Лекция 3. Стек TCP/IP. Базовые протоколы TCP/IP

Протокол TCP/IP является базовым транспортным сетевым прото- колом. Термин "TCP/IP" обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TELNET, FTP и многие другие.

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами.

Стек протоколов TCP/IP имеет четыре уровня (рисунок 3.1).

Рисунок 3.1 – Стек TCP/IP

Уровень IV соответствует уровню доступа к сети, который работает на основе стандартных протоколах физического и канального уровня, таких, как Ethernet, Token Ring, SLIP, PPP и других. Протоколы этого уровня отвечают за пакетную передачу данных в сети на уровне аппаратных средств.

Уровень III обеспечивает межсетевое взаимодействие при передаче пакетов данных из одной подсети в другую. При этом работает протокол IP.

Уровень II является основным и работает на базе протокола управления передачей TCP. Этот протокол необходим для надежной передачи сообщений между размещенными на разных машинах прикладными программами за счет образования виртуальных соединений между ними.

Уровень I – прикладной. Стек TCP/IP существует давно и он включает в себя большое количество протоколов и сервисов прикладного уровня (протокол передачи файлов FTP, протокол Telnet, протокол Gopher для доступа к ресурсам всемирного пространства GopherSpace, самый известный протокол HTTP для доступа к удаленным гипертекстовым базам данных во всемирный паутине и др.).

Все протоколы стека можно разделить на две группы: протоколы передачи данных, передающие полезные данные между двумя сторонами; служебные протоколы, необходимые для корректной работы сети.

Служебные протоколы обязательно используют какой-либо протокол передачи данных. Например, служебный протокол ICMP использует протокол IP. Интернет – совокупность всех связных компьютерных сетей, использующих протоколы стека TCP/IP.

Функции транспортного уровня. Протоколы TCP, UDP.

Четвертый уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Транспортным уровнем предоставляются следующие виды услуг:

– установление транспортного соединения;

– передача данных;

– разрыв транспортного соединения.

Функции, выполняемые транспортным уровнем:

– преобразование транспортного адреса в сетевой;

– мультиплексирование транспортных соединений в сетевые;

– установление и разрыв транспортных соединений;

– упорядочивание блоков данных по отдельным соединениям;

– обнаружение ошибок и необходимый контроль за качеством услуг;

– восстановление после ошибок;

– сегментирование, объединение и сцепление;

– управление потоком данных по отдельным соединениям;

– супервизорные функции;

– передача срочных транспортных блоков данных.

Протокол управления передачей TCP предоставляет надежную службу доставки пакетов, ориентированную на установление соединения.

Протокол TCP:

– гарантирует доставку IP-датаграмм;

– выполняет разбиение на сегменты и сборку больших блоков данных, отправляемых программами;

– обеспечивает доставку сегментов данных в нужном порядке;

– выполняет проверку целостности переданных данных с помощью контрольной суммы;

– посылает положительные подтверждения, если данные получены успешно. Используя избирательные подтверждения, можно также посылать отрицательные подтверждения для данных, которые не были получены;

– предлагает предпочтительный транспорт для программ, которым требуется надежная передача данных с установлением сеанса связи, например для баз данных «клиент-сервер» и программ электронной почты.

TCP основан на связи «точка – точка» между двумя узлами сети. TCP получает данные от программ и обрабатывает их как поток байтов. Байты группируются в сегменты, которым TCP присваивает последовательные номера, необходимые для правильной сборки сегментов на узле-приемнике.

Чтобы два узла TCP могли обмениваться данными, им нужно сначала установить сеанс связи друг с другом. Сеанс TCP инициализируется с помощью процесса, называемого трехэтапным установлением связи, котором синхронизируются номера последовательности и передается управляющая информация, необходимая для установления виртуального соединения между узлами. По завершении этого процесса установления связи начинается пересылка и подтверждение пакетов в последовательном порядке между этими узлами. Аналогичный процесс используется TCP перед прекращением соединения для того, чтобы убедиться, что оба узла закончили передачу и прием данных (рисунок 3.2).


Рисунок 3.2 – Формат заголовка сегмента TCP

Поля порт источника и порт получателя занимают по 2 байта и идентифицируют процесс-отправитель процесс-получатель. Поля порядковый номер и номер подтверждения (длины по 4 байта) нумеруют каждый отправленный или полученный байт данных. Реализуются как целые числа без знака, которые сбрасываются, когда достигают максимального значения. Каждая сторона ведет собственную порядковую нумерацию. Поле длина заголовка занимает 4 бита и представляет собой длину заголовка TCP-сегмента, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле параметры. Поле резерв занимает 6 бит. Поле флаги занимает 6 бит и содержит шесть 1-битовых флагов:

– флаг URG (Urgent Pointer – указатель точности) устанавливается в 1 в случае использования поля указатель на срочные данные;

– флаг ACK (Acknowledgment – подтверждение) устанавливается в 1 в случае, если поле номер подтверждения содержит данные. В противном случае это поле игнорируется;



– флаг PSH (Push – выталкивание) означает, что принимающий стек TCP должен немедленно информировать приложение о поступивших данных, а не ждать пока буфер заполнится;

– флаг RST (Reset – сброс) используется для отмены соединения: из-за ошибки приложения, отказа от неверного сегмента, попытки создать соединение при отсутствии затребованного сервиса;

– флаг SYN (Synchronize – синхронизация) устанавливается при инициировании соединения и синхронизации порядкового номера;

– флаг FIN (Finished – завершение) используется для разрыва соединения. Он указывает, что отправитель закончил передачу данных.

Поле размер окна (длина 2 байта) содержит количество байт, которое может быть послано после байта, получение которого уже подтверждено. Поле контрольная сумма (длина 2 байта) служит для повышения надежности. Оно содержит контрольную сумму заголовка, данных и псевдозаголовка. При выполнении вычислений поле контрольная сумма устанавливается равным нулю, а поле данных дополняется нулевым байтом, если его длина представляет собой нечетное число. Алгоритм вычисления контрольной суммы просто складывает все 16-разрядные слова в дополнительном коде, а затем вычисляет дополнение для всей суммы.

Протокол UDP, являясь дейтаграммным протоколом, реализует сервис по возможности, то есть не гарантирует доставку своих сообщений, а, следовательно, никоим образом не компенсирует ненадежность дейтаграммного протокола IP. Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой. Каждая дейтаграмма переносит отдельное пользовательское сообщение. Это приводит к ограничению: длина дейтаграммы UDP не может превышать длины поля данных протокола IP, которое, в свою очередь, ограничено размером кадра технологии нижнего уровня. Поэтому если UDP-буфер переполняется, то данные приложения отбрасываются. Заголовок UDP-пакета, состоящий из четырех 2-байтовых полей, содержит поля порт источника, порт получателя, длина UDP и контрольная сумма (рисунок 3.3).

Поля порт источника и порт получателя идентифицируют передающий и получающий процессы. Поле длина UDP содержит длину пакета UDP в байтах. Поле контрольная сумма содержит контрольную сумму пакета UDP, вычисляемую по всему пакету UDP с добавленным псевдозаголовком.

Рисунок 3.3 – Формат заголовка пакета UDP

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Каким протоколом в OSI является TCP/IP?

2. Для чего предназначена архитектура протоколов TCP/IP?

3. Какие уровни имеет стек TCP/IP?

4. Какие функции выполняет протокол управления передачей TCP?

5. Какие отличия существуют между протоколами TCP и UDP?

Доброго времени суток, дорогие читатели.
По многочисленным просьбам сегодня я публикую для Вас статью, которая познакомит Вас с основами основ терминов компьютерной сети, а именно:

  • Сетевые протоколы - что это за страшные названия и с чем их едят
  • UDP, TCP, ICMP , - что, зачем и в чем разница
  • IP -адрес, - у всех есть, но не все знают нафига эта штука:-)
  • Маска адреса (подсеть)
  • Шлюз (gateway)
  • Несколько слов о таблицах маршрутизации
  • Порты, - что это на самом деле
  • MAC -адрес

Примерно так.

Статья, думаю, будет полезна всем от мала до велика, ибо содержит не столько набор странных непонятных действий или слов, сколько блок доступным языком изложенной информации, которая, как минимум, даст Вам понимание как вообще это всё работает и зачем это нужно. Поехали.

Сетевые протоколы TCP/IP, NWLink IPX/SPX, NetBEUI

Давайте начнем с того, что вообще такое сетевой протокол и с чем его едят.
Сетевой протокол - это набор программно реализованных правил общения между компьютерами. Этакий язык, на котором компьютеры разговаривают друг с другом и передают информацию. Ранее компьютеры были, так сказать, многоязычны и в старых версиях Windows использовался целый набор протоколов, - TCP/IP, NWLink IPX/SPX, NetBEUI . Ныне же пришли к общей договоренности, и стандартом стало использование исключительно протокола TCP/IP , а посему речь далее пойдет именно о нем.

Когда говорят о TCP/IP , то обычно подразумевают под этим именем множество различных.. правил или, скажем, стандартов, которые прописаны с использованием (или под использование) этого протокола. Так, например, есть правила, по которым осуществляется обмен сообщениями между почтовыми серверами и есть правила, по которым конечный пользователь получает в свой ящик письма. Имеются правила для проведения видео-конференций и правила для организации "телефонных" переговоров по Интернету. Фактически, это даже не то чтобы правила.. Скорее этакая грамматика, что ли. Ну знаете, в английском одна структура построения диалогов, в французском другая.. Вот и в TCP/IP нечто подобное, т.е. некая связка различных грамматических правил представляет собой как раз цельный протокол TCP/IP или, точнее говоря, стек протоколов TCP/IP .

Сетевые протоколы UDP, TCP, ICMP

В рамках протокола TCP/IP для передачи данных используются протоколы - TCP и UDP . Многие наверняка слышали, что есть порты как TCP , так и UDP , но не все знают в чем разница и что это вообще. И так..

Передача данных по протоколу TCP (Transmission Control Protocol - Протокол Управления Передачей) предусматривает наличие подтверждений получения информации. "-Ну, мол, - получил? -Получил!" Если же передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение, а UDP (User Datagram Protocol - Протокол Пользовательских Датаграмм) - нет. UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы или IP-телефония (яркий представитель которой, - Skype)). То есть разница заключается в наличии подтверждения приема. Казалось бы "Всего то!", но на практике это играет важную роль.

Есть еще так же протокол ICMP (Internet Control Message Protocol - межсетевой протокол управляющих сообщений), который используется для передачи данных о параметрах сети. Он включает в себя служебные типы пакетов, таки как ping, distination unreachable, TTL и пр.

Что такое IP-адрес

У всех он есть, но не все имеют представление что за адрес такой и почему вообще без него нельзя. Рассказываю.

IP -адрес - 32 -х битное число, используемое для идентификации компьютера в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например, 192.168.101.36

IP- адреса уникальны, - это значит, что каждый компьютер имеет свое собственное сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP -адреса распределяются централизованно, интернет-провайдеры делают заявки в национальные центры в соответствии со своими потребностями. Полученные провайдерами диапазоны адресов распределяются дальше между клиентами. Клиенты, в свою очередь, сами могут выступать в роли провайдера и распределять полученные IP -адреса между субклиентами и т.д. При таком способе распределения IP -адресов компьютерная система точно знает "расположение" компьютера, имеющего уникальный IP -адрес; - ей достаточно переслать данные в сеть "владельца", а провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит информацию следующему владельцу поддиапазона IP -адресов, пока данные не поступят на компьютер назначения.

Для построения же локальных сетей выделены спец.диапазоны адресов. Это адреса 10.x.x.x , 192.168.x.x , 10.x.x.x , c 172.16.x.x по 172.31.x.x , 169.254.x.x , где под x - имеется ввиду любое число это от 0 до 254 . Пакеты, передаваемые с указанных адресов, не маршрутизируется, иными словами, попросту не пересылаются через Интернет, а поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Т.е., в компании ООО "Рога и копыта " и ООО "Вася и компания " могут находится два компьютера с адресами 192.168.0.244 , но не могут, скажем, с адресами 85.144.213.122 , полученными от провайдера интернета, т.к. в интернете не может быть два одинаковых IP -адреса. Для пересылки информации с таких компьютеров в Интернет и обратно используются спец.программы и устройства, которые заменяют локальные адреса реальными при работе с интернетом. Иными словами, данные в Сеть пересылаются с реального IP -адреса, а не с локального. Этот процесс происходит не заметно для пользователя и называется трансляцией адресов. Хочется так же упомянуть, что в рамках одной сети, скажем, компании, ООО "Рога и копыта ", не может быть два компьютера с одним локальным IP-адресом, т.е., в указанном выше примере имелось ввиду, что один компьютер с адресом 192.168.0.244 в одной компании, второй с таким же адресом - в другой. В одной же компании два компьютера с адресом 192.168.0.244 попросту не уживутся.

Вы наверняка слышали такие термины как внешний IP и внутренний IP , постоянный (статический IP) и переменный (динамический) IP . В двух словах о них:

  • внешний IP - это как раз тот самый IP , который выдает Вам провайдер, т.е. Ваш уникальный адрес в интернете, например, - 85.144.24.122
  • внутренний IP , - это локальный IP , т.е. Ваш IP в локальной сети, например, - 192.168.1.3
  • статический IP - это IP , который не меняется с каждым подключением, т.е. закреплен за Вами твердо и навсегда
  • динамический IP , - это плавающий IP -адрес, который меняется с каждым подключением

Тип Вашего IP (статический или динамический) зависит от настроек провайдера.

Что такое маска адреса (подсеть)

Понятие подсети введено, чтобы можно было выделить часть IP -адресов одной организации, часть другой и тд. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеры с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута для пересылки из одной сети в другую.

Маска - это параметр, который сообщает программному обеспечению о том, сколько компьютеров объединено в данную группу (подсеть). Маска адреса имеет такую же структуру как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255 . При этом, чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших компаний маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом. Так, например, сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.254 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127 . Думаю, смысл понятен. Как правило сети с небольшим возможным числом компьютеров используются провайдерами с целью экономии IP-адресов. Например, клиенту, может быть назначен адрес с маской 255.255.255.252 . Такая подсеть содержит в себе только два компьютера.

После того как компьютер получил IP-адрес и ему стало известно значение маски подсети, программа может начать работу в данной локальной подсети. Однако же, чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика как адрес шлюза (Gateway).

Что такое Шлюз (Gateway)

Шлюз - это устройство (компьютер или маршрутизатор), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

Для работы только в локальной сети шлюз может не указываться.

Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза, - это адрес того устройства, которое имеет подключение к Интернету. При наличии нескольких маршрутов будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Что такое таблицы маршрутизации

И вот мы плавно добрались и до них. И так.. Что же за таблицы такие.

Организация или пользователь может иметь несколько точек подключения к Интернету (например, резервные каналы на случай, если у первого провайдера что-то выйдет из строя, а интернет таки очень нужен) или содержать в своей структуре несколько IP -сетей. В этом случае, чтобы система знала каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации. В таблицах маршрутизации для каждого шлюза указываются те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны, но с разной стоимостью передачи данных: например, информация, будет пересылаться по каналу, имеющему самую низкую стоимость, а в случае выхода его из строя по тем или иным причинам, автоматически будет использоваться следующее доступное наиболее дешевое соединение.

Что такое сетевые порты

При передаче данных кроме IP -адресов отправителя и получателя пакет информации содержит в себе номера портов. Пример: 192.168.1.1:80 , - в данном случае 80 - это номер порта. Порт - это некое число, которое используется при приеме и передаче данных для идентификации процесса (программы), который должен обработать данные. Так, если пакет послан на 80 -й порт, то это свидетельствует, что информация предназначена серверу HTTP .

Номера портов с 1 -го до 1023 -й закреплены за конкретными программами (так называемые well-known-порты). Порты с номерами 1024 -65 535 могут быть использованы в программах собственной разработки. При этом возможные конфликты должны решаться самими программами путем выбора свободного порта. Иными словами, порты будут распределяться динамически: возможно, что при следующем старте программа выберет иное значение порта, если, конечно, Вы вручную через настройки не задавали ей порт.

Что есть MAC-адрес

Дело в том, что пересылаемые пакеты в сети адресуются компьютерам не по их именам и не на IP -адрес. Пакет предназначается устройству с конкретным адресом, который и называется MAC -адресом.

MAC-адрес - это уникальный адрес сетевого устройства, который заложен в него изготовителем оборудования, т.е. это этакий проштампованный номер Вашей сетевой карты. Первая половина MAC -адрес представляет собой идентификатор изготовителя, вторая - уникальный номер данного устройства.

Как правило MAC -адрес бывает требуется для идентификации, скажем, у провайдера (если провайдер использует привязку по мак-адресу вместо логина-пароля) или при настройке маршрутизатора.

Где посмотреть все сетевые настройки

Чуть не забыл сказать пару слов о том где можно поглядеть и поменять всё это.

В современном мире информация распространяется за считанные секунды. Вот только что появилась новость, а через секунду она уже доступна на каком-либо сайте в сети интернет. Интернет считается одной из самых полезных разработок человеческого разума. Чтобы пользоваться всеми благами, которые предоставляет интернет, необходимо подключиться к этой сети.

Мало кто знает, что простой процесс посещения веб-страничек подразумевает незаметную для пользователя, сложную систему действий. Каждый переход по ссылке активирует сотни различных вычислительных операций в сердце компьютера. В их числе передачи запросов, прием ответов и многое другое. За каждое действие в сети отвечают так называемые протоколы TCP/IP. Что они собой представляют?

Любой протокол интернета TCP/IP работает на своем уровне. Иными словами, каждый занимается своим делом. Все семейство TCP/IP протоколов одновременно выполняет колоссальную работу. А пользователь в это время видит только яркие картинки и длинные строки текста.

Понятие стека протоколов

Стек протоколов TCP/IP - это организованный набор основных сетевых протоколов, который иерархическим способом разделен на четыре уровня и представляет собой систему транспортного распределения пакетов по компьютерной сети.

TCP/IP - это наиболее известный стек сетевых протоколов, который используется на данный момент. Принципы стека TCP/IP применяются как в локальных, так и в глобальных сетях.

Принципы использования адресов в стеке протоколов

Стек сетевых протоколов TCP/IP описывает пути и направления отправки пакетов. Это основная задача всего стека, выполняющаяся на четырех уровнях, которые взаимодействуют между собой протоколированным алгоритмом. Для правильной отправки пакета и его доставки ровно в ту точку, которая его запросила, была введена и стандартизирована адресация IP. Этому послужило наличие следующих задач:

  • Адреса различного типа, должны быть согласованы. Например преобразование домена сайта в IP адрес сервера и обратно, или преобразование имени узла в адрес и обратно. Таки образом становится возможен доступ к точке не только с помощью IP адреса, но и по интуитивному названию.
  • Адреса должны быть уникальны. Это вызвано тем, что в некоторых частных случаях пакет должен попасть только в одну конкретную точку.
  • Необходимость конфигурирования локальных вычислительных сетей.

В малых сетях, где используется несколько десятков узлов, все эти задачи выполняются элементарно, с помощью простейших решений: составление таблицы с описанием принадлежности машины и соответствующего ей IP адреса, или можно вручную раздать всем сетевым адаптерам IP адреса. Однако для крупных сетей на тысячу или две тысячи машин задача ручной выдачи адресов не кажется такой выполнимой.

Именно поэтому для сетей TCP/IP был изобретен специальный подход, который и стал отличительной чертой стека протоколов. Было введено понятие - масштабируемость.

Уровни стека протоколов TCP/IP

Здесь существует определенная иерархия. Стек протоколов TCP/IP предусматривает четыре уровня, каждый из которых обрабатывает свой набор протоколов:

Прикладной уровень : создан для обеспечения работы пользователя с сетью На этом уровне обрабатывается все то, что видит и делает пользователь. Уровень позволяет пользователю получить доступ к различным сетевым службам, например: доступ к базам данных, возможность прочитать список файлов и открыть их, отправить электронное сообщение или открыть веб-страницу. Вместе с пользовательскими данными и действиям, на этом уровне передается служебная информация.

Транспортный уровень: это механизм передачи пакетов в чистом виде. На этом уровне совершенно не имеет значения ни содержимое пакета, ни его принадлежность к какому бы то ни было действию. На этом уровне имеет значение только адрес узла отправки пакета и адрес узла, на который пакет должен быть доставлен. Как правило, размер фрагментов, передаваемых с использованием разных протоколов, может изменяться, потому на этом уровне блоки информации могут дробиться на выходе и собираться в единое целое в точке назначения. Этим обусловлена возможная потеря данных, если в момент передачи очередного фрагмента произойдет кратковременный разрыв соединения.

Транспортный уровень включает в себя много протоколов, которые делятся на классы, от простейших, которые просто передают данные, до сложных, которые оснащены функционалом подтверждения приема, или повторного запроса недополученного блока данных.

Данный уровень, предоставляет вышестоящему (прикладному) два типа сервиса:

  • Осуществляет гарантированную доставку, с помощью протокола ТСР.
  • Осуществляет доставку по возможности по протоколу UDP.

Чтобы обеспечить гарантированную доставку, согласно протоколу TCP устанавливается соединение, которое позволяет выставлять на пакетах нумерацию на выходе и подтверждать их прием на входе. Нумерация пакетов и подтверждение приема - это так называемая служебная информация. Этот протокол поддерживает передачу в режиме "Дуплекс". Кроме того, благодаря продуманному регламенту протокола, он считается очень надежным.

Протокол UDP предназначен для моментов, когда невозможно настроить передачу по протоколу TCP, либо приходится экономить на сегменте сетевой передачи данных. Также протокол UDP может взаимодействовать с протоколами более высокого уровня, для повышения надежности передачи пакетов.

Сетевой уровень или "уровень интернета": базовый уровень для всей модели TCP/IP. Основной функционал этого уровня идентичен одноименному уровню модели OSI и описывает перемещение пакетов в составной сети, состоящей из нескольких, более мелких подсетей. Он связывает соседние уровни протокола TCP/IP.

Сетевой уровень является связующим между вышестоящим транспортным уровнем и нижестоящим уровнем сетевых интерфейсов. Сетевой уровень использует протоколы, которые получают запрос от транспортного уровня, и посредством регламентированной адресации передают обработанный запрос на протокол сетевых интерфейсов, указывая, по какому адресу направить данные.

На этом уровне используются следующие сетевые протоколы TCP/IP: ICMP, IP, RIP, OSPF. Основным, и наиболее популярным на сетевом уровне, конечно же является протокол IP (Internet Protocol). Основной его задачей является передача пакетов от одного роутера к другому до тех пор, пока единица данных не попадет на сетевой интерфейс узла назначения. Протокол IP разворачивается не только на хостах, но и на сетевом оборудовании: маршрутизаторах и управляемых коммутаторах. Протокол IP работает по принципу негарантированной доставки с максимальными усилиями. Т. е., для отправки пакета нет необходимости заранее устанавливать соединение. Такой вариант приводит к экономии трафика и времени на движении лишних служебных пакетов. Пакет направляется в сторону назначения, и вполне возможно, что узел останется недоступным. В таком случае возвращается сообщение об ошибке.

Уровень сетевых интерфейсов: отвечает за то, чтобы подсети с разными технологиями могли взаимодействовать друг с другом и передавать информацию в том же режиме. Реализовано это двумя простыми шагами:

  • Кодирование пакета в единицу данных промежуточной сети.
  • Преобразование информации о месте назначения в стандарты необходимой подсети и отправка единицы данных.

Этот подход позволяет постоянно расширять количество поддерживаемых технологий построения сетей. Как только появляется новая технология, она сразу попадает в стек проколов TCP/IP и позволяет сетям со старыми технологиями передавать данные в сети, построенные с применением более современных стандартов и способов.

Единицы передаваемых данных

За время существования такого явления, как протоколы TCP/IP, установились стандартные термины по части единиц передаваемых данных. Данные при передаче могут дробиться по-разному, в зависимости от технологий, используемых сетью назначения.

Чтобы иметь представление о том, что и в какой момент времени происходит с данными, нужно было придумать следующую терминологию:

  • Поток данных - данные, которые поступают на транспортный уровень от протоколов вышестоящего прикладного уровня.
  • Сегмент - фрагмент данных, на которые дробится поток по стандартам протокола TCP.
  • Датаграмма (особо безграмотные произносят как "Дейтаграмма") - единицы данных, которые получаются путем дробления потока с помощью протоколов, работающих без установления соединения (UDP).
  • Пакет - единица данных, производимая посредством протокола IP.
  • Протоколы TCP/IP упаковывают IP-пакеты в передаваемые по составным сетям блоки данных, которые называются кадрами или фреймами .

Типы адресов стека протоколов TCP/IP

Любой протокол передачи данных TCP/IP для идентификации узлов использует один из следующих типов адресов:

  • Локальные (аппаратные) адреса.
  • Сетевые адреса (IP адреса).
  • Доменные имена.

Локальные адреса (MAC-адреса) - используются в большинстве технологий локальных вычислительных сетей, для идентификации сетевых интерфейсов. Под словом локальный, говоря о TCP/IP, следует понимать интерфейс, который действует не в составной сети, а в пределах отдельно взятой подсети. Например, подсеть интерфейса, подключенного к интернет - будет локальной, а сеть интернет - составной. Локальная сеть может быть построена на любой технологии, и независимо от этого, с точки зрения составной сети машина, находящаяся в отдельно выделенной подсети, будет называться локальной. Таким образом, когда пакет попадает в локальную сеть, дальше его IP адрес ассоциируется с локальным адресом, и пакет направляется уже на MAC-адрес сетевого интерфейса.

Сетевые адреса (IP-адреса). В технологии TCP/IP предусмотрена собственная глобальная адресация узлов, для решения простой задачи - объединения сетей с разной технологией в одну большую структуру передачи данных. IP-адресация совершенно не зависит от технологии, которая используется в локальной сети, однако IP адрес позволяет сетевому интерфейсу представлять машину в составной сети.

В итоге была разработана система, при которой узлам назначается IP адрес и маска подсети. Маска подсети показывает, какое количество бит отводится под номер сети, а какое количество под номер узла. IP адрес состоит из 32 бит, разделенных на блоки по 8 бит.

При передаче пакета ему назначается информация о номере сети и номере узла, в который пакет должен быть направлен. Сначала маршрутизатор направляет пакет в нужную подсеть, а потом выбирается узел, который его ждет. Этот процесс осуществляется протоколом разрешения адресов (ARP).

Доменные адреса в сетях TCP/IP управляются специально разработанной системой доменных имен (DNS). Для этого существуют серверы, которые сопоставляют доменное имя, представленное в виде строки текста, с IP адресом, и отправляет пакет уже в соответствии с глобальной адресацией. Между именем компьютера и IP адресом не предусмотрено соответствий, поэтому, чтобы преобразовать доменное имя в IP адрес, передающему устройству необходимо обратиться к таблице маршрутизации, которая создается на DNS сервере. Например, мы пишем в браузере адрес сайта, DNS сервер сопоставляет его с IP адресом сервера, на котором сайт расположен, и браузер считывает информацию, получая ответ.

Кроме сети интернет, есть возможность выдавать компьютерам доменные имена. Таким образом, упрощается процесс работы в локальной сети. Пропадает необходимость запоминать все IP-адреса. Вместо них можно придумать каждому компьютеру любое имя и использовать его.

IP-адрес. Формат. Составляющие. Маска подсети

IP адрес - 32-битное число, которое в традиционном представлении записывается в виде чисел, от 1 до 255, разделенных между собой точками.

Вид IP адреса в различных форматах записи:

  • Десятичный вид IP адреса: 192.168.0.10.
  • Двоичный вид того же IP адреса: 11000000.10101000.00000000.00001010.
  • Запись адреса в шестнадцатеричной системе счисления: C0.A8.00.0A.

Между ID сети и номером точки в записи нет разделительного знака, но компьютер способен их разделять. Для этого существует три способа:

  1. Фиксированная граница. При этом способе весь адрес условно делится на две части фиксированной длины побайтно. Таким образом, если под номер сети отдать один байт, тогда мы получим 2 8 сетей по 2 24 узлов. Если границу сдвинуть еще на байт вправо, тогда сетей станет больше - 2 16 , а узлов станет меньше - 2 16 . На сегодняшний день подход считается устаревшим и не используется.
  2. Маска подсети. Маска идет в паре с IP адресом. Маска имеет последовательность значений "1" в тех разрядах, которые отведены под номер сети, и определенное количество нулей в тех местах IP адреса, которые отведены на номер узла. Граница между единицами и нулями в маске - это граница между идентификатором сети и ID узла в IP-адресе.
  3. Метод классов адресов. Компромиссный метод. При его использовании размеры сетей не могут быть выбраны пользователем, однако есть пять классов - А, В, С, D, Е. Три класса - А, В и С - предназначены для различных сетей, а D и Е - зарезервированы для сетей специального назначения. В классовой системе каждый класс имеет свою границу номера сети и ID узла.

Классы IP адресов

К классу А относятся сети, в которых сеть идентифицируется по первому байту, а три оставшихся являются номером узла. Все IP адреса, которые имеют в своем диапазоне значение первого байта от 1 до 126 - это сети класса А. Количественно сетей класса А получается совсем мало, зато в каждой из них может быть до 2 24 точек.

Класс В - сети, в которых два высших бита равны 10. В них под номер сети и идентификатор точки отводится по 16 бит. В результате получается, что количество сетей класса В в большую сторону отличается от количества сетей класса А количественно, но они имеют меньшее количество узлов - до 65 536 (2 16) шт.

В сетях класса С - совсем мало узлов - 2 8 в каждой, но количество сетей огромно, благодаря тому, что идентификатор сети в таких структурах занимает целых три байта.

Сети класса D - уже относятся к особым сетям. Он начинается с последовательности 1110 и называется групповым адресом (Multicast adress). Интерфейсы, имеющие адреса класса А, В и С, могут входить в группу и получать вдобавок к индивидуальному еще и групповой адрес.

Адреса класса Е - в резерве на будущее. Такие адреса начинаются с последовательности 11110. Скорее всего, эти адреса будут применяться в качестве групповых, когда наступит нехватка IP адресов в глобальной сети.

Настройка протокола TCP/IP

Настройка протокола TCP/IP доступна на всех операционных системах. Это - Linux, CentOS, Mac OS X, Free BSD, Windows 7. Протокол TCP/IP требует только наличия сетевого адаптера. Разумеется, серверные операционные системы способны на большее. Очень широко, с помощью серверных служб, настраивается протокол TCP/IP. IP адреса в в обычных настольных компьютерах задаются в настройках сетевых подключений. Там настраивается сетевой адрес, шлюз - IP адрес точки, имеющий выход в глобальную сеть, и адреса точек, на которых располагается DNS сервер.

Протокол интернета TCP/IP может настраиваться в ручном режиме. Хотя не всегда в этом есть необходимость. Можно получать параметры протокола TCP/IP с динамически-раздающего адреса сервера в автоматическом режиме. Такой способ используют в больших корпоративных сетях. На DHCP сервер можно сопоставить локальный адрес к сетевому, и как только в сети появится машина с заданным IP адресом, сервер сразу даст ему заранее подготовленный IP адрес. Этот процесс называется резервирование.

TCP/IP Протокол разрешения адресов

Единственный способ установить связь между MAC-адресом и IP адресом - ведение таблицы. При наличии таблицы маршрутизации каждый сетевой интерфейс осведомлен о своих адресах (локальном и сетевом), однако встает вопрос, как правильно организовать обмен пакетами между узлами, применяя протокол TCP/IP 4.

Для чего был придуман протокол разрешения адресов (ARP)? Для того, чтобы связывать семейство TCP/IP протоколов и других систем адресации. На каждом узле создается таблица соответствия ARP, которая заполняется путем опроса всей сети. Происходит это после каждого выключения компьютера.

ARP таблица

Так выглядит пример составленной ARP таблицы.

  • Системное администрирование ,
  • Стандарты связи
  • Предположим, что вы плохо владеете сетевыми технологиями, и даже не знаете элементарных основ. Но вам поставили задачу: в быстрые сроки построить информационную сеть на небольшом предприятии. У вас нет ни времени, ни желания изучать толстые талмуды по проектированию сетей, инструкции по использованию сетевого оборудования и вникать в сетевую безопасность. И, главное, в дальнейшем у вас нет никакого желания становиться профессионалом в этой области. Тогда эта статья для вас.


    Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ:

    Понятие о стеке протоколов

    Задача - передать информацию от пункта А в пункт В. Её можно передавать непрерывно. Но задача усложняется, если надо передавать информацию между пунктами A<-->B и A<-->C по одному и тому же физическому каналу. Если информация будет передаваться непрерывно, то когда С захочет передать информацию в А - ему придётся дождаться, пока В закончит передачу и освободит канал связи. Такой механизм передачи информации очень неудобен и непрактичен. И для решения этой проблемы было решено разделять информацию на порции.

    На получателе эти порции требуется составить в единое целое, получить ту информацию, которая вышла от отправителя. Но на получателе А теперь мы видим порции информации как от В так и от С вперемешку. Значит, к каждой порции надо вписать идентификационный номер, что бы получатель А мог отличить порции информации с В от порций информации с С и собрать эти порции в изначальное сообщение. Очевидно, получатель должен знать, куда и в каком виде отправитель приписал идентификационные данные к исходной порции информации. И для этого они должны разработать определённые правила формирования и написания идентификационной информации. Далее слово «правило» будет заменяться словом «протокол».

    Для соответствия запросам современных потребителей, необходимо указывать сразу несколько видов идентификационной информации. А так же требуется защита передаваемых порций информации как от случайных помех (при передаче по линиям связи), так и от умышленных вредительств (взлома). Для этого порция передаваемой информации дополняется значительным количеством специальной, служебной информацией.

    В протоколе Ethernet находятся номер сетевого адаптера отправителя (MAC-адрес), номер сетевого адаптера получателя, тип передаваемых данных и непосредственно передаваемые данные. Порция информации, составленная в соответствии с протоколом Ethernet, называется кадром. Считается, что сетевых адаптеров с одинаковым номером не существует. Сетевое оборудование извлекает передаваемые данные из кадра (аппаратно или программно), и производит дальнейшую обработку.

    Как правило, извлечённые данные в свою очередь сформированы в соответствии с протоколом IP и имеют другой вид идентификационной информации - ip адрес получателя (число размером в 4 байта), ip адрес отправителя и данные. А так же много другой необходимой служебной информации. Данные, сформированные в соответствии с IP протоколом, называются пакетами.

    Далее извлекаются данные из пакета. Но и эти данные, как правило, ещё не являются изначально отправляемыми данными. Этот кусок информации тоже составлен в соответствии определённому протоколу. Наиболее широко используется TCP протокол. В нём содержится такая идентификационная информация, как порт отправителя (число размером в два байта) и порт источника, а так же данные и служебная информация. Извлечённые данные из TCP, как правило, и есть те данные, которые программа, работающая на компьютере В, отправляла «программе-приёмнику» на компьютере A.

    Вложность протоколов (в данном случае TCP поверх IP поверх Ethernet) называется стеком протоколов.

    ARP: протокол определения адреса

    Существуют сети классов A, B, C, D и E. Они различаются по количеству компьютеров и по количеству возможных сетей/подсетей в них. Для простоты, и как наиболее часто встречающийся случай, будем рассматривать лишь сеть класса C, ip-адрес которой начинается на 192.168. Следующее число будет номером подсети, а за ним - номер сетевого оборудования. К примеру, компьютер с ip адресом 192.168.30.110 хочет отправить информацию другому компьютеру с номером 3, находящемуся в той же логической подсети. Это значит, что ip адрес получателя будет такой: 192.168.30.3

    Важно понимать, что узел информационной сети - это компьютер, соединённый одним физическим каналом с коммутирующим оборудованием. Т.е. если мы отправим данные с сетевого адаптера «на волю», то у них одна дорога - они выйдут с другого конца витой пары. Мы можем послать совершенно любые данные, сформированные по любому, выдуманному нами правилу, ни указывая ни ip адреса, ни mac адреса ни других атрибутов. И, если этот другой конец присоединён к другому компьютеру, мы можем принять их там и интерпретировать как нам надо. Но если этот другой конец присоединён к коммутатору, то в таком случае пакет информации должен быть сформирован по строго определённым правилам, как бы давая коммутатору указания, что делать дальше с этим пакетом. Если пакет будет сформирован правильно, то коммутатор отправит его дальше, другому компьютеру, как было указано в пакете. После чего коммутатор удалит этот пакет из своей оперативной памяти. Но если пакет был сформирован не правильно, т.е. указания в нём были некорректны, то пакет «умрёт», т.е. коммутатор не будет отсылать его куда либо, а сразу удалит из своей оперативной памяти.

    Для передачи информации другому компьютеру, в отправляемом пакете информации надо указать три идентификационных значения - mac адрес, ip адрес и порт. Условно говоря, порт - это номер, который, выдаёт операционная система каждой программе, которая хочет отослать данные в сеть. Ip адрес получателя вводит пользователь, либо программа сама получает его, в зависимости от специфики программы. Остаётся неизвестным mac адрес, т.е. номер сетевого адаптера компьютера получателя. Для получения необходимой данной, отправляется «широковещательный» запрос, составленный по так называемому «протоколу разрешения адресов ARP». Ниже приведена структура ARP пакета.

    Сейчас нам не надо знать значения всех полей на приведённой картинке. Остановимся лишь на основных.

    В поля записываются ip адрес источника и ip адрес назначения, а так же mac адрес источника.

    Поле «адрес назначения Ethernet» заполняется единицами (ff:ff:ff:ff:ff:ff). Такой адрес называется широковещательным, и такой фрейм будер разослан всем «интерфейсам на кабеле», т.е. всем компьютерам, подключённым к коммутатору.

    Коммутатор, получив такой широковещательный фрейм, отправляет его всем компьютерам сети, как бы обращаясь ко всем с вопросом: «если Вы владелец этого ip адреса (ip адреса назначения), пожалуйста сообщите мне Ваш mac адрес». Когда другой компьютер получает такой ARP запрос, он сверяет ip адрес назначения со своим собственным. И если он совпадает, то компьютер, на место единиц вставляет свой mac адрес, меняет местами ip и mac адреса источника и назначения, изменяет некоторую служебную информацию и отсылает пакет обратно коммутатору, а тот обратно - изначальному компьютеру, инициатору ARP запроса.

    Таким образом ваш компьютер узнаёт mac адрес другого компьютера, которому вы хотите отправить данные. Если в сети находится сразу несколько компьютеров, отвечающих на этот ARP запрос, то мы получаем «конфликт ip адресов». В таком случае необходимо изменить ip адрес на компьютерах, что бы в сети не было одинаковых ip адресов.

    Построение сетей

    Задача построения сетей

    На практике, как правило, требуется построить сети, число компьютеров в которой будет не менее ста. И кроме функций файлообмена, наша сеть должна быть безопасной и простой в управлении. Таким образом, при построении сети, можно выделить три требования:
    1. Простота в управлении. Если бухгалтера Лиду переведут в другой кабинет, ей по-прежнему понадобится доступ к компьютерам бухгалтеров Анны и Юлии. И при неправильном построении своей информационной сети, у администратора могут возникнуть трудности в выдаче Лиде доступа к компьютерам других бухгалтеров на её новом месте.
    2. Обеспечение безопасности. Для обеспечения безопасности нашей сети, права доступа к информационным ресурсам должны быть разграничены. Так же сеть должна быть защищена от угроз раскрытия, целостности и отказа в обслуживании. Подробнее читайте в книге «Атака на Internet» автора Илья Давидович Медведовский, глава «Основные понятия компьютерной безопасности» .
    3. Быстродействие сети. При построении сетей есть техническая проблема - зависимость скорости передачи от количества компьютеров в сети. Чем больше компьютеров - тем ниже скорость. При большом количестве компьютеров, быстродействие сети может стать настолько низким, что она станет неприемлемой заказчику.
    Из-за чего при большом количестве компьютеров снижается скорость сети? - причина проста: из-за большого количества широковещательных сообщений (ШС). ШС - это сообщение, которое, приходя на коммутатор, отправляется всем хостам сети. Или, грубо говоря, всем компьютерам, находящимся в вашей подсети. Если компьютеров в сети 5, то каждый компьютер будет принимать по 4 ШС. Если их будет 200, то каждый компьютер в такой большой сети будет принимать по 199 ШС.

    Существует большое множество приложений, программных модулей и сервисов, которые, для своей работы отправляют в сеть широковещательные сообщения. Описанный в пункте ARP: протокол определения адреса лишь один из множества ШС, отправляемый вашим компьютером в сеть. Например, когда вы заходите в «Сетевое окружение» (ОС Windows), ваш компьютер посылает ещё несколько ШС со специальной информацией, сформированной по протоколу NetBios, что бы просканировать сеть на наличие компьютеров, находящихся в той же рабочей группе. После чего ОС рисует найденные компьютеры в окне «Сетевое окружение» и вы их видите.

    Так же стоит заметить, что во время процесса сканирования той или иной программой, ваш компьютер отсылает ни одно широковещательное сообщение, а несколько, к примеру для того, что бы установить с удалёнными компьютерами виртуальные сессии или ещё для каких либо системных нужд, вызванных проблемами программной реализации этого приложения. Таким образом, каждый компьютер в сети для взаимодействия с другими компьютерами вынужден посылать множество различных ШС, тем самым загружая канал связи не нужной конечному пользователю информацией. Как показывает практика, в больших сетях широковещательные сообщения могут составить значительную часть трафика, тем самым замедляя видимую для пользователя работу сети.

    Виртуальные локальные сети

    Для решения первой и третьей проблем, а так же в помощь решения второй проблемы, повсеместно используют механизм разбиения локальной сети на более маленькие сети, как бы отдельные локальные сети (Virtual Local Area Network). Грубо говоря, VLAN - это список портов на коммутаторе, принадлежащих одной сети. «Одной» в том смысле, что другой VLAN будет содержать список портов, принадлежащих другой сети.

    Фактически, создание двух VLAN-ов на одном коммутаторе эквивалентно покупке двух коммутаторов, т.е. создание двух VLAN-ов - это всё равно, что один коммутатор разделить на два. Таким образом происходит разбиение сети из ста компьютеров на более маленькие сети, из 5-20 компьютеров - как правило именно такое количество соответствует физическому местонахождению компьютеров по надобности файлообмена.

    • При разбиении сети на VLAN-ы достигается простота управления. Так, при переходе бухгалтера Лиды в другой кабинет, администратору достаточно удалить порт из одного VLAN-а и добавить в другой. Подробнее это рассмотрено в пункте VLAN-ы, теория.
    • VLAN-ы помогают решить одно из требований к безопасности сети, а именно разграничение сетевых ресурсов. Так, студен из одной аудитории не сможет проникнуть на компьютеры другой аудитории или компьютер ректора, т.к. они находятся в фактически разных сетях.
    • Т.к. наша сеть разбита на VLAN-ы, т.е. на маленькие «как бы сети», пропадает проблема с широковещательными сообщениями.

    VLAN-ы, теория

    Возможно, фраза «администратору достаточно удалить порт из одного VLAN-а и добавить в другой» могла оказаться непонятной, поэтому поясню её подробнее. Порт в данном случае - это не номер, выдаваемый ОС приложению, как было рассказано в пункте Стек протоколов, а гнездо (место) куда можно присоединить (вставить) коннектор формата RJ-45. Такой коннектор (т.е. наконечник к проводу) прикрепляется к обоим концам 8-ми жильного провода, называемого «витая пара». На рисунке изображён коммутатор Cisco Catalyst 2950C-24 на 24 порта:
    Как было сказано в пункте ARP: протокол определения адреса каждый компьютер соединён с сетью одним физическим каналом. Т.е. к коммутатору на 24 порта можно присоединить 24 компьютера. Витая пара физически пронизывает все помещения предприятия - все 24 провода от этого коммутатора тянутся в разные кабинеты. Пусть, к примеру, 17 проводов идут и подсоединяются к 17-ти компьютерам в аудитории, 4 провода идут в кабинет спецотдела и оставшиеся 3 провода идут в только что отремонтированный, новый кабинет бухгалтерии. И бухгалтера Лиду, за особые заслуги, перевели в этот самый кабинет.

    Как сказано выше, VLAN можно представлять в виде списка принадлежащих сети портов. К примеру, на нашем коммутаторе было три VLAN-а, т.е. три списка, хранящиеся во flash-памяти коммутатора. В одном списке были записаны цифры 1, 2, 3… 17, в другом 18, 19, 20, 21 и в третьем 22, 23 и 24. Лидин компьютер раньше был присоединён к 20-ому порту. И вот она перешла в другой кабинет. Перетащили её старый компьютер в новый кабинет, или она села за новый компьютер - без разницы. Главное, что её компьютер присоединили витой парой, другой конец которой вставлен в порт 23 нашего коммутатора. И для того, что бы она со своего нового места могла по прежнему пересылать файлы своим коллегам, администратор должен удалить из второго списка число 20 и добавить число 23. Замечу, что один порт может принадлежать только одному VLAN-у, но мы нарушим это правило в конце этого пункта.

    Замечу так же, что при смене членства порта в VLAN, администратору нет никакой нужды «перетыкать» провода в коммутаторе. Более того, ему даже не надо вставать с места. Потому что компьютер администратора присоединён к 22-ому порту, с помощью чего он может управлять коммутатором удалённо. Конечно, благодаря специальным настройкам, о которых будет рассказано позже, лишь администратор может управлять коммутатором. О том, как настраивать VLAN-ы, читайте в пункте VLAN-ы, практика [в следующей статье].

    Как вы, наверное, заметили, изначально (в пункте Построение сетей) я говорил, что компьютеров в нашей сети будет не менее 100. Но к коммутатору можно присоединить лишь 24 компьютера. Конечно, есть коммутаторы с большим количеством портов. Но компьютеров в корпоративной сети/сети предприятия всё равно больше. И для соединения бесконечно большого числа компьютеров в сеть, соединяют между собой коммутаторы по так называемому транк-порту (trunk). При настройки коммутатора, любой из 24-портов можно определить как транк-порт. И транк-портов на коммутаторе может быть любое количество (но разумно делать не более двух). Если один из портов определён как trunk, то коммутатор формирует всю пришедшую на него информацию в особые пакеты, по протоколу ISL или 802.1Q, и отправляет эти пакеты на транк-порт.

    Всю пришедшую информацию - имеется в виду, всю информацию, что пришла на него с остальных портов. А протокол 802.1Q вставляется в стек протоколов между Ethernet и тем протоколом, по которому были сформированные данные, что несёт этот кадр.

    В данном примере, как вы, наверное, заметили, администратор сидит в одном кабинете вместе с Лидой, т.к. витая пора от портов 22, 23 и 24 ведёт в один и тот же кабинет. 24-ый порт настроен как транк-порт. А сам коммутатор стоит в подсобном помещении, рядом со старым кабинетом бухгалтеров и с аудиторией, в которой 17 компьютеров.

    Витая пара, которая идёт от 24-ого порта в кабинет к администратору, подключается к ещё одному коммутатору, который в свою очередь, подключён к роутеру, о котором будет рассказано в следующих главах. Другие коммутаторы, которые соединяют другие 75 компьютеров и стоят в других подсобных помещениях предприятия - все они имеют, как правило, один транк-порт, соединённый витой парой или по оптоволокну с главным коммутатором, что стоит в кабинете с администратором.

    Выше было сказано, что иногда разумно делать два транк-порта. Второй транк-порт в таком случае используется для анализа сетевого трафика.

    Примерно так выглядело построение сетей больших предприятий во времена коммутатора Cisco Catalyst 1900. Вы, наверное, заметили два больших неудобства таких сетей. Во первых, использование транк-порта вызывает некоторые сложности и создаёт лишнюю работу при конфигурировании оборудования. А во вторых, и в самых главных - предположим, что наши «как бы сети» бухгалтеров, экономистов и диспетчеров хотят иметь одну на троих базу данных. Они хотят, что бы та же бухгалтерша смогла увидеть изменения в базе, которые сделала экономистка или диспетчер пару минут назад. Для этого нам надо сделать сервер, который будет доступен всем трём сетям.

    Как говорилось в середине этого пункта, порт может находиться лишь в одном VLAN-е. И это действительно так, однако, лишь для коммутаторов серии Cisco Catalyst 1900 и старше и у некоторых младших моделей, таких как Cisco Catalyst 2950. У остальных коммутаторов, в частности Cisco Catalyst 2900XL это правило можно нарушить. При настройке портов в таких коммутаторах, каждый пор может иметь пять режимов работы: Static Access, Multi-VLAN, Dynamic Access, ISL Trunk и 802.1Q Trunk. Второй режим работы именно то, что нам нужно для выше поставленной задачи - дать доступ к серверу сразу с трёх сетей, т.е. сделать сервер принадлежащим к трём сетям одновременно. Так же это называется пересечением или таггированием VLAN-ов. В таком случае схема подключения может быть такой.

    В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

    TCP/IP

    Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

    Стек протоколов сети TCP/IP имеет 4 уровня:

    1. Канальный (Link).
    2. Сетевой (Internet).
    3. Транспортный (Transport).
    4. Прикладной (Application).

    Прикладной уровень

    Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

    • HTTP;
    • SMTP;

    Каждый протокол определяет собственный порядок и принципы работы с данными.

    HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

    Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

    Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

    1. Определение адреса отправителя. Это необходимо для возвращения писем.
    2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
    3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

    Заголовок (Header)

    В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

    Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

    Транспортный уровень

    На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

    Протоколы передачи данных:

    Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

    UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

    TCP или UDP?

    У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

    Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

    Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

    UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

    Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

    Сетевой уровень

    Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

    IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

    MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

    Сетевой уровень отвечает за:

    • Определение маршрутов доставки.
    • Передачу пакетов между сетями.
    • Присвоение уникальных адресов.

    Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

    Самый популярный протокол этого уровня - IP.

    IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

    Виды IP-адресов

    В сетях используются два вида IP-адресов:

    1. Публичные.
    2. Приватные.

    Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

    Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

    Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

    IPv4

    Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

    Формат записи: .

    IPv6

    Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

    Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

    Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

    Пример записи: .

    Существует три типа IPv6-адресов:

    1. Unicast.
    2. Anycast.
    3. Multicast.

    Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

    Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

    Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

    Маска подсети

    Маска подсети выявляет из IP-адреса подсеть и номер хоста.

    Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

    Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

    Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

    Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

    Подсеть и хост

    Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

    Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

    Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

    Адресация

    Для адресации в стеке протоколов TCP/IP используются три типа адресов:

    1. Локальные.
    2. Сетевые.
    3. Доменные имена.

    Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

    Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

    Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

    Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

    Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

    Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

    DNS (Domain Name System) устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

    Канальный уровень

    На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

    Самые распространенные протоколы:

    1. Ethernet.
    2. WLAN.

    Ethernet - наиболее распространенная технология проводных локальных сетей.

    WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

    Настройка TCP/IP для использования статического IPv4-адреса

    Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

    Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

    Настройка TCP/IP для использования динамического IPv4-адреса

    Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

    Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

    Способы передачи данных

    Данные передаются через физическую среду тремя способами:

    • Simplex.
    • Half-duplex.
    • Full Duplex.

    Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

    Примеры симплексной связи:

    • Телевещание.
    • Сигнал от спутников GPS.

    Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная двусторонняя связь может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

    Пример полудуплексной связи - общение по рации на одной частоте.

    Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

    Пример - общение по телефону через мобильную сеть.

    TCP/IP vs OSI

    Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

    1. Физический (Physical).
    2. Канальный (Data Link).
    3. Сетевой (Network).
    4. Транспортный (Transport).
    5. Сеансовый (Session).
    6. Представительский (Presentation).
    7. Прикладной (Application).

    В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

    Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

    Транспортный уровень остается без изменений. Выполняет одинаковые функции.

    Сетевой уровень также не изменен. Выполняет ровно те же задачи.

    Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

    Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.