер пакета, принадлежащему одному сообщению. Недостатками по сравнению с датаграммой являются сложность в реализации, увеличение накладных расходов, вызванных установлением и разъединением сообщений.

4. Транспортный – связывает нижние уровни (физический, канальный, сетевой) с верхними уровнями, которые реализуются программными средствами. Этот уровень разделяет средства формирования данных в сети от средств их передачи. Здесь осуществляется разделение информации по определенной длине и уточняется адрес назначения. Транспортный уровень позволяет мультиплексировать передаваемые сообщения или соединения. Мультиплексирование сообщений позволяет передавать сообщения одновременно по нескольким линиям связи, а мультиплексирование соединений – передает в одной посылке несколько сообщений для различных соединений.

5. Сеансовый – на данном уровне осуществляется управление сеансами связи между двумя взаимодействующими пользователями (определяет начало и окончание сеанса связи: нормальное или аварийное; определяет время, длительность и режим сеанса связи; определяет точки синхронизации для промежуточного контроля и восстановления при передаче данных; восстанавливает соединение после ошибок во время сеанса связи без потери данных).

6. Представительский – управляет представлением данных в необходимой для программы пользователя форме, генерацию и интерпретацию взаимодействия процессов, кодирование/декодирование данных, в том числе компрессию и декомпрессию данных. На рабочих станциях могут использоваться различные операционные системы: DOS, UNIX, OS/2. Каждая из них имеет свою файловую систему, свои форматы хранения и обработки данных. Задачей данного уровня является преобразование данных при передаче информации в формат, который используется в информационной системе. При приеме данных этот уровень представления данных выполняет обратное преобразование. Таким образом, появляется возможность организовать обмен данными между станциями, на которых используются различные операционные системы. Форматы представления данных могут различаться по следующим признакам:

Порядок следования битов и размерность символа в битах;

Порядок следования байтов;

Представление и кодировка символов;

Структура и синтаксис файлов.

Компрессия или упаковка данных сокращает время передачи данных. Кодирование передаваемой информации обеспечивает защиту ее от перехвата.

7. Прикладной – в его ведении находятся прикладные сетевые программы, обслуживающие файлы, а также выполнение вычислительных, информационно-поисковых работ, логических преобразований информации, передачи почтовых сообщений и т.п. Главная задача этого уровня – обеспечение удобного интерфейса для пользователя.

На разных уровнях обмен происходит различными единицами информации: битами, кадрами, пакетами, сеансовыми сообщениями, пользовательскими сообщениями.

Протоколы передачи данных

В различных сетях существуют различные протоколы обмена данными. Наибольшее распространение получила конкретная реализация методов доступа в сетях типа Ethernet, Arcnet и Token-Ring.

Метод доступа в сетях Ethernet

Этот метод доступа, разработанный фирмой Xerox в 1975 году, пользуется наибольшей популярностью. Он обеспечивает высокую скорость передачи данных и надежность.

Сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными. Сообщение включает в себя адрес станции назначения и адрес станции отправителя. Та станция, которой предназначено сообщение, принимает его, остальные игнорируют.

Метод доступа в сетях Ethernet является методом множественного доступа с прослушиванием несущей и разрешением коллизий (конфликтов) (CSMA/CD - Carrier Sense Multiple Access/Collision Detection)

Перед началом передачи рабочая станция определяет, свободен канал или занят. Если канал свободен, станция начинает передачу. Ethernet не исключает возможности одновременной передачи сообщений двумя или несколькими станциями. Аппаратура автоматически распознает такие конфликты, называемые коллизиями. После обнаружения конфликта станции задерживают передачу на некоторое время, затем передача возобновляется.

Реально конфликты приводят к уменьшению быстродействия сети только в том случае, если в сети работают не менее 80-100 станций.

Метод доступа в сетях Arcnet

Этот метод доступа разработан фирмой Datapoint Corp. Он также получил широкое распространение в основном благодаря тому, что оборудование Arcnet дешевле, чем оборудование Ethernet или Token-Ring. Технология Arcnet используется в локальных сетях с топологией “звезда”. Один из компьютеров создает специальный маркер (сообщение специального вида), который последовательно передается от одного компьютера к другому.

Если станция желает передать сообщение другой станции, она должна дождаться маркера и добавить к нему сообщение, дополненное адресом отправителя и адресом станции назначения. Когда пакет дойдет до станции назначения, сообщение будет “отцеплено” от маркера и передано станции.

Метод доступа в сетях Token-Ring

  • Анализ состояния и эффективности образования и использования запасов сырья и материалов на предприятии: цель, информационная база, система показателей, методика проведения.

  • Технология совместного использования ресурсов между разными источниками (CORS, Cross-Origin Resource Sharing) определяет способ взаимодействия клиентских веб-приложений, загружаемых в один домен, с ресурсами другого домена. Поддержка технологии CORS сервисом позволяет собирать многофункциональные веб-приложения на стороне клиента и выборочно предоставлять доступ Cross-origin к вашим ресурсам сервиса.

    В данном разделе предоставлена информация о технологии совместного использования ресурсов между разными источниками (CORS).

    Каждая строка AllowedHeader в правиле может содержать максимум один подстановочный знак «*». Например, x-amz-* разрешит использовать все заголовки сервиса.

    Элемент ExposeHeader

    Каждый элемент ExposeHeader указывает заголовок в ответе, к которому пользователи смогут получить доступ из приложений (например, из объекта JavaScript XMLHttpRequest). Список типичных заголовков сервиса находится в разделе «Типовые заголовки запросов ».

    Элемент MaxAgeSeconds

    Элемент MaxAgeSeconds указывает время в секундах, на которое браузер может кешировать ответ для предполетного запроса, что определяется ресурсом, методом HTTP и источником.

    Как сервис осуществляет оценку конфигурации CORS на бакете

    Когда сервис получает предполетный запрос от браузера, он осуществляет оценку конфигурации CORS для бакета и использует первое правило CORSRule, которое совпадает с получаемым запросом браузера на разрешение запроса Cross-origin. Для того, чтобы правило совпадало с получаемым запросом, должны выполняться нижеследующие условия.

    • Заголовок Origin запроса должен совпадать с элементом AllowedOrigin .
    • Метод запроса (например, GET или PUT) или заголовок Access-Control-Request-Method в случае предполетного запроса OPTIONS должен быть одним из элементов AllowedMethod .
    • Каждый заголовок, указанный в заголовке Access-Control-Request-Headers в предполетном запросе, должен совпадать с элементом AllowedHeader .

    Политики и списки управления доступом ACL применимы при разрешении технологии CORS на бакете.

    Под ресурсами ПК будет пониматься любой из следующих элементов:

    • · логические диски, включая накопители на CD-ROM, DVD и другие аналогичные устройства;
    • · каталоги (папки) с подкаталогами (вложенными папками) или без них, а также содержащиеся в них файлы;
    • · подключенные к ПК устройства: принтеры, модемы и др.

    Ресурс, доступный только с ПК, на котором он находится, называется локальным. Ресурс ПК, доступный для других компьютеров сети, называется разделяемым или сетевым (общим, совместно используемым). Локальный ресурс можно сделать разделяемым и, наоборот, разделяемому ресурсу можно вернуть статус локального, т. е. запретить доступ к нему других пользователей сети.

    Создание разделяемых сетевых ресурсов и доступ к ним обеспечиваются специальными сетевыми операционными системами . Базовые сетевые возможности сетевых ОС позволяют с одного компьютера сети обрабатывать данные (вводить, редактировать, копировать, удалять, производить поиск), размещенные на другом.

    Обычно используются один или несколько мощных ПК (выделенные серверы), которые предоставляют свои ресурсы для совместного использования в сети. Система коллективного доступа работает по принципу разделения времени работы главного компьютера.

    В зависимости от используемых сетевых ресурсов в иерархических сетях различают серверы следующих типов.

    1. Файловый сервер.

    В этом случае на сервере находятся совместно обрабатываемые файлы или (и) совместно используемые программы. При этом на рабочих станциях находится только небольшая (клиентская) часть программ, требующая незначительных ресурсов. Программы, допускающие такой режим работы, называются программами с возможностью инсталляции в сети. Требования к мощности сервера и пропускной способности сети при таком способе использования определяются количеством одновременно работающих рабочих станций и характером используемых программ.

    2. Сервер баз данных.

    На сервере размещается база данных, которая может пополняться с различных рабочих станций или (и) выдавать информацию по запросам с рабочей станции. Возможны два принципиально различающихся режима обработки запросов с рабочей станции или редактирования записей в базе данных:

    • · с сервера последовательно пересылаются записи базы данных на рабочую станцию, где производится собственно фильтрация записей и отбор необходимых;
    • · сервер сам отбирает необходимые записи из БД (реализует запрос) и пересылает их на рабочую станцию.

    Во втором случае снижаются нагрузка на сеть и требования к рабочим станциям, но резко возрастают требования к вычислительной мощности сервера. Тем не менее именно такой способ обработки запросов является наиболее эффективным. Указанный способ удовлетворения запросов с рабочих станций называется режимом клиент-сервер, его реализуют специальные средства работы с современными сетевыми базами данных. В системах клиент-сервер обработка данных разделена между двумя объектами: клиентом и сервером. Клиент - это задача, рабочая станция, пользователь. Он может сформировать запрос для сервера: считать файл, осуществить поиск записи и т.п. Сервер - это устройство или компьютер, выполняющий обработку запроса. Он отвечает за хранение данных, организацию доступа к этим данным и передачу данных клиенту.

    3. Принт-сервер.

    К компьютеру небольшой мощности подключается достаточно производительный принтер, на котором может быть распечатана информация сразу с нескольких рабочих станций. Программное обеспечение организует очередь заданий на печать, а также идентифицирует отпечатанную информацию специальными страницами (закладками), которые разделяют печатные материалы различных пользователей.

    4. Почтовый сервер.

    На сервере хранится информация, отправляемая и получаемая как по локальной сети, так и извне (например, по модему). В любое удобное для него время пользователь может просмотреть поступившую на его имя информацию или отправить через почтовый сервер свою информацию.

    Доступ к сетевым ресурсам локальной вычислительной сети

    Для работы в локальной сети служит системная папка Сетевое окружение, в которой отображаются все доступные ресурсы ЛВС.

    Для отображения списка всех компьютеров, входящих в рабочую группу, необходимо щелкнуть мышью на пункте "Отобразить компьютеры рабочей группы" в командной панели "Сетевые задачи" окна "Сетевое окружение".

    Дважды щелкнув мышью на значке любого из удаленных компьютеров в окне "Сетевое окружение", можно увидеть, какие его ресурсы доступны для работы. С этими удаленными ресурсами можно работать так же, как с файлами локальных дисков в программе Проводник.

    Управление сетевым доступом к дискам, папкам, принтеру

    Для того чтобы другие пользователи ЛВС могли обращаться к ресурсам вашего ПК, таким как принтер, логические диски, папки и файлы, необходимо открыть сетевой доступ к этим ресурсам и установить права пользователей для работы с каждым из этих ресурсов.

    Project Professional 2019 Project Professional 2016 Project 2010 Project 2007 Project Online Desktop Client Project Professional 2013 Project Standard 2007 Project Standard 2010 Project Standard 2013 Project Standard 2016 Project Standard 2019 More... Less

    Knowing who’s available to work on your project can become a challenge when you’re working across multiple projects.

    If you assign the same people to several projects or use shared resources in your project, it helps to combine all the resource information into a single central file called a resource pool. The resource pool is also useful for identifying assignment conflicts, and viewing time allocation for each project.

    Create a resource pool

    Note: If you use Project Professional and resources exist in your organization"s enterprise resource pool, you don"t need to create another resource pool. See for more information.

    Open Project, click Blank Project > Resource tab.

    Click the arrow next to Team Planner and click Resource Sheet .

    Click Add Resources and import existing resource information.

    To type in new people information, click Work Resource and add Resource Name and details.

    Note: In Project 2007, choose View > Resource Sheet , and then add resources with the type Work .

    Note: If you’re using Project Professional with Project Server, you’ll have access to the enterprise resources. To learn more about Project versions, see Project Version Comparison . The enterprise resource list is usually managed by an administrator, and each project manager can add from these resources to their projects.

    After you create a shared resource pool, the information for each shared project comes from this resource pool, and all information like assignments, cost rates and availability are in this central location.

    Use the resource pool Working with resource usage information

    You can view and update the resource pool file from your current project (sharer file). It’s a good practice to periodically update and view resources to get the latest information on allocations and its impact on your projects.

    Note: To directly edit a resource pool file, you’ll need read/write access to that file. Otherwise you can only view resource usage and make changes to your project’s resources.

    Stop sharing resources

    If your project shares resources from a resource pool or from another project file, you can disconnect it from that other file. Resources with assignments in your project file remain in the project after the file is disconnected from the resource pool or other project file, but the other resources from the resource pool or other file are no longer available.

    Note: Usually you don"t want the task assignments to be retained within the resource pool after you disconnect the sharer file. However, assignments will be retained if you disconnect your sharer file from the resource pool when the resource pool isn"t open, or if you don"t save the resource pool after you disconnect the sharer file. To remove the retained assignments from the pool, disconnect the sharer file from within the resource pool file, and all task assignment information is deleted from the resource pool without affecting the former sharer file. If there are already leftover tasks in your resource pool, reconnect the sharer file to the resource pool and disconnect it again.

    Disconnect the active sharing file from its resource pool

    You can disconnect the active project file from the resource pool or other file that it is connected to and sharing resources with.

    Open the resource pool that contains the resources that you are sharing.

    In the Open Resource Pool dialog box, click Open resource pool read/write so that you can change resource information . Keep in mind that opening the pool with read/write permission keeps others from updating the pool with new information.

    Open your project.

    Choose Resource > Resource Pool > Share Resources . (In Project 2007, choose Tools > Resource Sharing > Share Resources .)

    Click Use own resources , and then click OK .

    Save both project files.

    Learn more about resource pools

    A resource pool makes it easier for you to administer people or equipment assigned to tasks in more than one project file. The resource pool centralizes resource information, such as the resource name, calendar used, resource units, and cost rate tables.

    Each project that uses resources from the resource pool is called a sharer file.

    Tip: Create a new (separate) project file just for resource information. This will make it easier for you to manage resource information and task assignments between the sharer files and the resource pool.

    Before a resource pool is created, each project contains its own resource information. Some of this information may overlap or even conflict with information about the same resources used in other projects.

    After a shared resource pool is created, the resource information in each project comes from the single resource pool. Assignment information, as well as cost rates and availability for all resources, reside in one central location.

    It is also easier to see resource overallocations caused by conflicting assignments across more than one project.

    Published on Февраль 18, 2009 by · Комментариев нет

    В предыдущей статье я рассказывал о модели OSI и о том, как она служит в качестве модели для применения абстракции между физическими устройствами и ПО. В этой статье я сначала собирался поговорить о том, как стеки протоколов связаны с моделью OSI. Но после некоторых размышлений я решил, что эта тема довольно запутанная и не представляет особой ценности для сетевых администраторов. Учитывая это, я хочу поговорить о том, как сделать ресурсы доступными в сети.

    Итак, я хочу заострить свое внимание на том, как сделать ресурсы доступными по сети. Если вы остановитесь и на время задумаетесь, то поймете, что основной причиной создания сетей является расположение ресурсов так, чтобы они могли совместно использоваться несколькими компьютерами. Ресурсы могут проявляться во множестве различных форм. Зачастую совместное использование ресурсов означает общий доступ к файлам и папкам, но не всегда. В те времена, когда я начинал работать с сетями, принтеры были очень дорогими, поэтому очень часто встречались ситуации, в которых компании создавали сети только для того, чтобы один принтер мог использоваться несколькими сотрудниками. Это позволяло компании экономить средства на покупке и обслуживании отдельного принтера для каждого сотрудника.

    Даже маленькие домашние сети создаются с целью совместного использования ресурсов. Самые распространенные домашние сети включают беспроводную точку доступа, которая также служит в качестве Интернет маршрутизатора. В таких сетях Интернет является именно тем ресурсом, который используется совместно. В таких сценариях просто нет необходимости иметь отдельное Интернет соединение для каждого компьютера, поскольку одно соединение может быть использовано совместно.

    Как вы видите, существует множество различных типов ресурсов, которые можно совместно использовать в сети. Сам процесс обеспечения доступа к ресурсам варьируется в зависимости от типа ресурсов, которые будут совместно использоваться, а также от используемых в сети операционных систем. Я начну свое обсуждение с разговора о том, как можно обеспечивать доступ к файлам и папкам по сети.

    Прежде чем начать

    Прежде чем начать, я бы хотел вкратце упомянуть о том, что информация, которую я собираюсь вам предоставить, основана на Windows Server 2003. Windows Server 2003, Windows XP, и все предыдущие версии Windows работают с обеспечением доступа к файлам и папкам по примерно одинаковому принципу. Шаги, которые вы используете для обеспечения общего доступа к ресурсам, немного отличаются в этих системах, но основные принципы одинаковые. В Windows Vista используется другой подход к обеспечению общего доступа к ресурсам по сравнению с ее предшественниками, поэтому мы поговорим об этой ОС в последующих статьях этой серии. А пока, просто помните о том, что большая часть того, что я вам покажу, неприменима к Vista.

    Создание файлового ресурса (File Share)

    Если вы хотите разрешить коллективное использование файлов, хранящихся на сервере, вам нужно для начала создать файловый ресурс. Файловый ресурс – это специально созданная точка доступа, через которую пользователи смогут получать доступ к файлам. Причина, по которой файловый ресурс необходим, заключается в том, что с точки зрения безопасности было бы слишком рискованным шагом открыть доступ ко всему содержимому сервера.

    Создание файлового ресурса является весьма простой задачей. Для этого нужно просто запустить процесс с создания папки в том месте, в котором вы хотите разместить общие данные. Например, многие файловые серверы имеют назначенный массив хранения или диск данных, предназначенный исключительно для хранения данных (а не для программных файлов и компонентов ОС).

    В большинстве случаев, у вас есть довольно объемное количество папок, содержимое которых необходимо использовать совместно. Также каждая из этих папок должна иметь свои особенные требования безопасности. Вы можете создавать отдельный ресурс для каждой папки, но это обычно считается не очень хорошей идеей, если только каждый ресурс не располагается на разных дисках. В каждом правиле есть свои исключения, но в большинстве случаев вам потребуется создать по одному файловому ресурсу для каждого тома. Вы можете разместить все свои папки в одном таком ресурсе, а затем назначить необходимые разрешения для каждой отдельной папки. По мере развития этой статьи вы начнете понимать, почему создание нескольких файловых ресурсов является такой плохой идеей.

    Если у вас уже есть несколько папок, не беспокойтесь о них. Вы с легкостью можете создать новую папку и переместить в нее существующие папки. Другим вариантом является создание файлового ресурса на уровне тома, в этом случае вам не придется перемещать существующие папки.

    В целях написания этой статьи предположим, что вы создали папку, которая будет включать подпапки, и что вы разрешите общий доступ к этой папке. Когда вы создали папку, нажмите на ней правой клавишей и выберите команду «Доступ/Безопасность» из появившегося меню. После этого у вас появится страница свойств, как показано на рисунке A.

    Рисунок A: Вкладка «Доступ» дает вам возможность разрешить общий доступ к папке

    Как видно из рисунка, вкладка «Доступ» позволяет вам контролировать, будет ли разрешен общий доступ к этой папке. Когда вы выбираете опцию «Разрешить общий доступ к этой папке», вам будет дана инструкция ввести имя ресурса. Имя, которое вы выберите, очень важно. Windows не так требователен к именам ресурсов, но даже в этом случае, я бы рекомендовал назначить ресурсу имя, не превышающее шестнадцати знаков, и избежать использования пробелов и символов в целях обратной совместимости. Следует также отметить, что если вы назначаете ресурсу имя, в конце которого стоит символ $, то ресурс становится невидимым. В Windows есть несколько скрытых ресурсов по умолчанию, о которых я расскажу позже.

    Поле «Комментарии» позволяет вам вводить комментарии о том, для чего будет использоваться этот ресурс. Это делается исключительно в целях администрирования. Комментарии не являются обязательными, но документирование ресурсов никогда не было плохой идеей.

    Теперь взгляните на раздел «Ограничения пользователей». Вы заметите на рисунке, что по умолчанию значение этого параметра является «Максимально допустимый». Всякий раз, когда вы устанавливаете Windows сервер, у вас должны быть в наличии лицензии клиентского доступа. У вас есть возможность либо приобрести лицензии для каждого отдельного клиента, либо создать лицензию сервера, который будет поддерживать определенное количество соединений. Предположим, у вас есть несколько серверов, в таких ситуациях обычно дешевле лицензировать клиентов, нежели отдельные серверы. В любом случае, когда ограничения пользователя имеют параметр «Максимально допустимый», неограниченное количество клиентов сможет подключаться к ресурсу до тех пор, пока количество соединений будет соответствовать количеству лицензий, которые вы приобрели. Если вы используете модель лицензирования каждого клиента по отдельности, то доступ к ресурсу технически неограничен, но у каждого клиента обязательно должна быть лицензия.

    Другим вариантом здесь будет разрешение подключения определенного количества пользователей к этому ресурсу. Эта опция практически никак не связана с лицензированием, однако непосредственно связана с производительностью. Оборудование с малыми возможностями может не поддерживать большого количества клиентских подключений. Таким образом, компания Microsoft дает вам варианты ограничения одновременных подключений к ресурсу, чтобы не перегружать оборудование.

    Заключение

    В этой статье я начал говорить о том как обеспечить общий доступ к ресурсам в сети. В следующей части этой серии статей я расскажу вам о том, как задавать разрешения для ресурсов, которые вы создаете.