Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании ана­логового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации

. Интуитивно нетрудно понять следующую идею. Ес­ли аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой F e , (т.е. функция u(t) имеет вид плавно изме­няющейся кривой, без резких изменений амплитуды), то вряд ли на некото­ром небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде.
Совершенно очевидно, что точность восстановления аналогового сиг­нала по последовательности его отсчетов зависит от величины интервала дискретизации . Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшени­ем интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискре­тизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала.
Оптимальная величина интервала дискретизации устанавливается тео­ремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в мате­матике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), дока­занной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возмож­ность правильно осуществить дискре­тизацию аналогового сигнала и опреде­ляет оптимальный способ его восста­новления на приемном конце по отсчетным значениям.
Рис.14.1. Представление спектральной плотности

Согласно одной из наиболее из­вестных и простых интерпретаций тео­ремы Котельникова, произвольный сиг­нал u(t), спектр которого ограничен некоторой частотой F e может - быть полностью восстановлен по последо­вательности своих отсчетных значений, следующих с интервалом времени

(1)

Интервал дискретизации

и частоту F e (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом (2)

Где k - номер отсчета;

- значение сигнала в точках отсчета; - верхняя частота спектра сигнала.
Для доказательства теоремы Котельникова рассмотрим произвольный непрерывный сигнал и(t), спектральная плотность которого сосредото­чена в полосе частот (сплошная линия на рис.14.1).
Мысленно дополним график спектральной плотности симметрично значениям, повторяющимся с периодом , (штриховые линии на рис.14.1). Полученную таким образом периодическую функцию разложим в ряд Фу­рье, заменив в формуле

аргумент t на с

, частоту на и (фор­мально) п на k . Тогда (3)

период - это

, а интервал дис­кретизации запишем (4)

Воспользуемся формулой обратного преобразования Фурье и представим исходный непрерывный сигнал в следующем виде:

(5)

Таким же образом запишем значение дискретизированного сигнала для некоторого k-то отсчета времени. Поскольку время , то

Сравнив это выражение с формулой для C k , замечаем, что С учетом этого соотношения спектральная функция (3), после несложных преобра­зований, примет вид: (7)

Затем проделаем следующее: подставим выражение

в соотношение , изменим порядок интегрирования и суммирования, представим отно­шение как , и вычислим интеграл.
В результате получим такую фор­мулу:

Из этого соотношения следует, что непрерывная функция u(t) дейст­вительно определяется совокупностью ее дискретных значений амплиту­ды в отсчетные моменты времени

, что и доказывает теорему Ко­тельникова.
Простейшие сигналы вида ортогональные друг другу на интерва­ле времени -, , называются функ­циями отсчетов, базисными функция­ми, или функциями Котельникова. График k-й функции Котельникова представлен на рис. 2. Каждая из ба­зисных функций s k (t) сдвинута относи­тельно подобной ближайшей функции s k-1 (t) или s k+1 (t) на интервал дискрети­зации . Элементарный анализ фор­мулы (10) и графика на рис. 14.3 пока­зывает, что сигнал s k (t) отражается
Рис. 14.2. График базисной функции Котельникова


Рис.14.3. Аппроксимация непрерывного сигнала рядом Котельникова функцией sinx/x, которая также характеризует огибающую спектральной плотности прямоугольного импульса.

Представление (точнее, аппроксимация) заданного непрерывного сигнала u(t) рядом Котельникова (2) иллюстрируется диаграммами на рис. 14.3. графике (здесь базисные функции для упрощения показаны без аргумента t построены четыре первых члена ряда, соответствующие отсчетам сигнала в моменты времени 0,

Ниже будет сформулирована и доказана теорема Котельникова (теорема отсчётов) - основополагающая теорема для систем цифровой обработки сигналов, телекоммуникаций, а также теории связи. Теорема была сформулирована и доказана советским академиком В. А. Котельниковым в 30-х годах 20 века. Суть теоремы состоит в том, что вместо передачи непрерывного аналогового сигнала можно передавать соответствующий ему дискретный сигнал.

Формулировка теоремы: непрерывный сигнал, спектр которого не содержит частот больших fm может быть однозначно представлен своими мгновенными значениями (выборками), разделёнными одинаковыми интервалами времени, длина которых не должна превышать 1/2fm.

Другими словами период дискретизации должен хотя бы в два раза меньше периода наивысшей частотной составляющей спектра непрерывного сигнала, т.е. на каждый период наивысшей частотной составляющей должно приходиться по крайней мере два отсчёта (выборки). Таким образом, частота следования отсчётов должна по крайней мере в два раза превышать наивысшую частоту в спектре непрерывного сигнала. Полученный дискретный сигнал может быть передан по каким-либо линиям связи и из него фильтром нижних частот на стороне приёмника может быть однозначно восстановлен исходный аналоговый сигнал.

С другой стороны, непрерывный сигнал может иметь бесконечный спектр частот, но так как гармоники этого сигнала могут монотонно уменьшаться по амплитуде при увеличении номера гармоники, то с некоторой степенью точности можно считать спектр такого сигнала ограниченным.

Точность воспроизведения непрерывного сигнала во многом определяется характеристиками фильтра нижних частот и не оказывает влияния на корректность теоремы Котельникова в данном случае. Также, точность воспроизведения непрерывного сигнала определяется количеством уровней квантования в процессе получения отсчётов. Однако, если выбрать количество уровней квантования в соответствии с динамическим диапазоном и чувствительностью конкретной системы, то точность воспроизведения непрерывного сигнала не будет ухудшаться процессом получения отсчётов. Это утверждение, в частности, может быть до определённой степени справедливым, когда уровень шумов, присутствующий в исходном сигнале больше шага квантования. В этом случае не имеет смысла увеличивать количество уровней квантования, так как к повышению точности получения отсчётов это не приведёт.

Теорема Котельникова определяет также, что в непрерывном сигнале и соответствующем ему дискретном сигнале, полученном по приведённым выше правилам, содержится одинаковая информация, поэтому представление одного из этих двух сигналов другим является взаимно-однозначным.


Доказательство теоремы начнём с рассмотрения абстрактного вспомогательного непрерывного сигнала, представленного бесконечной последовательностью импульсов с некоторым периодом повторения (рис. 1). Исследуемый непрерывный сигнал и его спектр показан на рис. 2. Цель введения вспомогательного сигнала: показать, что и в нём после некоторых преобразований и в дискретном сигнале, полученном в соответствии с теоремой Котельникова, содержится одинаковая информация.

Далее, для восстановления исходного непрерывного сигнала из сигнала, полученного перемножением исходного и вспомогательного сигналов требуется пропустить полученный сигнал через фильтр нижних частот, который подавит все частоты, выше fm. Однако такой подход требует пояснения для дискретного сигнала. Дело в том, что на выходе ЦАП формируется не последовательность импульсов бесконечно малой ширины, а ступенчатый сигнал. Это объясняется самим принципом работы ЦАП. Если исследовать спектр полученного на выходе ЦАП сигнала, то окажется, что он довольно сильно искажён по сравнению со спектром полученного сигнала в доказательстве теоремы. Это можно объяснить тем, что сигнал на выходе ЦАП представляет собой свёртку полученного в доказательстве теоремы сигнала и сигнала в виде прямоугольного импульса длительностью, соответствующей длительности периода дискретизации. Опять же, по теории операционного исчисления, изображение свёртки оригиналов двух функций равно произведению их изображений.

Получаемый на выходе ЦАП сигнал и его спектр показаны на рис. 5. Пунктиром отмечен спектр прямоугольного импульса. Дублированные части спектра показаны не перемноженными на функцию вида sin(x)/x. Спектр любого прямоугольного импульса задаётся функцией, подобной sin(x)/x. Для восстановления непрерывного исходного сигнала в таком случае нужно рассчитать импульсную характеристику фильтра нижних частот таким образом, чтобы после применения этого фильтра в спектре полученного сигнала производилась ещё и операция деления на соответствующим образом подобранную функцию вида sin(x)/x.

Так как в практических случаях не удаётся достичь точной рассчитанной импульсной характеристики фильтра, может возникнуть скат спектра импульсной характеристики в области частоты среза фильтра. Ширина ската зависит от типа используемого аналогового фильтра. Например, при использовании фильтра Бесселя, ширина ската довольно значительна, а при использовании фильтра Чебышева ширина ската гораздо меньше, но фильтр Чебышева имеет ряд других недостатков, которые обсуждаются в главе «Применение цифровых фильтров». Из-за ската в области частоты среза, некоторая часть спектра в окрестностях частоты среза является неиспользуемой и тогда используют фильтр с частотой среза, превышающей fm на ширину ската.

В заключение следует отметить, что рассмотренный при доказательстве теоремы Котельникова вспомогательный сигнал является чисто абстрактным и в природе существовать не может, так как невозможно получить бесконечно малую ширину импульса. Однако, можно сделать некоторое упрощение, основанное на следующем факте. Любая линейная система имеет конечное быстродействие, т. е. работает в конечном временном интервале. Если это электрическая схема, то быстродействие, как правило, определяется величинами ёмкостей, входящих в состав схемы. Если на вход такой системы подать импульс, имеющий единичную амплитуду и длина которого будет намного меньше нижней границы временного интервала работы схемы, то этот импульс будет воспринят так же как и идеальный (т. е. имеющий бесконечно малую ширину и единичную площадь). Таким образом, в практических случаях существует приближение вспомогательного сигнала, использованного при доказательстве теоремы.

Цифрова?я обрабо?тка сигна?лов (ЦОС, DSP — англ. digital signal processing) — преобразование сигналов, представленных в цифровой форме.

Любой непрерывный (аналоговый) сигнал может быть подвергнут дискретизации по времени и квантованию по уровню (оцифровке), то есть представлен в цифровой форме. Если частота дискретизации сигнала не меньше, чем удвоенная наивысшая частота в спектре сигнала (то есть ), то полученный дискретный сигнал эквивалентен сигналу по методу наименьших квадратов (МНК) (см.: Теорема Котельникова).

При помощи математических алгоритмов преобразуется в некоторый другой сигнал , имеющий требуемые свойства. Процесс преобразования сигналов называется фильтрацией, а устройство, выполняющее фильтрацию, называется фильтр. Поскольку отсчёты сигналов поступают с постоянной скоростью , фильтр должен успевать обрабатывать текущий отсчет до поступления следующего (чаще — до поступления следующих n отсчётов, где n задержка фильтра), то есть обрабатывать сигнал в реальном времени. Для обработки сигналов (фильтрации) в реальном времени применяют специальные вычислительные устройства — цифровые сигнальные процессоры.

Всё это полностью применимо не только к непрерывным сигналам, но и к прерывистым, а также к сигналам, записанным на запоминающие устройства. В последнем случае скорость обработки непринципиальна, так как при медленной обработке данные не будут потеряны.

Различают методы обработки сигналов во временной (англ. time domain ) и в частотной (англ. frequency domain ) области. Эквивалентность частотно-временных преобразований однозначно определяется через преобразование Фурье.

Обработка сигналов во временной области широко используется в современной электронной осциллографии и в цифровых осциллографах. Для представления сигналов в частотной области используются цифровые анализаторы спектра. Для изучения математических аспектов обработки сигналов используются пакеты расширения (чаще всего под именем Signal Processing) систем компьютерной математики MATLAB, Mathcad, Mathematica, Maple и др.

В последние годы при обработке сигналов и изображений широко используется новый математический базис представления сигналов с помощью «коротких волночек» — вейвлетов. С его помощью могут обрабатываться нестационарные сигналы, сигналы с разрывами и иными особенностями и сигналы в виде пачек.

Цифровая обработка сигналов - некоторые основные понятия.

Физические величины, если только не опускаться на квантовый уровень, изменяются непрерывно. Однако цифровая обработка сигналов работает исключительно с дискретными величинами, причем дискретность проявляется двояко - при квантовании по времени и при квантовании по амплитуде сигнала. Это видимое усложнение вполне оправдано тем, что для обработки мы может использовать цифровые вычислительные машины, полностью избавившись от проблемы нестабильности параметров, столь болезненной при обработке аналоговой. Не меньшим преимуществом является то, что стоимость цифровой обработки низка и продолжает падать, даже при очень сложных ее видах. Это позволяет создавать эффективные системы обработки сигналов при разумных затратах. Насколько допустима такая замена? Не приводит ли она к потере точности?

Дискретный сигнал получается из аналогового операцией дискретизации - взятием отсчетов (измерением) через интервал времени Т. В принципе возможна и цифровая обработка при неравномерной дискретизации по времени, однако эта тема куда менее разработана математически и, по-видимому, представляет не столь большой практический интерес. При этой операции представляется возможной потеря информации, заключенной в значениях сигнала в интервалах между отсчетами. Условия, при которых осуществимо восстановление аналогового сигнала по полученному из него цифровому, то есть сохранение всей исходно содержавшейся в сигнале информации, выражаются теоремой Найквиста-Уиттекера-Котельникова-Шеннона (в зависимости от пристрастий автора встречаются все мыслимые комбинации этих имен). Для этого требуется, чтобы полоса частот входного сигнала была бы не менее чем вдвое уже, чем частота дискретизации, то есть f c = 1/2f d . (Нередко приводят частную ее формулировку, верную для сигналов, чья полоса частот начинается с нулевой частоты - “чтобы не присутствовали частоты большие, нежели половина частоты дискретизации”).

Если же такие частоты имеются, возникает эффект маскировки (подмены) частот. Наглядным его проявлением может служить иллюзия, часто проявляющаяся в кино - вращающееся колесо вдруг начинает вращаться в противоположную сторону. Здесь частота смены кадров является аналогом частоты дискретизации, и когда колесо совершает между последовательными кадрами более чем пол-оборота, оно кажется вращающимся в другую сторону и с иной скоростью. Для частоты f маскируются под нее частоты (2f c ±f), (4f c ±f), (6f c ±f) и т.д. Употребляется также термин “алиасы”, от aliases. Неучет этого эффекта может приводить к грубым ошибкам: так, в одном, проведенном в серьезной лаборатории исследовании было обнаружено наличие в электроэнцефалограмме у всех больных, в отличие от здоровых испытуемых, частот 22 и 28 герц. Однако, заметив, что частота дискретизации в данном исследовании была принята 128 Гц, видим, что эти частоты суть “призраки”, порождения помехи на частотах 100 и 150 Гц - второй и третьей гармониках сетевой частоты (их источником могли быть, например, нелинейные устройства в цепях питания аппаратуры, такие, как выпрямители и трансформаторы). Регистрация же их исключительно у больных вызвана была тем, что в условиях больницы, сравнительно с университетской лабораторией, где записывали ЭЭГ здоровых испытуемых, уровень помех существенно выше.

Борьба с эффектом маскирования частот (антиалиасинг) приводит к необходимости предварительной фильтрации сигнала, исключающей частоты выше половины частоты дискретизации, причем ввиду несовершенства реальных фильтров частоту среза выбирают заведомо более низкую, чем требуемая теоретически, как правило, в три-четыре раза ниже частоты дискретизации. Несовершенство это порождено не неумением инженеров-электриков, а носит фундаментальный характер. Дело в том, что сигнал с ограниченной частотной полосой в принципе не может быть конечной длины, а если он конечен во времени, то содержит бесконечную по ширине полосу частот. (Это ограничение количественно выражается соотношением неопределенностей, связывающим длину импульса и его частотную полосу - бесконечно короткий импульс содержит “в зародыше” все возможные частоты, а строго моночастотная синусоида должна простираться от минус до плюс бесконечности.) Поэтому чересчур высококачественный фильтр будет иметь слишком большое время установления, а “идеальный” - вообще бесконечное.

(ИП) — СИ, предназначенное для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи.

По расположению в измерительной цепи различают первичные и промежуточные измерительные преобразователи.

Первичный , называемый также датчиком, это тот измерительный преобразователь, на который непосредственно действует измеряемая величина.

Остальные измерительные преобразователи называют промежуточными. Они расположены после первичного измерительного преобразователя и могут выполнять различные операции преобразования измерительного сигнала.

Как правило, к ним относятся:

Изменение физического рода величины;

Масштабное (линейное или нелинейное) преобразование;

Масштабно-временное преобразование;

Аналого-цифровое преобразование;

Цифро-аналоговое преобразование;

Функциональное преобразование (любые математические операции над значениями величины).

Следует иметь в виду, что указанная классификация достаточно условна. Во-первых, в одном СИ может быть несколько первичных (например, термопара в цепи термоэлектрического термометра). Во-вторых, специфика аналитических измерений также приводит к нарушению указанного принципа классификации.

Аналитические измерения представляют собой преобразование измеряемой величины, являющейся информативным параметром анализируемой среды (информативный параметр параметр, несущий информацию о измеряемой величине), и сравнением ее с мерой.

Обычно они проводятся с помощью совокупности измерительных преобразователей , включающей следующие виды измерительных преобразователей :

ИП1: измерительный преобразователь типа состав - состав, обеспечивающие масштабные преобразования анализируемой пробы. Проба характеризуется информативным параметром С (содержанием измеряемого компонента) и комбинацией неинформативных параметров Сн, к которым относятся содержание неопределяемых (мешающих) компонент и термодинамические параметры анализируемой среды. При прохождении через ИП1 происходят процессы очистки, сушки, изменения температуры и давления смеси до требуемых величин и, после этих преобразований анализируемой среды, отбор ее требуемого количества. ИП1 обычно называют блоком отбора и подготовки пробы;

ИП2: измерительный преобразователь типа состав - свойство, обеспечивающие преобразование измеряемой величины С в то или иное физико-химическое свойство, удобное для последующего измерения и регистрации. Во многих случаях это преобразование идет в два этапа: получение промежуточного продукта в жидкой либо твердой фазе с содержанием компонента Ynpом(C), а затем его преобразование в свойство Ф (Ynpом).

ИП3: измерительный преобразователь типа свойство - выходной сигнал, обеспечивающие преобразование измеряемой величины в выходной измерительный сигнал W. Обычно это преобразование также осуще-ствляется в два этапа: в промежуточный сигнал Wnpом(Ф) и затем в выходной сигнал W(Wnpом ). При этом преобразование Wnpом в W — это преобразование одной электрической величины в другую.

Получив с помощью совокупности измерительных преобразователей выходные сигналы от анализируемого объекта, по калибровочной зависимости произво-дят сравнение измеряемой величины с мерой и вырабатывают оценочные значения С* измеряемой величины С.

Эта совокупность измерительных преобразователей не укладывается в приведенную классификацию, т. к. измеряемая величина непосредственно воздействует не только на первый измерительный преобразователь измерительной цепи, но и на их совокупность, включающую ИП1, ИП2 и первый преобразователь группы ИП3. При этом только второй преобразователь группы ИП3 является промежуточным. Отсюда следует, что в аналитических приборах роль первичного измерительного преобразователя выполняет совокупность измерительных преобразователей, осуществляющая последовательное, в несколько этапов, преобразование измеряемой величины в измерительный сигнал.

К средствам измерений относятся меры, измерительные преобразователи, измерительные приборы, измерительные установки и информационно-измерительные системы. Мерой называется средство измерений, предназначенное для воспроизведения заданного значения физической величины.

Измерительный преобразователь - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающийся непосредственному восприятию наблюдателем. Измерительный преобразователь, к которому подводится измеряемая величина, называется первичным измерительным преобразователем .

В зависимости от характера преобразуемых величин различают следующие виды измерительных преобразователей:

Преобразователи электрических величин в электрические (делители напряжения, измерительные трансформаторы);

Преобразователи магнитных величин в электрические (измерительные катушки);

Преобразователи неэлектрических величин в электрические (термо- и тензопреобразователи, реостатные, емкостные).

В зависимости от вида входного и выходного сигналов различают измерительные преобразователи:

- аналоговые преобразователи , у которых на входе и выходе аналоговые сигналы;

- аналого -цифровые преобразователи , имеющие на входе аналоговый сигнал, а на выходе цифровой (кодированный) сигнал;

- цифро -аналоговые преобразователи , у которых на входе цифровой, а на выходе - аналоговый сигнал.

Первичные измерительные преобразователи, размещаемые непосредственно на объекте исследования и удаления от места обработки, отображения и регистрации измерительной информации, называют датчиками .

Измерительные приборы - средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

По физическим явлениям, положенным в основу работы, измерительные приборы можно разделить на электроизмерительные (электромеханические, электротепловые, электрохимические и др.) и электронные приборы. По назначению их подразделяют на приборы для измерения электрических и неэлектрических (магнитных, тепловых, химических и др.) физических величин, по способу представления результатов - на показывающие и регистрирующие. В зависимости от регистрации измеряемой величины - аналоговые и цифровые измерительные приборы.

Измерительные установки - комплекс средств измерений, включающий в себя меры, измерительные приборы и преобразователи, вспомогательные устройства, объединенные общей схемой, с помощью которой можно измерить одну или несколько физических величин.

Диапазон измерений - область значений измеряемой величины, для которой нормированы допускаемые погрешности средства измерений. Он ограничивается наибольшим и наименьшим значениями.

Область значений шкалы, ограниченную начальными и конечными значениями шкалы, называют диапазоном показаний .

В каноническом разложении Котельникова интервал дискретизации случайного процесса определяется его интервалом корреляции, максимальным значением спектральной плотности и значением спектральной плотности на нулевой частоте.

Интервал дискретизации больше или равен интервалу корреляции процесса.

Из классической теории сигналов известно, что значения отсчетов, взятых через интервал Котельникова, взаимно-некоррелированы, если спектр сигнала в занимаемой им полосе частот равномерен (белый шум). Однако на практике в основном используются сигналы, спектр которых неравномерен, поэтому корреляция между отсчетами не равна нулю. При этом степень корреляции возрастает с увеличением частоты дискретизации. Типичным примером таких сигналов является речь, где корреляция между соседними отсчетами достаточно велика при соблюдении теоремы Котельникова в процессе дискретизации.

Часто используется понятие "интервал корреляции " или "время корреляции ", под которыми понимается величина временного сдвига , при превышении которого корреляцией можно пренебречь в условиях конкретного эксперимента. Обычно интервал корреляции определяют как .

Если интервал корреляции равен нулю, то случайный процесс называют некоррелированным, или белым шумом. В противном случае случайный процесс является коррелированным. В качестве примера на рис. 4.1 приведен пример коррелированного (вверху) и некоррелированного (внизу) случайного процесса. Реальные процессы все являются коррелированными, поскольку имеют ограниченную мощность и, следовательно, ограниченную полосу частот.

Однако на определенном интервале времени (частот) их можно приближенно считать некоррелированными.

Время дискретизации Δτ = τk + 1 - τk (или соответствующую ему частоту

Дискретизации сигналов Δφ = 1/Δτ);

Время дискретизации сигналов первичных преобразователей или соответствующую ему частоту дискретизации сигналов выбирают в зависимости от требований к погрешности измерений, учитывая то, что частота дискретизации сигналов определяется требуемым частотным диапазоном измеряемого сигнала и ограничениями амплитудно-частотных характеристик первичных преобразователей.

Она должна как минимум в два - три раза превышать максимальную частоту возможного частотного диапазона измеряемого сигнала (для динамических измерений). Конец формы.

АСУ ТП строится по трехуровневой иерархии:

  • нижней уровень — уровень контрольно-измерительных приборов и исполнительных механизмов;
  • средний уровень — уровень контроллеров и оборудования связи
  • верхний уровень — уровень серверов и операторских станций

В связи с высокими требованиями к надежности системы управления в химической промышленности все уровни АСУ ТП резервируются. Для обеспечения бесперебойной передачи данных между подсистемами и уровнями иерархии приме-няются высоконадежные и помехоустойчивые каналы пере-дачи данных. В настоящее время хорошо зарекомендовало себя для этих целей оптоволоконная кольцевая сеть Industrial Ethernet.

Обработка информации осуществляется в модуле централь-ного процессора контроллера, что обеспечивает высокую надежность системы управления и гарантию исполнения всех необходимых алгоритмов, который построен по модульному принципу, позволяющему производить оперативную замену вышедших из строя модулей.

Отображение информации о режимах управления установки и управление ее исполнительными механизмами осуществля-ется с автоматизированного рабочего места оператора (АРМ), реализованного на 2-х идентичных промышленных компьюте-рах в «горячем» резерве с установленным пакетом визуали-зации на базе операционной системы Windows XP.

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании ана­логового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации . Интуитивно нетрудно понять следующую идею. Ес­ли аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотойF e , (т.е. функцияu(t) имеет вид плавно изме­няющейся кривой, без резких изменений амплитуды), то вряд ли на некото­ром небольшом временном интервале дискретизацииэта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сиг­нала по последовательности его отсчетов зависит от величины интервала дискретизации. Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшени­ем интервала дискретизациисущественно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискре­тизациивозрастает вероятность искажения или потери информации при восстановлении аналогового сигнала.

Оптимальная величина интервала дискретизации устанавливается тео­ремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в мате­матике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), дока­занной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возмож­ность правильно осуществить дискре­тизацию аналогового сигнала и опреде­ляет оптимальный способ его восста­новления на приемном конце по отсчетным значениям.

Рис.14.1. Представление спектральной плотности

Согласно одной из наиболее из­вестных и простых интерпретаций тео­ремы Котельникова, произвольный сиг­нал u(t), спектр которого ограничен некоторой частотой F e может - быть полностью восстановлен по последо­вательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частотуF e (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

(2)

где k - номер отсчета; - значение сигнала в точках отсчета;- верхняя частота спектра сигнала.

Для доказательства теоремы Котельникова рассмотрим произвольный непрерывный сигнал и(t), спектральная плотность которого сосредото­чена в полосе частот(сплошная линия на рис.14.1).

Мысленно дополним график спектральной плотности симметрично значениям, повторяющимся с периодом, (штриховые линии на рис.14.1). Полученную таким образом периодическую функцию разложим в ряд Фу­рье, заменив в формуле

аргумент t на с, частотунаи (фор­мально)п наk . Тогда

(3)

Полагая, что в соотношении

период - это , а интервал дис­кретизациизапишем

(4)

Воспользуемся формулой обратного преобразования Фурье и представим исходный непрерывный сигнал в следующем виде:

(5)

Таким же образом запишем значение дискретизированного сигнала для некоторого k-то отсчета времени. Поскольку время , то

Сравнив это выражение с формулой для C k , замечаем, чтоС учетом этого соотношения спектральная функция (3), после несложных преобра­зований, примет вид:

Затем проделаем следующее: подставим выражение в соотношение, изменим порядок интегрирования и суммирования, представим отно­шение как, и вычислим интеграл.

В результате получим такую фор­мулу:

Из этого соотношения следует, что непрерывная функция u(t) дейст­вительно определяется совокупностью ее дискретных значений амплиту­ды в отсчетные моменты времени , что и доказывает теорему Ко­тельникова.

Простейшие сигналы вида ортогональные друг другу на интерва­ле времени -,, называются функ­циями отсчетов, базисными функция­ми, или функциями Котельникова. График k-й функции Котельникова представлен на рис. 2. Каждая из ба­зисных функцийs k (t) сдвинута относи­тельно подобной ближайшей функцииs k-1 (t) илиs k+1 (t) на интервал дискрети­зации. Элементарный анализ фор­мулы (10) и графика на рис. 14.3 пока­зывает, что сигналs k (t) отражается

Рис. 14.2. График базисной функции Котельникова

Рис.14.3. Аппроксимация непрерывного сигнала рядом Котельникова функцией sinx/x, которая также характеризует огибающую спектральной плотности прямоугольного импульса.

Представление (точнее, аппроксимация) заданного непрерывного сигнала u(t) рядом Котельникова (2) иллюстрируется диаграммами на рис. 14.3. графике (здесь базисные функции для упрощения показаны без аргумента t построены четыре первых члена ряда, соответствующие отсчетам сигнала в моменты времени 0,, 2и 3, взятым в соответствии с теоремой Котельникова. При суммировании этих членов ряда в любые отсчетные моменты времени kDt, непрерывный сигнал абсолютно точно аппроксимируется независимо от числа выбранных отсчетов. В интервале же между любыми отсчетами сигнал u(t) аппроксимируется тем точнее, чем больше суммируется членов ряда Котельникова (2).

Оценим возможность применения теоремы Котельникова к импульсному сигналу u(t) конечной длительности T х . Как известно, такие сигналы теоретически обладают бесконечно широким спектром. Однако на практике можно ограничиться некоторой верхней частотойF в за пределами которой в спектре содержится пренебрежительно малая доля энергии по сравнению с энергией всего исходного сигнала. В радиотехнике таким критерием является содержание 90% средней мощности сигнала в границах спектра. В этом случае сигнал u(t) длительностьюT х с верхней граничной частотой спектраF в может быть представлен рядом Котельникова с определенным, ограниченным числом отсчетов

(10)

Здесь - число отсчетов.

Рис.14.4. Представление прямоугольного импульса отсчетами.

Передача непрерывных (аналоговых) сигналов по линии связи предполагает передачу бесконечного множества их мгновенных значений на протяжении конечного промежутка времени. При этом спектр финитного, т.е. ограниченного во времени, непрерывного сигнала бесконечен. Однако, на практике различные радиотехнические устройства (фильтры, усилители и другие) имеют ограниченную полосу пропускания, что приводит к ограничению спектра сигнала некоторой граничной частотой (или ), которая определяется свойствами получателя сообщений. Так например, общепринятой нормой в системах передачи речевых сигналов является ограничение спектра сигнала в пределах , в системах телевидения – . Как преодолеть противоречие между ограничением спектра сигнала и конечным временем его существования? Ответ на этот вопрос даёт теорема, сформулированная и доказанная академиком В.А. Котельниковым и получившая название теоремы Котельникова или теоремы отсчётов.

Теорема Котельникова формулируется следующим образом. Непрерывный сигнал , ограниченный по спектру частотой (или ), полностью определяется совокупностью мгновенных значений (отсчётов) в моменты времени , отстоящие друг от друга на интервал времени .

Математически теорема Котельникова определяется выражением

или с учётом (2.12)

которое представляет собой разложение сигнала в особого рода ряд по системе базисных функций

,

являющихся ортогональными на интервале времени (сравните с разложением сигнала в ряд Фурье).

Доказательство теоремы Котельникова приведено в литературе . Мы же остановимся на вопросах физического толкования и практического применения результатов теоремы.

Выделим одно из слагаемых ряда (3.1)

. 3.3)

Это слагаемое представляет собой отклик идеального фильтра нижних частот (ФНЧ), т.е. фильтра с постоянным коэффициентом передачи в пределах полосы частот от нуля до , на очень короткий импульс с амплитудой . (рис. 3.1).

Отметим, что в моменты времени , и т.д. значения отклика равны нулю. Это определяет механизм восстановления непрерывного сигнала по его отсчётам.

Формирование последовательности отсчётов непрерывного сигнала, которая представляет собой дискретный сигнал , т.к. значение любого отсчёта сохраняется неизменным в течение интервала времени (см. классификацию сигналов), осуществляется при помощи импульсного модулятора.

Простейший вариант импульсного модулятора представляет со­бой перемножитель (рис. 3.2), на один вход которого подаётся непре­рывный сигнал , а на второй – последовательность

коротких единичных импульсов вида (1.13), следующих друг за другом с периодом (рис. 3.2, а). Тогда на выходе перемножителя будет иметь место последовательность коротких импульсов

,

амплитуды которых равны , т.е. соответствуют мгновенным значениям сигнала , отсчитанным в момент времени . (рис 3.3, в).

Процесс формирований последовательности отсчётов называется дискретизацией непрерывного сигнала.

Восстановление непрерывного сигнала осуществляется путём подачи дискретного сигнала на идеальный фильтр нижних частот. Отклик фильтра на каждый отсчёт определяется выражением (3.2). При этом, в момент времени , значение отклика определяется только k -тым отсчётом дискретного сигнала; отклик на остальные отсчёты равны нулю (Рис. 3.3, г). Суммируясь, эти отклики дают на выходе ФНЧ исходный сигнал .

Отметим два важных обстоятельства.

Во-первых, точное восстановление сигнала имеет место только при . Введя в рассмотрение частоту дискретизации , получим так называемую частоту Найквиста , т.е. минимальное значение частоты дискретизации, при котором возможно точное восстановление непрерывного сигнала. Обычно, на практике частоту дискретизации выбирают выше предела Найквиста. Так, например, частота Найквиста для речевого сигнала при составляет . В реальных РТИС эта частота составляет .

Во-вторых, точное восстановление сигнала возможно при суммировании бесконечного числа откликов, что соответствует сигналу , неограниченному во времени. Но в действительности, сигналы являются ограниченными и по спектру и по времени. Однако, при определённых допущениях теорема Котельникова справедлива и для этого случая.

Если сигнал, длительностью ограничивается радиотехническим устройством с граничной частотой , то для его представления в дискретной форме требуется конечное число отсчетов, где

. (3.4)

Таким образом для восстановления сигнала длительностью , ограниченного по спектру частотой достаточно передать независимых отсчетов, однозначно связанных с его формой.

Но теоретически сигнал, ограниченный по времени имеет бесконечный спектр. А это означает, что при восстановлении сигнала по отсчетам будет иметь место ошибка, т.е. восстановленный сигнал ŝ(t ) будет отличаться от исходного . Казалось бы, теорема Котельникова неприменима к реальным сигналам. Тем не менее, если к точности восстановления сигнала по отсчетам предъявить определенные требования, например, допустить его восстановление с заданным уровнем ошибки, то утверждения теоремы Котельникова можно с успехом распространить на реальные сигналы, несколько изменив частоту дискретизации по сравнению с пределом Найквиста.

Теперь с учетом того, что реальный сигнал длительностью представляется отсчетами мгновенных значений, выражение (3.1) принимает вид:

Величина называется базой сигнала . Понятие базы играет важную роль при представлении непрерывного сигнала конечным числом отсчетов. Соответствующим образом выбранная база определяет информационные показатели сигналов, способность противостоять помехам при передаче по каналам связи, энергетическую скрытность и другие.

Рассмотрим теперь вопрос оценки точности восстановления непрерывного сигнала по совокупности отсчетов его мгновенных значений. Как уже неоднократно подчеркивалось выше, ограниченный во времени сигнал имеет бесконечный спектр. Согласно равенству Парсеваля (2.50) энергия такого сигнала равна

где или – энергетический спектр, представленный как функция либо круговой , либо циклической частоты.

Энергия за пределами частоты (или ) составляет величину

. (3.7)

На рис. 3.4 изображен энергетический спектр сигнала, ограниченного во времени и граничная частота .

Площадь под всей кривой характеризует полную энергию сигнала , а площадь заштрихованного участка - ту часть энергии , которая сосредоточена за пределами .

Тогда отношение

может служить оценкой точности восстановления сигнала. Задаваясь величиной можно определить частоту , а следовательно и частоту дискретиза ции .

Рассмотрим следующий пример. Пусть сигнал на интервале времени описывается экспоненциальной функцией

Воспользовавшись преобразованием Фурье, найдем спектральную функцию сигнала

.

Модуль спектральной функции

,

а энергетический спектр

.

Воспользовавшись выражением (3.5), найдем энергию сигнала

.

В соответствии с (3.6), вычислим :

.

При расчете и использован табличный интеграл

.

Найдем величину среднеквадратичной ошибки восстановления

.

Представим

.

откуда следует

.

Полагая, что для малых значений

Теперь можно найти

или переходя к циклическим частотам

.

Частота дискретизации

.

Таким образом, задаваясь величиной можно определить частоту дискретизации непрерывного сигнала. Очевидно, число отсчетов при дискретизации рассматриваемого сигнала будет равно

.

Из приведенного примера следует, что чем меньшую ошибку восстановления требуется обеспечить, тем выше должна быть частота дискретизации.

Теорема Котельникова устанавливает однозначное соответствие между аналоговым сигналом и отсчетами его мгновенных значений во временной области. Оказывается, можно сформулировать теорему отсчетов и в частотной области. При этом примем во внимание, что комплексный спектр одиночного сигнала длительностью является сплошным. Тогда имеет место следующее утверждение. Спектральная функция сигнала , ограниченного во времени величиной полностью определяется совокупностью отсчетов , отстоящих друг от друга на частотный интервал , т.е.

. (3.9)

Теорема отсчетов в частотной области основывается на свойстве симметрий преобразований Фурье относительно переменных (или ) и . Суть этого свойства состоит в том, что преобразование Фурье периодического сигнала с периодом приводит к линейчатой (дискретной) спектральной функции, где отдельные спектральные составляющие (см. подраздел 2.1) отстоят друг от друга по оси частот на величину (или ), и наоборот, преобразование Фурье периодической спектральной функции с периодом приводит к дискретной временной функции с периодом .

Исходя из этого свойства, если в (3.2) заменить на ; на , а на , то в результате получим выражение (3.9). Как и в случае разложения сигнала в ряд Котельникова, разложение его спектра ограничивается отсчетами. Тогда выражение (3.5) в частотной области принимает вид

. (3.10)

Казалось бы, для восстановления спектральной функции по совокупности отсчетов , необходимо знать отсчетов модуля и отсчетов аргумента комплексных величин . Однако, если учесть, что модуль спектра , т.е. амплитудный спектр является четной функцией, а аргумент , т.е. фазовый спектрнечетной функцией, то число независимых отсчетов сокращается вдвое и составляет , т.е. равно базе сигнала.

Подводя итог вышеизложенному, отметим, что теорема Котельникова устанавливает принципиальную возможность представления непрерывного сигнала последовательностью его мгновенных значений. Такую операцию иногда называют импульсным преобразованием непрерывного сигнала. Такое преобразование лежит в основе импульсных методов передачи сообщений в радиотехнических системах. Более того, дискретизация непрерывных сигналов в соответствии с теоремой Котельникова является промежуточной операцией при формировании цифровых сигналов, которые в настоящее время нашли самое широкое распространение как в радиотехнических системах передачи сообщений, так и радиоэлектронных системах обработки, отображения и регистрации информации, и во многих других областях.

3.2. Спектр дискретного сигнала

Перейдем теперь к рассмотрению спектра дискретного сигнала. Очевидно, в соответствии с изложенным выше свойством симметрии преобразования Фурье следует ожидать периодического характера спектральной функции дискретного сигнала.

Итак, дискретный сигнал , как уже подчеркивалось выше, формируется на выходе перемножителя, на один вход которого, подается непрерывный сигнал , а на второй – периодическая последовательность коротких импульсов длительностью

,

с периодом .

Здесь – функция, определяющая форму импульсов периодической последовательности. Обычно в качестве периодической последовательности импульсов дискретизации выбирают импульсы прямоугольной формы вида (1.13). Периодическую последовательность импульсов дискретизации можно описать выражением

.

Тогда дискретный сигнал запишется в виде

С другой стороны, последовательность прямоугольных импульсов может быть представлена комплексным рядом Фурье

Здесь учтено, что период последовательности равен , амплитуда единичного импульса , а также .

Теперь можно представить с учетом (3.12) в виде ряда

Применим к (3.13) прямое преобразование Фурье

Изменив порядок суммирования и интегрирования, запишем

,

В свою очередь

,

.

Тогда окончательно выражение (3.14) принимает вид

. (3.15)

Спектральный анализ дискретного сигнала существенно упрощается, если предположить, что дискретизация осуществляется последовательностью прямоугольных импульсов единичной площади. В этом случае амплитуда импульса и выражение (3.15) запишется следующим образом

.

Если устремить к нулю при сохранении единичной площади импульса и перейти к последовательности бесконечно коротких импульсов ( -импульсов), т.е.

, (3.16)

,

а спектральная функция дискретного сигнала примет вид

. (3.17)

На рис. 3.5, а представлен непрерывный сигнал , а на рис. 3.5, б – условное изображения модуля его спектральной функции .

Как известно, спектр непрерывного одиночного сигнала является сплошным.

Спектр же дискретного сигнала, как это следует из (3.16), представляет собой периодическую по частоте последовательность копий спектров исходного сигнала, сдвинутых относительно друг друга на величину (или ), что составляет период последовательности. Очевидно, периодическим по частоте с тем же периодом является и модуль спектра и его аргумент, т.е. фазовый спектр.

Отметим, что (или ) – это частота дискретизации. Таким образом, период спектральной функции дискретного сигнала равен частоте дискретизации. На рис. 3.5. в, г изображены графики дискретного сигнала и модуля его спектра.

Расположение отдельных составляющих периодической функции спектра дискретного сигнала на оси частот зависит от значения частоты дискретизации . На рис. 3.5,г и на рис. 3.6, а, б изображены соответственно функции дискретного сигнала при частотах дискретизации (или ), (или ) и (или ). Из этих рисунков следует, что при частоте дискретизации, меньшей чем частота, определяемая пределом Найквиста, копии спектра исходного непрерывного сигнала перекрываются, т.е. имеет место явление наложения спектров. Это приводит к искажению исходного сигнала при его восстановлении. Таким образом, и спектральный анализ дискретного сигнала согласуется с выводами теоремы Котельникова.

3.3. Аналого-цифровое и цифро-аналоговое преобразование сигналов

Представление непрерывного сигнала в виде последовательности дискретных отсчётов предполагает, что любой отсчёт может принимать любое значение из непрерывного множества значений . Вместе с тем, цифровые технологии в радиотехнике требуют преобразований совокупности значений отсчётов в цифровую последовательность, т.е. в последовательность чисел . Процесс преобразования аналогового (непрерывного) сигнала в такую последовательность называется аналогово-цифровым преобразованием (АЦП).

Итак, на первом этапе аналогово-цифрового преобразования осуществляется дискретизация непрерывного сигнала, т.е. преобразование в в соответствии с теоремой Котельникова, которая была рассмотрена выше. В результате дискретизации непрерывный (аналоговый) сигнал преобразуется в последовательность отсчётов .

На втором этапе последовательность отсчётов подвергается процедуре квантования по уровню. Квантование по уровню значений отсчётов в простейшем случае представляет собой округление этих значений до ближайшего целого числа. Процедуру квантования осуществляет устройство с амплитудной характеристикой ступенчатого вида, которое называется квантователем . Амплитудная характеристика квантователя изображена на рис. 3.7.

При реализации квантователя диапазон изменения уровня дискретного сигнала разбивается на уровней (включая нулевой), каждый из которых отличается от соседних на величину , называемую шагом квантования .

Таким образом, максимальное и минимальное значения квантованного сигнала соответственно равны

, .

В процессе квантования значение в момент времени сравнивается со значением , где . Квантованный сигнал принимает значение

, (3.18)

. (3.19)

Отметим, что значение запоминается до момента следующего отсчёта дискретного сигнала.

Процедура квантования показана на рис. 3.8.

На этом рисунке изображены фрагмент амплитудной характеристики квантователя, дискретный сигнал , временная диаграмма которого повёрнута на для удобства пояснения процедуры квантования, и квантованный сигнал .

Поясним процедуру квантования. Рассмотрим отсчёт . Поскольку значение этого отсчёта находится в интервале , в соответствии с (3.18) значение квантованного сигнала будет равно , т.к. условие (3.19) выполняется при . Значение отсчёта , как это следует из рисунка, находится в пределах , т.е. условие (3.19) выполняется при , поэтому значение квантованного сигнала . И, наконец, значение отсчёта находится в интервале , а значение квантованного сигнала .

Ввиду того, что при квантовании осуществляется фактически округление значений , квантованный сигнал будет отличаться от дискретного. При этом искажения, вносимые квантователем

, (3.20)

принципиально неустранимы . Поэтому, при преобразовании непрерывного сигнала в цифровой необходимо оценивать степень искажений, вносимых квантователем.

Искажения, вносимые квантователем, целесообразно оценивать величиной среднеквадратичной ошибки. При исследовании процедур квантования было установлено, что величина среднеквадратичной ошибки

Все реальные непрерывные сигналы являются плавными функциями времени. Скачки значений в них практически не наблюдаются. Поэтому такие сигналы можно представить последовательностью их значений, взятых с некоторым шагом по времени. Значение сигнала в фиксированный момент называется отсчетом .

На этом рисунке показан непрерывный сигнал и его отсчеты с различным шагом по времени. При малом шаге (рис. б) последовательность отсчетов достаточно точно описывает сигнал, а при большом шаге (рис. в) по отсчетам нельзя восстановит форму сигнала, так как пропущены его характерные экстремальные точки.

Как же часто следует брать отсчеты, чтобы по ним можно было полностью восстановить сигнал?

Ответ на этот вопрос дает теорема, доказанная в 1933 г. Советским ученым академиком В.А.Котельниковым . и названная его именем.

Согласно этой теореме любой непрерывный сигнал с конечным спектром (имеющим максимальное значение ) можно представить в виде дискретных отсчетов , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала:, передать его по линии связи, а затем восстановить исходный аналоговый сигнал .

Теорема Котельникова является основой для дискретизации непрерывных сигналов по времени, так как, во - первых, доказывает, что непрерывный сигнал можно заменить его дискретными значениями, во - вторых, дает правило вычисления шага дискретизации - . При таком шаге дискретизации ряд Котельникова дает точное временное представление сложного сигнала.

Физический смысл теоремы Котельникова.

Теорема Котельникова утверждает, что если требуется передать непрерывный сигнал с ограниченным спектром по каналу связи, то можно не передавать все его значения: достаточно лишь передать его мгновенные значения (отсчеты) через интервал . Поскольку сигнал полностью определяется этими значениями, то по ним он может быть восстановлен на приемном конце системы связи. Для этого достаточно соединить отсчеты плавной кривой. Это можно объяснить тем, что сигнал между отсчетами может изменяться только плавно, так как частоты выше дающие быстрые изменения, в сигнале отсутствуют. Ведь отсчеты берутся достаточно часто, и тем чаще, чем выше максимальная частота .

Практическое применение теоремы Котельникова.

Дискретизация сигнала осуществляется достаточно просто: периодически на короткое время через интервал ключом замыкается цепь от источника сигнала к нагрузке - получаем отсчеты . Далее эти отсчеты, пройдя через канал связи, поступают на вход идеального фильтра нижних частот (ФНЧ) с верхней частотой пропускания . На выходе фильтра получается исходный непрерывный сигнал .


Структурная схема системы связи с использованием теоремы Котельникова.

На передающей стороне берутся отсчеты сигнала в моменты . Далее отсчеты любым способом передаются по каналу связи. Идеальный ФНЧ на приемном конце восстанавливает исходный сигнал .

Частота следования импульсов, называемая также частотой дискретизации , определяется по теореме Котельникова:

.

Например, частота дискретизации для речевого (телефонного) сигнала, имеющего максимальное значение спектра сигнала , будет равна . Согласно рекомендациям МККТТ и, соответственно, .

Теорема Котельникова в многоканальной электросвязи.

Возможность передачи вместо непрерывных сигналов последовательности импульсов (отсчетов) позволяет осуществить временное разделение каналов. Дело в том, что при импульсной передаче период следования импульсов обычно намного больше их длительности, то есть импульсы имеют большую скважность - при большой скважности между импульсами одного сигнала остается промежуток, на котором можно разместить импульсы от других сигналов. Этот способ и называется временным разделением . В настоящее время уже реализованы многоканальные системы передачи с временным разделением каналов на 12, 15, 30, 120, 480, 1920 речевых сигналов.