Он, как и первая строка, отводится для показателей критерия оптимальности. Отличие между первой строкой и первым столбцом состоит в следующем:

      Первая строка, в отличие от столбца, сохраняется лишь в первой симплексной таблице. Начиная со второй итерации верхняя строка перестает быть обязательной.

      В первой строке указываются все без исключения (и основные, и дополнительные) показатели критерия оптимальности, т.е. все коэффициенты, с которыми неизвестные входят в целевую функцию. В первый же столбец входит только часть коэффициентов при неизвестных в целевой функции, т.к. число строк в матрице равно числу дополнительных неизвестных. Эта часть состоит из показателей, номера которых указаны во втором столбце (р k).

    Второй столбец – р k (индеек k – номер итерации).

В этом столбце указываются номера неизвестных, входящих в базисное решение. Эти номера используют для нумерации соответствующих строк матрицы.

В первой симплексной таблице в столбце р 0 указываются номера всех дополнительных переменных.

3. Третий столбец – х 0 .

В первой симплексной таблице он заполняется свободными членами уравнений из системы ограничений. В процессе итеративного расчета эти показатели преобразуются в искомое решение. Поэтому данный столбец носит название итогового столбца .

4. Значение целевой функции F k .

На пересечении итогового столбца в целевой строке указывается значение функционала F k , соответствующее данному этапу решения, данной итерации k.

    Столбцы «основания матрицы».

Обычно сначала располагаются столбцы для основных неизвестных, а вслед за ними – для дополнительных неизвестных.

В этих столбцах в первой симплексной таблице приводятся коэффициенты при неизвестных из уравнений исходных условий.

6. Последующие три столбца таблицы (, , ) имеют вспомогательное значения. Без этих столбцов можно обойтись, но они существенно облегчают проведение расчетов. Более подробно содержание этих столбцов будет рассматриваться ниже.

Пример

Рассмотрим симплексную задачу, записанную в общем виде:

Приведем задачу к канонической форме. Для этого в каждое из неравенств системы введем по одному неизвестному (дополнительному) – х 4 , х 5 . х 6 . Тогда

F = 15x 1 + 20x 2 +5x 3  max.

Заполним первую симплексную таблицу.

Мы заполним все клетки, исходя из условий задачи.

Чтобы заполнить клетку F 0 в первой таблице, необходимо просуммировать произведения элементов столбца х 0 на элементы столбца с 0 , т.е.

F 0 = 600∙0 + 520∙0 +600∙0 =0.

Чтобы заполнить целевую строку в первой таблице, необходимо соответствующее значение с j вычесть из суммы произведений элементов столбца х j на элементы столбца с 0 .

Для столбца х 1 величина двойственной оценки будет определяться

(0∙80+0∙15+0∙5) – 15=-15;

Для х 2: (0 35+0 60+0 5) – 20=-20;

х 3: (0 10+0 0+0 90) – 5=-5 и т.д.

В итоге первая симплексная таблица будет выглядеть так:

Таблица 1

Прежде чем приступать к решению, необходимо проверить, является ли предложенный в таблице план (решение) оптимальным.

Определение

Решение считается оптимальным , если все значения чисел в целевой строке положительны.

Если полученное решение не является оптимальным, то его можно улучшить. Для этого нужно:

1. Выбрать максимальное по абсолютной величине отрицательное значение числа в целевой строке.

В нашем примере таким числом будет (-20), находящееся в столбце «х 2 ». Именно это значение задает ключевой столбец .

Обратите внимание:

Ключевой столбец показывает, какое из х j войдет в новое решение задачи. В нашем случае - неизвестное х 2 .

Обратите внимания:

Чтобы включить в новое решение неизвестное х j , улучшающее это решение, необходимо вывести из базисного решения одно из х j , входящее в него.

2. Выбрать минимальное значение частного от деления элементов столбца х 0 на элементы ключевого столбца. Результаты этих расчетов заносятся в столбец «» симплексной таблицы.

В нашем примере эти отношения равны:

Минимальное значение соответствует х 5 и равно 8,67. Это отношение задает ключевую строку .

    Выбрать элемент, находящийся на пересечении ключевого столбца и ключевой строки, который называется ключевым элементом .

В нашем примере ключевой элемент равен 60 и находится на пересечении столбца х 2 и строки х 5 .

Обратите внимание:

Ключевым не может быть столбец, все элементы которого оказались отрицательными или нулевыми.

    Просуммировать элементы матрицы по строкам (начиная от столбца х 0 и кончая столбцом х 6). Полученные суммы записываются в столбец «».

    Преобразовать ключевую строку . Для этого

    1. Каждый элемент ключевой строки делится на ключевой элемент, начиная с элемента столбца «х 0 »;

Фрагмент

      В столбце р 1 записывается х 2 вместо х 5 ;

      В столбце с j записывается значение критерия оптимальности при х 2 , т.е. 20.

    Все остальные элементы симплексной таблицы пересчитывают, подчиняясь основному правилу. Это правило получило название правила диагонали или правила треугольника .

.

При пересчете величины функции цели получаем:

.

Аналогичным образом поступаем со всеми другими элементами таблицы. В итоге получаем новую симплексную таблицу.

Таблица 2.

Как видно из табл. 2, оптимальное решение не получено, т.е. необходимо продолжить решение, используя все рассмотренные правила преобразования симплексных таблиц.

Примечание 1.

Столбец «» используется для проверки хода решения по строкам. Сумма новых значений элементов строки должна равняться величине элемента этой строки и столбца «», преобразованного по правилу диагонали.

Примечание 2.

Величина функции цели должна равняться сумме произведений элементов столбца с j на элементы столбца х 0 .

Самостоятельно дорешайте эту задачу. В результате должно получиться:

F=236.7; x 1 =3.31; x 2 =7.8; x 3 =6.05.

Примечание 3.

В столбце «» записываются частные от деления элемента в ключевом столбце и строке i на ключевой элемент.

Примечание 4.

В следующей таблице начинайте вычисления с помощью правила диагонали с целевой строки. Если все оценки положительны, то найдено оптимальное решение и остается заполнить столбец х 0 . В этом случае основание матрицы пересчитывать не обязательно.

Один из методов решения оптимизационных задач (как правило связанных с нахождением минимума или максимума ) линейного программирования называется . Симплекс-метод включает в себя целую группу алгоритмов и способов решения задач линейного программирования. Один из таких способов, предусматривающий запись исходных данных и их пересчет в специальной таблице, носит наименование табличного симплекс-метода .

Рассмотрим алгоритм табличного симплекс-метода на примере решения производственной задачи , которая сводится к нахождению производственного плана обеспечивающего максимальную прибыль.

Исходные данные задачи на симплекс-метод

Предприятие выпускает 4 вида изделий, обрабатывая их на 3-х станках.

Нормы времени (мин./шт.) на обработку изделий на станках, заданы матрицей A:

Фонд времени работы станков (мин.) задан в матрице B:

Прибыль от продажи каждой единицы изделия (руб./шт.) задана матрицей C:

Цель производственной задачи

Составить такой план производства, при котором прибыль предприятия будет максимальной.

Решение задачи табличным симплекс-методом

(1) Обозначим X1, X2, X3, X4 планируемое количество изделий каждого вида. Тогда искомый план: (X1, X2, X3, X4 )

(2) Запишем ограничения плана в виде системы уравнений:

(3) Тогда целевая прибыль:

То есть прибыль от выполнения производственного плана должна быть максимальной.

(4) Для решения получившейся задачи на условный экстремум, заменим систему неравенств системой линейных уравнений путем ввода в нее дополнительных неотрицательных переменных (X5, X6, X7 ).

(5) Примем следующий опорный план :

X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 252, X6 = 144, X7 = 80

(6) Занесем данные в симплекс-таблицу :

В последнюю строку заносим коэффициенты при целевой функции и само ее значение с обратным знаком;

(7) Выбираем в последней строке наибольшее (по модулю ) отрицательное число.

Вычислим b = Н / Элементы_выбранного_столбца

Среди вычисленных значений b выбираем наименьшее .

Пересечение выбранных столбца и строки даст нам разрешающий элемент. Меняем базис на переменную соответствующую разрешающему элементу (X5 на X1 ).

  • Сам разрешающий элемент обращается в 1.
  • Для элементов разрешающей строки – a ij (*) = a ij / РЭ (то есть каждый элемент делим на значение разрешающего элемента и получаем новые данные ).
  • Для элементов разрешающего столбца – они просто обнуляются.
  • Остальные элементы таблицы пересчитываем по правилу прямоугольника.

a ij (*) = a ij – (A * B / РЭ)

Как видите, мы берем текущую пересчитываемую ячейку и ячейку с разрешающим элементом. Они образуют противоположные углы прямоугольника. Далее перемножаем значения из ячеек 2-х других углов этого прямоугольника. Это произведение (A * B ) делим на разрешающий элемент (РЭ ). И вычитаем из текущей пересчитываемой ячейки (a ij ) то, что получилось. Получаем новое значение - a ij (*) .

(9) Вновь проверяем последнюю строку (c ) на наличие отрицательных чисел . Если их нет – оптимальный план найден, переходим к последнему этапу решения задачи. Если есть – план еще не оптимален, и симплекс-таблицу вновь нужно пересчитать.

Так как у нас в последней строке снова имеются отрицательные числа, начинаем новую итерацию вычислений.

(10) Так как в последней строке нет отрицательных элементов, это означает, что нами найден оптимальный план производства! А именно: выпускать мы будем те изделия, которые перешли в колонку «Базис» - X1 и X2. Прибыль от производства каждой единицы продукции нам известна (матрица C ). Осталось перемножить найденные объемы выпуска изделий 1 и 2 с прибылью на 1 шт., получим итоговую (максимальную! ) прибыль при данном плане производства.

ОТВЕТ:

X1 = 32 шт., X2 = 20 шт., X3 = 0 шт., X4 = 0 шт.

P = 48 * 32 + 33 * 20 = 2 196 руб.

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на

Формируем следующую часть симплексной таблицы. Вместо переменной x6 в план 1 войдет переменная x2.

Строка, соответствующая переменной x2 в плане 1, получена в результате деления всех элементов строки x6 плана 0 на разрешающий элемент РЭ=1. На месте разрешающего элемента в плане 1 получаем 1. В остальных клетках столбца x2 плана 1 записываем нули.

Таким образом, в новом плане 1 заполнены строка x2 и столбец x2. Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника. Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент

РЭ. НЭ = СЭ - (А*В)/РЭ

СТЭ - элемент старого плана, РЭ - разрешающий элемент (1), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

(0)-(2 * (-2+2M)):1

(-1-M)-(-2 * (-2+2M)):1

(-2+2M)-(1 * (-2+2M)):1

(-M)-(-1 * (-2+2M)):1

(-M)-(0 * (-2+2M)):1

(0)-(0 * (-2+2M)):1

(0)-(1 * (-2+2M)):1

(0)-(0 * (-2+2M)):1

Получаем новую симплекс-таблицу

Итерация №1.

  • 1. Проверка критерия оптимальности. Текущий опорный план неоптимален, так как в индексной строке находятся положительные коэффициенты.
  • 2. Определение новой базисной переменной. В качестве ведущего выберем столбец, соответствующий переменной x1, так как это наибольший коэффициент.
  • 3. Определение новой свободной переменной. Вычислим значения Di по строкам как частное от деления: bi / ai1 и из них выберем наименьшее:

min (-, 1: 3, -) = 1/3

Следовательно, 2-ая строка является ведущей.

Разрешающий элемент равен (3) и находится на пересечении ведущего столбца и ведущей строки

Формируем следующую часть симплексной таблицы.

Вместо переменной x7 в план 2 войдет переменная x1. Строка, соответствующая переменной x1 в плане 2, получена в результате деления всех элементов строки x7 плана 1 на разрешающий элемент РЭ=3

На месте разрешающего элемента в плане 2 получаем 1. В остальных клетках столбца x1 плана 2 записываем нули.

Таким образом, в новом плане 2 заполнены строка x1 и столбец x1. Все остальные элементы нового плана 2, включая элементы индексной строки, определяются по правилу прямоугольника.

Представим расчет каждого элемента в виде таблицы

(0)-(1 * (-5+3M)):3

(-5+3M)-(3 * (-5+3M)):3

(0)-(0 * (-5+3M)):3

(-2+M)-(1 * (-5+3M)):3

(-M)-(-1 * (-5+3M)):3

(0)-(0 * (-5+3M)):3

(2-2M)-(-1 * (-5+3M)):3

(0)-(1 * (-5+3M)):3

Получаем новую симплекс-таблицу:

ИСПОЛЬЗОВАНИЕ ТАБЛИЧНОГО СИМПЛЕКС-МЕТОДА ДЛЯ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ДЛЯ ОПТИМИЗАЦИИ ЭКОНОМИЧЕСКИХ ЗАДАЧ

ВВЕДЕНИЕ

Цель данного курсового проекта - составить план производства требуемых изделий, обеспечивающий максимальную прибыль от их реализации, свести данную задачу к задаче линейного программирования, решить её симплекс - методом и составить программу для решения задачи этим методом на ЭВМ.

1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ДАННОГО ТИПА

1.1 Математическое программирование

Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом: найти экстремум некоторой функции многих переменных f (x 1 , x 2 , ... , x n) при ограничениях g i (x 1 , x 2 , ... , x n) * b i , где g i - функция, описывающая ограничения, * - один из следующих знаков £ , = , ³ , а b i - действительное число, i = 1, ... , m. f называется функцией цели (целевая функция).

Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.

Задачу линейного программирования можно сформулировать так. Найти max

при условии: a 11 x 1 + a 12 x 2 + . . . + a 1n x n £ b 1 ;

a 21 x 1 + a 22 x 2 + . . . + a 2n x n £ b 2 ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

a m1 x 1 + a m2 x 2 + . . . + a mn x n £ b m ;

x 1 ³ 0, x 2 ³ 0, . . . , x n ³ 0 .

Эти ограничения называются условиями неотрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической.

В матричной форме задачу линейного программирования записывают следующим образом. Найти max c T x

при условии

где А - матрица ограничений размером (m´n), b (m ´ 1) - вектор-столбец свободных членов, x (n ´ 1) - вектор переменных, с Т = - вектор-строка коэффициентов целевой функции.

Решение х 0 называется оптимальным, если для него выполняется условие с Т х 0 ³ с Т х, для всех х Î R(x).

Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.

Для решения задач данного типа применяются методы:

1) графический;

2) табличный (прямой, простой) симплекс - метод;

3) метод искусственного базиса;

4) модифицированный симплекс - метод;

5) двойственный симплекс - метод.

1.2 Табличный симплекс - метод

Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.

Алгоритм решения сводится к следующему:

Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.

Если в исходной системе ограничений присутствовали знаки “ равно ”или “ больше либо равно ”, то в указанные ограничения добавляются

искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.

Формируется симплекс-таблица.

Рассчитываются симплекс-разности.

Принимается решение об окончании либо продолжении счёта.

При необходимости выполняются итерации.

На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом.

1.3 Метод искусственного базиса

Данный метод решения применяется при наличии в ограничении знаков “ равно ”, “ больше либо равно ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами m , а в задачи минимизации - с положительными m . Таким образом из исходной получается новая m - задача.

Если в оптимальном решении m - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении m - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.

1.4 Модифицированный симплекс - метод

В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры, которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.

Особенности заключаются в наличии двух таблиц - основной и вспомагательной, порядке их заполнения и некоторой специфичности расчётных формул.

Для производства двух видов изделий А и В используется три типа технологического оборудования. На производство единицы изделия А идёт времени, часов: оборудованием 1-го типа - а 1 , оборудованием 2-го типа - а 2 , оборудованием 3-го типа - а 3 .На производство единицы изделия В идёт времени, часов: оборудованием 1-го типа - b 1 , оборудованием 2-го типа - b 2 , оборудованием 3-го типа - b 3 .

На изготовление всех изделий администрацияпредприятия может предоставить оборудование 1-го типа не более, чем на t 1 ,оборудование 2-го типа не более, чем на t 2 , оборудование 3-го типа не более, чем на t 3 часов.

Прибыль от реализации единицы готового изделия А составляет a рублей, а изделия В - b рублей.

Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу простым симплекс-методом. Дать геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами.

а 1 = 1 b 1 = 5 t 1 = 10 a = 2

а 2 = 3 b 2 = 2 t 2 = 12 b = 3

а 3 = 2 b 3 = 4 t 3 = 10

3. РАЗРАБОТКА И ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ

3.1 Построение математической модели задачи

Построение математической модели осуществляется в три этапа:

1. Определение переменных, для которых будет составляться математическая модель.

Так как требуется определить план производства изделий А и В, то переменными модели будут:

x 1 - объём производства изделия А, в единицах;

x 2 - объём производства изделия В, в единицах.

2. Формирование целевой функции.

Так как прибыль от реализации единицы готовых изделий А и В известна, то общий доход от их реализации составляет 2x 1 + 3x 2 (рублей). Обозначив общий доход через F, можно дать следующую математическую формулировку целевой функции: определить допустимые значения переменных x 1 и x 2 , максимизирующих целевую функцию F = 2x 1 + 3x 2 .

3. Формирование системы ограничений.

При определении плана производства продукции должны быть учтены ограничения на время, которое администрация предприятия сможет предоставить на изготовления всех изделий. Это приводит к следующим трём ограничениям:

x 1 + 5x 2 £10;3x 1 + 2x 2 £ 12 ; 2x 1 + 4x 2 £ 10 .

Так как объёмы производства продукции не могут принимать отрицательные значения, то появляются ограничения неотрицательности:

x 1 ³ 0 ; x 2 ³ 0 .

Таким образом, математическая модель задачи представлена в виде: определить план x 1 , x 2 , обеспечивающий максимальное значение функции:

max F = max (2x 1 + 3x 2)

при наличии ограничений:

x 1 + 5x 2 £10;

3x 1 + 2x 2 £ 12 ;

2x 1 + 4x 2 £ 10 .

x 1 ³ 0 ; x 2 ³ 0 .

3.2 Решение задачи вручную

Табличный метод ещё называется метод последовательного улучшения оценки. Решение задачи осуществляется поэтапно.

1. Приведение задачи к форме:

x 1 + 5x 2 £10;

3x 1 + 2x 2 £ 12 ;

2x 1 + 4x 2 £ 10 .

x 1 ³ 0 ; x 2 ³ 0 .

2. Канонизируем систему ограничений:

x 1 + 5x 2 + x 3 =10;

3x 1 + 2x 2 + x 4 = 12 ;

2x 1 + 4x 2 + x 5 = 10 .

x 1 ³ 0 ; x 2 ³ 0 .

A 1 A 2 A 3 A 4 A 5 A 0

3. Заполняется исходная симплекс-таблица и рассчитываются симплекс-разности по формулам:

- текущее значение целевой функции - расчёт симплекс-разностей, где j = 1..6 .
. Алгоритм симплекс-метода

Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

Решение:

I итерация:

х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

Приведем целевую функциюк следующему виду:

На основе полученной задачи сформируем исходную симплекс-таблицу:

Таблица 5.3

Исходная симплекс-таблица

Оценочные отношения

Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

3 этап: проверка совместности системы ограничений ЗЛП.

На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

6 этап: проверка оптимальности.

Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

Таблица 5.4

Исходная симплекс-таблица

В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

9.1. Преобразование разрешающего элемента.

Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

Полученный результат вписываем в аналогичную клетку таблицы 5.5.

9.2. Преобразование разрешающей строки.

Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

9.3. Преобразование разрешающей колонки.

Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

9.4. Преобразование остальных элементов симплекс-таблицы.

Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

«х3 »: .

Аналогично преобразуются значения других клеток:

«х3 х1 »: ;

«х4 »: ;

«х4 х1 »: ;

«х6 »: ;

«х6 х1 »: ;

«»: ;

«х1 »: .

В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

II итерация:

1 этап: составление симплекс-таблицы.

Таблица 5.5

Симплекс-таблица II итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.6

Симплекс-таблица II итерации

Оценочные

отношения

3/1=3 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

III итерация

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.7

Симплекс-таблица III итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.8

Симплекс-таблица III итерации

Оценочные

отношения

5/5=1 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

IV итерация

1 этап: построение новой симплекс-таблицы.

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.9

Симплекс-таблица IV итерации

Оценочные

отношения

–(–3/5)=3/5

–(1/5)=–1/5

–(9/5)=–9/5

–(–3/5)=3/5

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

7 этап: проверка альтернативности решения.

Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

Решение:

I итерация:

1 этап: формирование исходной симплекс-таблицы.

Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.