Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.

Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.

Принцип управления нагрузкой через Ардуино

Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.

Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.

Синтаксис команд

Цифровой вывод:

pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.

Аналоговый вывод:

analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.

Способы управления светодиодами через Ардуино

Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.

Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).
Способы подключения нагрузки
Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Управление RGB лентой с помощью Andurino

Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

Схема подключения к Arduino RGB светодиода:

Аналогично построено и управление RGB лентой Arduino:

Аrduino RGB контроллер лучше собирать на полевых транзисторах.

Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

Скетч управления яркостью светодиодной ленты Arduino

int led = 120; устанавливаем средний уровень яркости

void setup() {
pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
pinMode(2, INPUT);

pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
}
void loop(){

button1 = digitalRead(2);

button2 = digitalRead(4);
if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
{
led = led + 5;

analogWrite(4, led);
}
if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
{
led = led — 5;

analogWrite(4, led);
}

При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

Модули управления Ардуино

Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.

ИК-управление

Модуль позволяет запрограммировать до 20 команд.

Радиус сигнала около 8м.

Цена комплекта 6 у.е.

По радиоканалу

Четырёхканальный блок с радиусом действия до 100м

Цена комплекта 8 у.е.

Позволяет включать освещение еще при приближении к квартире.

Бесконтактное

Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.

Радиус действия до 5м.

Цена модуля 0,3 у.е.

Здравствуйте Хабр-сообщество.

В данное время стали доступны светодиодные ленты с изменяемым цветом свечения. Они классно выглядят, не дорого стоят и их можно хорошо приспособить для декоративной подсветки интерьера, рекламы, и т.д.

К таким лентам можно купить источник питания, диммер, диммер с пультом управления. Это позволит вам использовать светодиодную ленту для посветки. Однако если вы захотите запи запрограммировать алгоритм изменения цвета, или сделать управление из компьютера - то тут начинается разочарование. Вы в продаже не найдете диммеров с управлением через COM-порт или Ethernet.

Добро пожаловать под кат.

Теоретическая часть

Для реализации плавного изменения свечения всех 3 каналов нам потребуется сделать собственный димер. Сделать его очень просто, для этого требуется взять силовые ключи и управлять ими с помощью ШИМ сигнала. Также наш диммер должен быть программируемым и/или управляемым из вне.

В качестве мозгов идеально подходит Arduino. В её программу можно записать любой алгоритм изменения цветов, а также её можно управлять как с помощью модулей Arduino, так и удаленно по Ethernet, Ик-порту, Bluetooth, используя соответствующие модули.

Для реализации задуманного я выбрал Arduino Leonardo. Она одна из самых дешевых плат Arduino, и она имеет много выводов с поддержкой ШИМ.

PWM: 3, 5, 6, 9, 10, 11, and 13. Provide 8-bit PWM output with the analogWrite() function.

И так, источник ШИМ у нас имеется, остаётся придумать с силовыми ключами. Если побродить по интренет магазинам, то выяснится, что не существует модуля Arduino для управления RGB лентами. Или просто универсальных модулей с силовыми транзисторами. Также можно найти огромное количество сайтов радиолюбителей, которые делают платы с силовыми ключами сами.

Однако есть способ проще! Нас выручит модуль Arduino для управления двигателями. Этот модуль имеет все необходимое для нам - на нем установлены мощные ключи на 12В.

Пример такого модуля является «L298N Module Dual H Bridge Stepper Motor Driver Board Modules for Arduino Smart Car FZ0407». Такой модуль основан на микросхеме L298N, которая представляет из себя 2 моста. Однако мостовое включение полезно для двигателя (от этого он может менять направление вращения), а в случае RGB ленты, оно бесполезное.

Мы будем использовать не весь функционал этой микросхемы, а только 3 её нижних ключа, подключив ленту как показано на рисунке.

Практическая часть часть

Для реализации потребуется Arduino Leonardo, Модуль управления двигателями L298N, Источник 12В (для запитки ленты), сама RGB лента, соединительные провода.
Для удобства подключения я еще использовал Fundruino IO Expansion, но он никакой функциональной нагрузки не несет.

Схема подключения показана на рисунке.

Хочу дополнительно описать питание системы. В данной схеме питание подается на модуль управления двигателями, в нем стоит понижающий источник питания на 5В, и эти 5В я подаю на вход Vin питания Arduino. Если разорвать эту связь (естественно земли оставив соединенными), то запитывать Arduino и силовые ключи можно от разных источников питания. Это может быть полезно когда к Arduino много всего подключено, и источник в модуле управления двигателями не справляется (выключается по перегреву).

Управляется RGB лента с помощью команд analogWrite, которая настраивает выход для формирования ШИМ сигнала.

Исходный код программы для arduino:
#define GRBLED_PIN_R 9 // пин для канала R #define GRBLED_PIN_G 10 // пин для канала G #define GRBLED_PIN_B 11 // пин для канала B int rgbled_r=0, rgbled_g=0, rgbled_b=0; void setup(){ //enable serial datada print Serial.begin(9600); Serial.println("RBG LED v 0.1"); // RGBLED pinMode(GRBLED_PIN_R, OUTPUT); pinMode(GRBLED_PIN_G, OUTPUT); pinMode(GRBLED_PIN_B, OUTPUT); } void loop(){ // change color rgbled_r = (rgbled_r+1)%1024; rgbled_g = (rgbled_g+2)%1024; rgbled_b = (rgbled_b+3)%1024; // Output Z1_output_rgbled(); delay(1); } void Z1_output_rgbled() { analogWrite(GRBLED_PIN_R, rgbled_r); analogWrite(GRBLED_PIN_G, rgbled_g); analogWrite(GRBLED_PIN_B, rgbled_b); }

На видео можно увидеть как это работает:

Экономическая часть






















L298N Module Dual H Bridge Stepper Motor Driver Board Modules for Arduino Smart Car FZ0407 $ 5.31 1
Leonardo R3 Development Board for Arduino Compatiblae + USB Cable Wire FZ0437 $ 10.00 1
5050 LED Strip RGB and single color 5M DC12V/24V 60leds/m Waterproof Flexible Car auto Strip Light saving light $ 12.38 1
Retail AC85~265V to DC 12V/6A power supply adaptor transformer switching for led light $ 9.98 1

Итого $37,65 = 1 300 руб

Вместо заключения

Для тех, кто захочет повторить описанную здесь схему - хочу заметить, что драйвер L298N рассчитан на ток 2-3А, а RGB светодиодные ленты, на светодиодах 5050 с плотностью 60 светодиодов на метр, продающиеся по 5 метров, могут потреблять до 6А. По этому если вы хотите использовать длинные и яркие ленты - возможно потребуется схему модернизировать (подключать ленту по сегментам, или взять более мощный драйвер) или использовать ленты по проще.

Интересно всегда было попробовать светодиодную ленту ws2812b.Вот получил ленту с Banggood. Тем более подходят новогодние праздники. Применить хотелось в разных вариантах.Как украшение или гирлянду для Нового года или как самостоятельную СДУ.
Китайцы дали такие параметры:
-Работа напряжение: 5 В постоянного тока
-мощность: 43.2w
-Width: 12 мм
-длина: 1m
-waterproof: не водонепроницаемый (ip20)
-Отлично, высокое качество интеллектуальное освещение!
-основана на высокое качество SMD5050 RGB LED s код вставки (встроенный) интегрированные ИКС управления ws2811. каждый LED независимо представляет собой адресуемые, открывая совершенно новые возможности освещения.
-ws2812. 5050 СМД ж / ws2811 IC встроенный in144 RGB LED s на метр
-он ws2811 IC управления ONE LED Чип
-каждый LED индивидуально адресуемые, с 8 битами зеленого, красного и синего данных сдвинуты в течение 24-битном цвете
-strip может быть разрезан one от one привело чип.

Примечание: источник питания или контроллер не включает

В пакет включено:
1 * RGB LED полосы

Что такое ws2812b? Это уже второе поколение полноцветных светодиодов с индивидуальной адресацией, также известное как NeoPixel. В одном корпусе собраны RGB светодиоды и контроллер. Для каждого из цветов доступно 255 уровней яркости. Итого 16 миллионов цветов и всего один провод для управления. Выпускаются в виде отдельных светодиодов, лент, колец, матриц и т.п. Для работы необходим внешний контроллер, на эту роль вполне подходит Ардуино. Каждый из светодиодов (красный, синий, зеленый) при максимальной яркости потребляет 20 миллиампер. Максимальное энергопотребление - 60 миллиампер, когда все три диода горят, получается при белом цвете. Отсюда легко получить максимальное потребление всей ленты, умножив 60 миллиампер на количество светодиодов. Еще немного потребляют контроллеры диодов.





Подключение
Сами по себе ленты не светятся, им необходим микроконтроллер. На его роль отлично подходит Arduino.
подойдет Arduino или Raspberry PI.Собрал схему подключения.


Для каждого из цветов доступно 255 уровней яркости. Итого 16 миллионов цветов и всего один провод для управления. Выпускаются в виде отдельных светодиодов, лент, колец, матриц и т.п. Для работы необходим внешний контроллер, на эту роль вполне подходит Ардуино. Каждый из светодиодов (красный, синий, зеленый) при максимальной яркости потребляет 20 миллиампер. Максимальное энергопотребление - 60 миллиампер, когда все три диода горят, получается при белом цвете. Отсюда легко получить максимальное потребление всей ленты, умножив 60 миллиампер на количество светодиодов. Еще немного потребляют контроллеры диодов.
Приблизительное пиковое потребление для лент длиной 1 метр:
30 диодов на метр 9.5 ватт (чуть меньше 2A при 5V)
60 диодов на метр 19 ватт (3.6А при 5V)
144 диода на метр 35 ватт (7A при 5V)
Блоки питания рекомендуется выбирать с небольшим запасом по мощности.
Подключение.
Сами по себе ленты не светятся, им необходим микроконтроллер. На его роль отлично подходит Arduino(Uno.Nano,Pro mini).


Как применить эту ленту это уже личное ваше дело-как украшение, гирлянду для Нового года или как самостоятельную СДУ. Я приобрел ленту длиной 1 метр с количеством светодиодов 144 штуки. Ее можно разрезать при необходимости на несколько частей. Подложка бывает белого и черного цвета. На концах установлены разьемы для подключения следующей ленты.То есть можно удлинить гирлянду.


Я сделал светомузыкальную установку для визуализации музыки в реальном времени. Много различных световых эффектов, синхронизированных с музыкой.


На один канал подключено 51 сетодиод ленты, и паралельно в данном случае кольцо с светодиодами(чисто для демонстарции)

Подключить к источнику звука-выходы от громкоговорителя. Сделано на светодиодной ленте ws2812b, Arduino UNO, понижающей Dс-Dс плате или блок питания на 5 вольт\3ампера. Осуществлен принцип индикатора уровня сигнала с большим количеством световых эффектов. А где использовать эту схему это уже личное ваше дело и зависит от вашей фантазии.Скетч по ссылке
Плюсом я думаю считается что управление этой лентой осуществляется по одному проводу, и можно получать разные эффекты на каждом светодиоде.
Минусом я считаю что пока конечно цена на эти светодиоды завышена. Тем не менее можно получать массу эффектов в цвете и динамике для для последующих разработок даже начинающим. Всем спасибо за потраченное время и хороших Новогодних праздников!!!
Подробней в видео

Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328


Внешний вид Arduino Pro Mini
Внешний вид Arduino Uno
Внешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Принцип управления нагрузкой через Ардуино


управление Arduino

На плате есть много выходов, как цифровых, имеющих два состояния — включено и выключено, так и аналоговых, управляемых через ШИМ-controller с частотой 500 Гц.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле


Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния — включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта , найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.

Видеоинструкция

Светодиодная RGB лента представляет собой гибкую ленту, с нанесенными на ней проводниками и RGB-светодиодами (полноцветными). В последнее время светодиодные ленты получили широкое распространение в архитектуре, авто и мото тюнинге, костюмах, декорациях и т.п. Также бывают водонепроницаемые ленты, которые можно использовать к примеру в бассейнах.

Светодиодные ленты бывают двух типов: аналоговые и цифровые .
В аналоговых лентах все светодиоды включены в параллель. Следовательно, вы можете задавать цвет всей светодиодной ленты, но не можете установить определенный цвет для конкретного LED. Эти ленты просты в подключении и не дорогие.
Цифровые светодиодные ленты устроены немного сложнее. К каждому светодиоду дополнительно устанавливается микросхема, что делает возможным управлять любым светодиодом. Такие ленты намного дороже обычных.

В данной статье мы рассмотрим работы только с аналоговыми светодиодными лентами.

Аналоговые RGB светодиодные ленты

Техническая спецификация:
- 10.5мм ширина, 3мм толщина, 100мм длина одного сегмента
- водонепроницаемая
- снизу скотч 3М
- макс. потребление тока (12В, белый цвет) - 60мА на сегмент
- цвет свечения (длина волны, нм): 630нм/530нм/475нм

Схема светодиодной RGB ленты

Лента поставляется в рулонах и состоит из секций длиной по 10 см. В каждой секции размещается 3 RGB светодиода, типоразмера 5050. Т.е. в каждой секции получается, что содержится 9 светодиодов: 3 красных, 3 зеленых и 3 синих. Границы секций отмечены и содержат медные площадки. Поэтому, при необходимости, ленту можно обрезать и спокойно припаиваться. Схема светодиодной ленты:

Энергопотребление

В каждой секции ленты, последовательно подключены по 3 светодиода, поэтому питание 5В не подойдет. Питание должно быть 12В, но можно подавать напряжение и 9В, но тогда светодиоды будут гореть не так ярко.

Одна LED-линия сегмента потребляет приблизительно 20мА при питании 12В. Т.о. если зажечь белый цвет (т.е. красный 100%, зеленый 100% и синий 100%), то энергопотребление секции составит около 60мА.

Теперь, можно легко посчитать потребление тока всей ленты. Итак, длина ленты составляет 1 метр. В ленте 10 секций (по 10 см каждая). Потребление ленты при белом цвете составит 60мА*10=600мА или 0.6А. Если использовать ШИМ fade-эффект между цветами, то энергопотребление можно снизить вдвое.

Подключение ленты

Для того, чтобы подключить ленту, необходимо припаять провода к 4 контактным площадкам. Мы использовали белый провод для +12В, а остальные цвета в соответствии с цветами светодиодов.

Срежьте защитную пленку на конце ленты. С какой стороны будет производится подключение - не важно, т.к. лента симметричная.

Зачистите слой изоляции, чтобы оголить контактные площадки.

Залудите их.

Припаяйте четыре провода. Лучше использовать многожильный провод (например ПВ3 или кабель ПВС), он более гибкий.

Для защиты от воды и внешних воздействий можно использовать термоусадочную трубку. Если светодиодная лента будет использоваться во влажной среде, то дополнительно, контакты можно промазать силиконом.

Работа с светодиодной лентой

Ленту легко можно использовать с любым микроконтроллером. Для управления светодиодами рекомендуется использовать широтно-импульсную модуляцию (ШИМ). Не подключайте выводы ленты напрямую к выводам МК, т.к. это большая токовая нагрузка и контроллер может сгореть. Лучше использовать транзисторы.

Вы можете использовать NPN-транзисторы или еще лучше N-канальные мосфеты. При подборе транзистора не забудьте, что максимальный коммутируемый ток транзистора нужно брать с запасом.

Подключение светодиодной ленты к контроллеру Arduino

Рассмотрим пример подключения светодиодной ленты к популярному . Для подключения, можно использовать недорогие и популярные мосфеты . Можно также использовать и обычные биполярные транзисторы, к примеру TIP120. Но по сравнению с мосфетом, у него больше потери напряжения, поэтому все же рекомендуется использовать первые.
На схеме ниже показано подключение RGB светодиодной ленты при использовании N-канальных мосфетах. Затвор мосфета подключается к pin1 контроллера, сток к pin2 и исток к pin3.

Ниже, показана схема подключения при использовании обычных биполярных транзисторов (например TIP120). База транзистора подключается к pin1 контроллера, коллектор к pin2 и эмиттер к pin3. Между базой и выводом контроллера необходимо поставить резистор сопротивлением 100-220 Ом.

К контроллеру Arduino подключите источник питания с напряжением 9-12 Вольт, а +12В от светодиодной ленты необходимо подключить к выводу Vin контроллера. Можно использовать 2 раздельных источника питания, только не забудьте соединить "земли" источника и контроллера.

Пример программы

Для управления лентой будет использовать ШИМ-выход контроллера, для этого можно использовать функцию analogWrite() для выводов 3, 5, 6, 9, 10 или 11. При analogWrite(pin, 0) светодиод не будет гореть, при analogWrite(pin, 127) светодиод будет гореть в полнакала, а при analogWrite(pin, 255) светодиод будет гореть с максимальной яркостью. Ниже приведен пример скетча для Arduino:

#define REDPIN 5 #define GREENPIN 6 #define BLUEPIN 3 #define FADESPEED 5 // чем выше число, тем медленнее будет fade-эффект void setup() { pinMode(REDPIN, OUTPUT); pinMode(GREENPIN, OUTPUT); pinMode(BLUEPIN, OUTPUT); } void loop() { int r, g, b; // fade от голубого к фиолетовому for (r = 0; r 0; b--) { analogWrite(BLUEPIN, b); delay(FADESPEED); } // fade от красного к желтому for (g = 0; g 0; r--) { analogWrite(REDPIN, r); delay(FADESPEED); } // fade от зеленого к зеленовато-голубому for (b = 0; b 0; g--) { analogWrite(GREENPIN, g); delay(FADESPEED); } }