Микросхема серии 555 была разработана довольно давно, но до сих пор сохраняет свою актуальность. На базе чипа может быть собрано несколько десятков самых различных устройств с минимальным количеством дополнительных компонентов в схеме. Простота расчета номиналов компонентов обвески микросхемы также является важным её достоинством.

В данной статье речь пойдет о двух вариантах применения микросхемы в схеме реле времени с:

  • Задержкой включения;
  • Задержкой отключения.

В обоих случаях 555-ый чип будет функционировать как таймер.

Как работает микросхема 555

Перед тем, как перейти к примеру устройства реле, рассмотрим структуру микросхемы. Все дальнейшие описания будут делаться для микросхемы серии NE555 производства Texas Instruments.

Как видно из рисунка, основа - это RS-триггер с инверсным выходом , управляемый выходами с компараторов. Положительный вход верхнего компаратора называется THRESHOLD , отрицательный вход нижнего - TRIGGER . Другие входы компараторов подключены к делителю напряжения питания из трех резисторов по 5 кОм.

Как вы скорее всего знаете, RS-триггер может находиться в устойчивом состоянии (обладает эффектом памяти, объемом 1 бит) либо в логическом «0», либо в логической «1». Как он функционирует:

  • R (RESET ) устанавливает выход в логическую «1» (именно «1», а не «0», так как триггер инверсный - об это говорит кружок на выходе триггера);
  • Приход положительного импульса на вход S (SET ) устанавливает выход в логический «0» .

Резисторы по 5 кОм в количестве 3-х штук делят напряжение питания на 3, что приводит к тому, что опорное напряжение верхнего компаратора (вход «–» компаратора, он же, вход CONTROL VOLTAGE микросхемы) составляет 2/3 Vcc. Опорное напряжение нижнего - 1/3 Vcc.

С учетом сказанного, можно составить таблицы состояний микросхемы относительно входов TRIGGER , THRESHOLD и выхода OUT . Обратите внимание, что выход OUT - это инвертированный сигнал с RS-триггера.

С помощью такой функциональности микросхемы можно легко делать различные генераторы сигнала с частотой генерации, независимой от питающего напряжения.

В нашем случае, для создания реле времени применяется такая хитрость: входы TRIGGER и THRESHOLD объединяются вместе и к ним подается сигнал с RC-цепочки. Таблица состояний в таком случае будет выглядеть так:

Схема включения NE555 для такого случая следующая:

После подачи питания конденсатор начинает заряжаться, что приводит к постепенному увеличению напряжения на конденсаторе с 0В и далее. В свою очередь, напряжение на входах TRIGGER и THRESHOLD будет наоборот, убывать, начиная с Vcc+. Как видно из таблицы состояний, на выходе OUT присутствует логический «0» после подачи питания Vcc+, а переключение выхода OUT в логическую «1» произойдет, когда на указанных входах TRIGGER и THRESHOLD напряжение опустится ниже 1/3 Vcc.

Важен тот факт, что время задержки реле , то есть промежуток времени между подачей питания и зарядкой конденсатора до момента переключения выхода OUT в логическую «1», можно рассчитать по очень простой формуле:

T = 1.1 * R * C
И как видите, это время не зависит от напряжения питания. Следовательно, при проектировании схемы реле времени можно не заботиться о стабильности питания, что значительно позволяет упростить схемотехнику.

Также стоит упомянуть, что кроме 555 серии производится серия 556 в корпусе с 14-ю выводами. Серия 556 содержит два таймера 555.

Устройство с функцией задержки включения

Перейдем непосредственно к реле времени. В этой статье мы разберем с одной стороны схему максимально простую, но с другой стороны не имеющую гальванической развязки.

Внимание! Сборка и наладка рассматриваемой схемы без гальванической развязки должна выполняться только специалистами, имеющими соответствующее образование и допуски. Устройство является источником опасности, так как в нем присутствует опасное для жизни напряжение.

Такое устройство в своей конструкции имеет 15 элементов и делится на две части:

  1. Узел формирования питающего напряжения или блок питания;
  2. Узел с временным контроллером.

Блок питания работает по бестрансформаторному принципу. В его конструкцию входят компоненты R1, C1, VD1, VD2, C3 и VD3. Само напряжение питания 12 В формируется на стабилитроне VD3 и сглаживается конденсатором C3.

Во вторую часть схемы включены интегральный таймер с обвеской. Роль конденсатора C4 и резистора R2 мы описали выше, и теперь по указанной ранее формуле мы можем вычислить значение времени задержки реле:

T = 1.1 * R2 * C4 = 1.1 * 680000 * 0.0001 = 75 секунд ≈ 1.5 минуты Изменив номиналы R2-C4, вы можете самостоятельно определить необходимое вам время задержки и своими руками переделать схему на любой временной интервал.

Принцип работы схемы следующий. После включения устройства в сеть и появления напряжения питания на стабилитроне VD3, а, следовательно, и на микросхеме NE555, конденсатор начинает заряжаться до тех пор, пока напряжение на входах 2 и 6 чипа NE555 не опустится ниже 1/3 от питающего, то есть, примерно до 4 В. После наступления этого события на выходе OUT появится управляющее напряжение, которое запустит (включит) реле K1. Реле, в свою очередь, замкнет нагрузку HL1.

Диод VD4 ускоряет разрядку конденсатора C4 после отключения питания для того, чтобы после быстрого повторного включения в сеть устройства время сработки не сократилось. Диод VD5 гасит индуктивный выброс от K1, чем защищает схему. C2 служит для фильтрации помех по питанию NE555.

Если правильно подобраны детали и без ошибок выполнен монтаж элементов, то устройство в проведении настройки не нуждается.

При испытании схемы, чтобы не выжидать полторы минуты, необходимо сопротивление R1 снизить до значения 68–100 кОм.

Вы, наверное, обратили внимание, что в схеме нет транзистора, который бы включал реле K1. Сделано это не из экономии, а по причине достаточной надежности выхода 3 (OUT) микросхемы DD1. Микросхема NE555 выдерживает на выходе OUT максимальную нагрузку до ±225 мА.

Такая схема идеально подходит для контроля времени работы вентиляционных приборов , установленных в санузлах и других подсобных помещениях. За счет ее наличия вентиляторы включаются только при условии присутствия в помещении в течение длительного времени . Такой режим значительно снижает расход электрической энергии, и продлевает срок службы вентиляторов за счет меньшего износа трущихся деталей.

Как сделать реле с задержкой отключения

Приведенную схему, благодаря особенностям NE555, можно легко переделать в таймер задержки отключения. Для этого необходимо поменять местами C4 и R2-VD4. В таком случае K1 замкнет нагрузку HL1 сразу после включения устройства. Отключение нагрузки произойдет после того, как напряжение на конденсаторе C4 увеличится до 2/3 от напряжения питания, то есть примерно до 8 В.

Недостатком такой модификации является тот факт, что после отключения нагрузки схема будет оставаться под воздействием опасного напряжения. Устранить такой недостаток можно включив контакт реле в цепь подачи питания на таймер параллельно с кнопкой включения (именно кнопкой, а не выключателем! ).

Схема такого устройства с учетом всех доработок приведена ниже:

Внимание! Для того, чтобы опасное напряжение в действительности снималось со схемы контактом реле, необходимо, чтобы ФАЗА была подключена именно так, как показано на схеме.

Обратите внимание, что таймер 555 применен и описан на нашем сайте еще и в другой статье, в которой рассмотрена . Приведенная там схема более надежна, содержит гальваническую развязку и позволяет изменять интервал выдержки времени с помощью регулятора.

Если при изготовлении изделия вам потребуется чертеж печатной платы, напишите об этом в комментариях.

Видео по теме

Микросхема интегрального таймера NE555 — это настоящий прорыв в области электроники. Она была создана в 1972 году сотрудником компании Signetics Гансом Р. Камензиндом. Изобретение не утратило своей актуальности и по сегодняшний день. Позднее устройство стало основой таймеров с удвоенной (IN556N) и счетверенной конфигурацией (IN558N).

Без сомнения, детище электронщика позволило занять ему свою видную нишу в истории технических изобретений. По уровню продаж данное устройство с момента своего появления превзошло любое другое. На второй год существования микросхема 555 стала самой покупаемой деталью.

Лидерство сохранялось и во все последующие годы. Микросхема 555, применение которой возрастало с каждым годом, продавалась очень хорошо. К примеру, в 2003 году было реализовано более чем 1 миллиард экземпляров. Конфигурация самого агрегата за это время не изменилась. Она существует свыше 40 лет.

Появление устройства стало неожиданностью для самого создателя. Камензинд преследовал цель сделать гибкую в использовании ИС, но, что она окажется столь многофункциональной, он не ожидал. Изначально она употреблялась как таймер или же Микросхема 555, применение которой увеличивалось быстрыми темпами, сегодня используется от игрушек для детей до космических кораблей.

Устройство отличает выносливость, поскольку оно построено на основе биполярной технологии, и для применения его в космосе специально предпринимать ничего не требуется. Только испытательные работы проводятся с особой строгостью. Так, при тесте схемы NE 555 для ряда приложений создаются индивидуальные пробные спецификации. При производстве схем не существует никаких различий, но подходы при выходном контроле заметно разнятся.

Появление схемы в отечественной электронике

Первое упоминание об инновации в советской литературе по радиотехнике появилось в 1975 году. Статью об изобретении опубликовали в журнале «Электроника». Микросхема 555, аналог которой был создан советскими электронщиками в конце 80-х годов прошлого столетия, в отечественной радиоэлектронике получила название КР1006ВИ1.

В производстве эту деталь употребляли при сборке видеомагнитофонов «Электроника ВМ12». Но это был не единственный аналог, так как многие производители во всем мире создавали подобное устройство. Все агрегаты имеют обячный корпус DIP8, а также корпус малых размеров SOIC8.

Технические характеристики схемы

Микросхема 555, графическое изображение которой представлено ниже, включает в себя 20 транзисторов. На блок-схеме устройства находятся 3 резистора с сопротивлением 5кОм. Отсюда и название прибора «555».

Основными техническими характеристиками изделия являются:

  • напряжение питания 4,5-18В;
  • максимальный показатель тока на выходе 200 мА;
  • потребляемая энергия составляет до 206 мА.

Если его рассмотреть на выход, то это цифровое устройство. Он может находиться в двух положениях — низком (0В) и высоком (от 4,5 до 15 В). В зависимости от блока питания может показатель достигать и 18 В.

Для чего нужно устройство?

NE 555 микросхема — унифицированное устройство с широким спектром применения. Его часто используют при сборке различных схем, и это только придает изделию популярность. Соответственно, повышается уровень спроса потребителя. Такая известность вызвала падение цены на таймер, что радует многих мастеров.

Внутреннее строение таймера 555

Что же заставляет это устройство функционировать? Каждый из выводов агрегата подсоединен к цепи, содержащей 20 транзисторов, 2 диода и 15 резисторов.

Удвоенный формат модели

Следует отметить, что NE 555 (микросхема) выпускается в удвоенном формате под названием 556. Она содержит два свободных IC.

Таймер 555 оснащен 8 контактами, тогда как модель 556 содержит 14 контактов.

Режимы работы устройства

Микросхема 555 обладает тремя режимами работы:

  1. Моностабильный режим микросхемы 555. Он работает как одноразовый односторонний. Во время функционирования выбрасывается импульс заданной длины как ответ на вход триггера при нажимании кнопки. Выход пребывает в низком напряжении до включения триггера. Отсюда он и получил название ждущий (моностабильный). Такой принцип функционирования сохраняет устройство в бездействии до включения. Режим обеспечивает включение таймеров, переключателей, сенсорных переключателей, делителей частоты и др.
  2. Нестабильный режим является автономной функцией устройства. Он позволяет схеме пребывать в генераторном режиме. Напряжение в выходе изменчиво: то низкое, то высокое. Эта схема применима при надобности задавания устройству толчков прерывистого характера (при недолговременном включении и выключении агрегата). Режим используется при включении ламп на светодиодах, функционирует в логической схеме часов и др.
  3. Бистабильный режим, или же триггер Шмидта. Понятно, что он работает по системе триггера при отсутствии конденсатора и обладает двумя устойчивыми состояниями, высоким и низким. Низкий показатель триггера переходит в высокий. При сбрасывании низкого напряжения система устремляется к низкому состоянию. Эта схема применима в сфере железнодорожного строительства.

Выводы таймера 555

Генератор микросхема 555 включает восемь выводов:

  1. Вывод 1 (земля). Он подсоединен к минусовой стороне питания (общий провод схемы).
  2. Вывод 2 (триггер). Он подает высокое напряжение на время (все зависит от и конденсатора). Эта конфигурация и является моностабильной. Вывод 2 контролирует вывод 6. Если напряжение в обоих низкое, то на выходе оно будет высоким. В противном случае, при высоком напряжении в выводе 6 и низком в выводе 2, выход на таймере будет низким.
  3. Вывод 3 (выход). Выходы 3 и 7 располагаются в фазе. Подавая высокое напряжение с показателем примерно 2 В и низкое с 0,5 В будет получаться до 200 мА.
  4. Вывод 4 (сброс). Подача напряжения на этот выход низка, несмотря на режим работы таймера 555. Во избежание случайных сбросов, следует производить подключение этого выхода к плюсовой стороне при использовании.
  5. Вывод 5 (контроль). Он открывает доступ к Это вывод в российской электронике не применяется, но при его подключении можно достичь широких возможностей управления устройством 555.
  6. Вывод 6 (остановка). Входит в компаратор 1. Он противоположен выводу 2, применим для остановки устройства. При этом получается низкое напряжение. Это вывод может принимать синусоидальные и прямоугольные импульсы.
  7. Вывод 7 (разряд). Он подсоединяется к транзисторному коллектору Т6, а эмиттер последнего заземлен. При открытом транзисторе конденсатор разряжается до его закрытия.
  8. Вывод 8 (плюсовая сторона питания), которая составляет от 4,5 до 18 В.

Применение выхода Output

Выход 3 (Output) может пребывать в двух состояниях:

  1. Осуществляется подключение цифрового выхода прямо к входу другого драйвера на цифровой основе. Цифровой выход может осуществлять управление другими устройствами при посредстве нескольких дополнительных составляющих (напряжение источника питания равно 0 В).
  2. Показатель напряжения во втором состоянии высок (Vcc на источнике питания).

Возможности агрегата

  1. При понижении напряжения в Output ток направляется через устройство и осуществляет его подключение. Это и есть понижение, так как ток производится из Vcc и проходит сквозь агрегат до 0 В.
  2. При возрастании Output ток, проходя через прибор, обеспечивает его включение. Этот процесс можно назвать источником текущих. Электроэнергия в этом случае производится от таймера и идет через прибор до 0 В.

Возрастание и понижение могут функционировать вместе. Таким образом достигается поочередное включение и выключение прибора. Такой принцип применим при функционировании ламп на светодиодах, реле, двигателей, электромагнитов. К минусам такого свойства можно отнести то, что прибор надо подключать к Output разными способами, так как выход 3 может выступать как в роли потребителя, так и в роли источника тока до 200 мА. Используемый блок питания дожжен подать достаточный ток для обоих устройств и таймера 555.

Микросхема LM555

Микросхема 555 Даташит (LM555) обладает широкими функциональными возможностями.

Она используется от генераторов прямоугольных импульсов с изменяемым показателем скважности и реле и задержкой срабатывания до сложных конфигураций ШИМ генераторов. Микросхема 555 цоколевка и внутреннее строение отражены на рисунке.

Уровень точности приспособления равен 1% от расчетного показателя, что является оптимальным. На такой агрегат, как NE 555 микросхема даташит, не воздействуют температурные условия окружающей среды.

Аналоги микросхемы NE555

Микросхема 555, аналог которой в России был назван КР1006ВИ1, представляет интегральное устройство.

Среди рабочих блоков следует выделить RS-триггер (DD1), компараторы (DA1 и DA2), на выходе, основанный на двухтактной системе и дополняющий транзистор VT3. Назначение последнего заключается в сбросе задающего время конденсатора при использовании агрегата в роли генератора. Сбрасывание триггера происходит при подаче логической единицы (Юпит/2…Юпит) на входы R.

В случае сброса триггера на выходе устройства (вывод 3) будет наблюдаться низкий показатель напряжения (транзистор VT2 открыт).

Уникальность схемы 555

При функциональной схеме устройства очень трудно понять, в чем же заключается ее необычность. Оригинальность устройства состоит в том, что оно обладает особым управлением триггера, а именно формирует управляющие сигналы. Их создание происходит на компараторах DA1 и DA2 (на один из входов, на который подано опорное напряжение). Для формирования управляющих сигналов на входах триггера (выходах компараторов) следует получить сигналы с высоким напряжением.

Как произвести запуск устройства?

Чтобы запустить таймер, на выход 2 надо подать напряжение с показателем от 0 до 1/3 Юпит. Этот сигнал способствует срабатыванию триггера, и при выходе создается сигнал с высоким напряжением. Сигнал выше предельного показателя не вызовет каких-либо изменений в схеме, так как опорное напряжение для компаратора равно DA2 и составляет 1/3 Юпит.

Остановить таймер можно при сбрасывании триггера. С этой целью напряжение на выходе 6 должно превышать показатель 2/3 Юпит (опорное напряжение для компаратора DA1 составляет 2/3 Юпит). При сбросе установится сигнал с низким напряжением и разряд конденсатора, задающего время.

Регулировать опорное напряжение можно посредством подключения дополнительного сопротивления или источника питания к выводу агрегата.

В последнее время среди владельцев автомобилей стало модным сматывать на спидометре пройденный машиной километраж.

Многие интересуются, подмотка спидометра на 555 микросхеме выполнима ли самостоятельно?

Эта процедура не представляет особой трудности. Для его изготовления используется микросхема 555, которая может функционировать в качестве Отдельные составляющие схемы можно брать с показателями, отклоняющимися на 10-15 % от расчетных значений.

Сразу стоит отметить при описании микросхемы NE 555, что она выпускается как в стандартной ТТЛ логике, так и КМОП, поэтому она может работать в широком диапазоне напряжений и использована во многих типах устройств в качестве генератора тактовых импульсов или универсального таймера. Микросхема может генерировать как одиночные, так повторяющиеся импульсы, что зависит от принципиальной схемы включения и выбора конкретного режима работы.

Разрабатывался первый вариант ИС еще в 1971 году знаменитой на то время компанией Signetics. По своим характеристикам и функциональным возможностям она является широко востребованной, свидетельством чего является ее активное применение в устройствах управления скоростью вращения двигателей и тиристорных регуляторах мощности.

Также, ее можно использовать для конструирования унифицированного генератора импульсов с регулируемой выходной частотой последовательностью импульсов. Для подробного описания характеристик микросхемы смотрите на ne 555 datasheet. В нем указаны не только основные характеристики, но также представлены диаграммы работы. А в этом описании ne 555 предоставим общую информацию, достаточную для разработки электронных устройств своими руками.

Предыстория создания ИС

В 70 гг. компания Signetics попала под влияние кризиса и вынуждена была сократить численность своего персонала как минимум на 50%, в число которых попал и разработчик представленной схемы. Поэтому она была создана буквально на коленках в гаражных условиях, а за основу была взята им же разработанная NE 566. Платформа будущей ИС уже состояла из основных, необходимых для работы функциональных блоков:

Существуют на ne 555 схемы включения разного типа для работы микросхемы достаточно было наличие внешней RC-цепи, которая являлась времязадающей. И внутренний делитель напряжения , пропорционально которому формировалась амплитуда выходного сигнала. После некоторого времени и внесения небольших доработок, в частности, замена встроенного генератора стабильного тока для зарядки внутреннего конденсатора на резистор, она поступила в серию.

Что касается структуры таймера, то в ней содержалось:

  • 23 транзистора;
  • 16 резисторов;
  • 2 диода.

Аналоги микросхемы

Универсальный таймер вскоре обзавелся функциональными аналогами, которыми стали советские микросхемы из серии КР:

  • 1006ВИ1;
  • 1008ВИ1;
  • 1087ВИ2;
  • 1087ВИ3.

Также, микросхема ne555 аналог имеет, например, КР10006ВИ1, то стоит учесть тот факт, что вход сброса R по отношению к установке имеет приоритет. Этот момент почему-то упущен в техническом описании МС, что является немаловажным фактом при построении электронных схем. В других микросхемах выводы имеют приоритет вплоть до наоборот S над R.

Все выше представленные аналоги таймеров построены на стандартной ТТЛ-логике. Если захотите спроектировать устройства на ne555 с более экономичными показателями, то лучше применить МС из серии КМОП. Таковыми являются устройства:

  • ICM 7555 IPA ;
  • GLC 555;
  • КР1441ВИ1.

Характеристики микросхемы

Функциональная схема представленной микросхемы достаточно проста и состоит из следующих блоков:

  • делителя напряжения, который сравнивает сигнал на входе с двумя опорными уровнями;
  • 2 высокоточных компараторов на высокий и на низкий уровень сигналов;
  • триггера со встроенными RS -входами и дополнительным сбросом, выходной транзистор средней мощности биполярный или полевой в зависимости от технологии.

Также, аппаратно в конструкции микросхемы предусмотрен усилитель мощности, повышающий нагрузочную способность устройства и ее качество работы.

Микросхема является универсальной, как ни посмотри, со всех сторон. Например, базовая версия NE 555 рассчитана на напряжение питания в пределах от 4,5 до 16,5 В, что весьма упрощает процесс конструирования многих схем, так как отпадает необходимость придерживаться конкретной величины питания.

Но если необходимо запитать генератор импульсов от пониженного уровня порядка 2–3 В, то лучше использовать схемы на КМОП-логике. Они не только могут свободно функционировать на низком напряжении, но и обладают повышенными показателями устойчивости к помехам и нестабильности питания.

Также, выпускаются модификации устройств с повышенным порогом питающего напряжения, который может достигать 18 В. Эти МС могут применяться в импульсных устройствах и генераторах.

Согласно информации, которую предоставляет западный на ne555 datasheet потребляемый ток устройством зависит от величины входного импульса. Если она лежит на номинальном уровне порядка 5 В, то величина тока составляет не более 6 мА. Но если напряжение вырастет до 15В, то ток также растет до 15мА. Обычно устройства разрабатывают своими руками на средний показатель тока, который оставляет порядка 10 мА, что говорит о напряжении питания в пределах от 9 до 12 В. Но это характерно для ТТЛ-логики.

Микросхемы, сконструированные на основе КМОП-транзисторов, потребляют еще меньше – 100-200 мкА, что их делает еще более экономичными. Но максимальное значение потребляемого тока не превышает 100 мА. Если у вас она берет больше этого значения, это означает что устройство неисправно и требует замены.

Некоторые проблемы и особенности работы с микросхемой

8-пиновый корпус – идея хорошая, но из-за этого форм-фактора возникают некоторые трудности при работе с таймером. А именно, он лишен возможности независимого сравнения сигналов верхнего и нижнего порогов, что довольно часто требуется в устройствах преобразования, например, тех же АЦП. Чтобы реализовать такую возможность радиолюбители прибегают к использованию другой серии устройств, например, NE 521 или устанавливают на вход элементы 3И-НЕ, если это целесообразно.

В биполярных устройствах присутствует такой недостаток, как импульсный ток при включении и выключении, величина которого может достигать 400 мА, что может стать причиной пробоя выходного транзистора или других элементов схемы, в которую она была впаяна. Причиной такого явления является сквозной ток выходного каскада, возникающий из-за тех же высоких импульсов по питанию.

Чтобы устранить проблему, рекомендуется использовать специальный блокирующий конденсатор, подключаемый на входы 5 и общий (мину питания) емкостью порядка 0,01–0,1 мкФ. Благодаря заряду его обкладок внутренне напряжение в МС, поступающее на выходной каскад , сглаживается, что и исключает вероятность возникновения пробоя. Также он защитит внутренний делитель от помех извне, которые могут вызвать ложное срабатывание.

Также, как и в случае со многими другими микросхемами с ТТЛ-логикой, NE 555 рекомендуется шунтировать гасящим конденсатором с керамическим обкладками емкостью 1 мкФ.

Назначение и расположение выводов микросхемы

NE 555 в базовом исполнении имеет 8-выводной корпус DIP, но также выпускаются иные модификации, являющиеся аналогами. Поэтому ориентировать исключительно этого описания при построении устройств своими руками на ее основе не стоит. К каждой микросхеме необходимо просматривать свой даташит.

Схемное обозначение устройства отображается в виде надписи «G 1/ GN». В зарубежных справочниках эту надпись можно расшифровать как генератор одиночных и серий импульсов. Что касается расположения выводов и их назначения, то все однотипные МС являются стандартизированными и могут быть взаимозаменяемы без внесения каких-либо доработок.

В таблице ниже представлено расположение выводов в стандартном корпусе МС:

Режимы работы и применение микросхемы

Самой простой схемной реализацией, применяемой в различный цифровых устройствах, является одновибратор. На примере этой схемы можно также увидеть типовое включение с использованием гасящего и шунтирующего конденсаторов. Именно в таком исполнении наиболее чаще применяется эта микросхема. А работает она следующим образом:

По приходу сигнала с низким уровнем на вход МС под номером 2 начинает работать таймер в режиме счета времени. При этом на выходе устройства устанавливается высокий уровень на протяжении всей длительности временного промежутка . Это время можно устанавливать самостоятельно, подобрав необходимые внешние компоненты, которыми выступают резистор и конденсатор, подключаемые к плюсу питания и выводу под номером 6.

Определяется временная задержка по стандартной формуле с учетом корректирующей константы: t =1,1 RC. По окончании счета (разряда конденсатор) таймер возвращается в исходное состояние. А выходной сигнал изменяется на противоположный. Итак до следующего прихода входного импульса низкого уровня.

При этом, если на входе присутствует низкий уровень, то на выходе высокий. А при подаче импульса на вход сброса триггера таймер останавливает свой счет и уровень сигнала на выходе изменяется на противоположный.

Режим независимого генератора

Чтобы включить микросхему в режиме мультивибратора, имеется схема, показанная на рисунке ниже. Здесь так же все просто, как и в предыдущем варианте, но имеются некоторые особенности расчета элементом и характеристик последовательности выходного сигнала. Чтобы задать определенную частоту смены выходного сигнала и последующее переключение в противоположное устойчивое состояние, потребуется выводы 2 и 6 объединить и установить еще один резистор в делить, уменьшив ток заряда конденсатора, но при этом связав входной сигнал с входом установки триггера. А чтобы рассчитать параметры используемых элементом, необходимо будет воспользоваться следующими простыми формулами расчета:

Изменение скважности выходного импульса

Нередко требуется применение микросхемы 555 с возможностью установки скважности выходного сигнала. Например, сделать ее больше 2, то для этого потребуется образовать дополнительную цепь между 7 и 6 выводами , подключив к ним диод. При этом анодный вывод контактирует с выводом 7 МС. Такое включение дополнительного компонента шунтирует резистор R 2, обеспечивая цепь заряда конденсатора через R 1. Тогда при расчете длительности высокого уровня сигнала на выходе будет происходить по формуле без учета R 2.

В обратном цикле разрядный ток будет протекать через R 2, а R 1 уже не участвует в процессе. И определяется по формуле, которая указывалась выше без изменений.

Микросхема 555 появилась сорок лет назад и стала фактически первым таймером на широком рынке. С тех пор из-за бешеной популярности микросхемы ее начали выпускать почти все производители электронных компонентов, и несмотря на почтенный возраст, 555 до сих пор выходит многомиллионными тиражами.

В этом году прошел конкурс проектов (555contest.com), использующих ее для решения самых разных задач. Заявки принимались в нескольких категориях: искусство, сложные проекты, минималистичные и полезные гаджеты. Призовой фонд составлял около $1500.

Среди нескольких сотен проектов была видеоигра, собранная на целой горсти 555; контроллер для пинбола; электрогитара; устройство, не дающее спать соседям; замок, отпирающий дверь по секретному стуку и еще куча интересного.

Если ты хоть раз в жизни держал паяльник и даже отличишь резистор от транзистора, а со старушкой 555 еще не знаком, то нужно срочно исправить ситуацию. Что это за зверь? Внутри пластикового корпуса с восемью выводами скрывается пара десятков транзисторов, диодов и резисторов, но в доскональное изучение работы таймера вдаваться не будем, пусть он останется для нас черным ящиком, из которого торчат ножки. А вот ножки обсудим.

  1. Земля. Здесь все просто, во всех схемах ее нужно подключать к минусу питания.
  2. Триггер, он же пуск. Если напряжение на пуске падает ниже одной трети напряжения питания (Vcc) - например, нажимается кнопка, притянутая к земле, - то схема стартует.
  3. Выход. Задача таймера простая - генерировать прямоугольные импульсы заданной длины (длительность задается парой сопротивлений и конденсатором). Напряжение выхода примерно на 2 В ниже напряжения питания, когда он включен, и почти ноль (меньше 0,5 В), когда выключен. Максимальная нагрузка, которую способен выдержать выход - около 200 мА. Этого достаточно для небольшого динамика, парочки светодиодов или маленького реле.
  4. Сброс. Если подать на него низкий уровень (меньше 0,7 В), то схема переходит в исходное состояние, и выход становится низким. Если в схеме сброс не нужен, то лучше притянуть его к плюсу, чтобы он не скидывал случайно (например, от прикосновения пальцем).
  5. Контроль. Напряжение, приложенное к этой ноге, может изменять длительность выходов таймера. Но используется он редко, а висящий в воздухе - может сбивать работу, поэтому в схемах лучше присоединить к земле через небольшой керамический конденсатор на 10 нФ.
  6. Порог, он же стоп. Если напряжение на нем выше 2/3 Vcc, то таймер останавливается и выход переводится в выключенное состояние. Работает, только если вход при этом выключен.
  7. Разряд. Этот выход соединяется с землей внутри микросхемы, когда на выходе низкий уровень, и используется, чтобы разрядить конденсатор временной цепочки. Может пропускать до 200 мА и иногда используется как дополнительный выход.
  8. Питание. Нужно подключить к плюсу питания. Микросхема поддерживает напряжения от 4,5 В до 16 В. Можно запитать от обычной 9В-батарейки, можно от блока питания детских игрушек или от проводка USB.

Заводим лошадку. Режимы

1. Моностабильный.

При подаче сигнала на вход микросхема включается, генерирует выходной импульс заданной длины и выключается, ожидая нового входного импульса. Важно, что после включения микросхема не будет реагировать на новые сигналы, сколько бы их не посылали. Длину импульса можно посчитать по простой формуле t=1,1R1 C4. Чтобы получить время в секундах, сопротивление нужно подставлять в мегаомах, а емкость - в микрофарадах.

Например, при C4=100 мкФ и R1=2,2 МОм период будет примерно 4 минуты. Эту цифру можно менять в очень широких пределах: от 0,000001 секунды до 15 минут. В теории можно и еще больше, но на практике возникнут проблемы.

2. Нестабильный мультивибратор.

В этом режиме таймером и управлять-то не надо, он сам себе хозяин - сперва включится, подождет время t1, потом выключится, подождет время t2, и все заново. На выходе получается забор из высоких и низких состояний, что в лучших традиция ASCII-арта можно представить так: ПП ПП П. Частота, с которой будет колебаться вся система, зависит от параметров RC-цепочки (точнее - от величин R2, R3 и С1) и ее можно посчитать по формуле f = 1,44/((R3 + 2R2)C1). В течение времени t1 = 0,693 (R3 + R2)C1 на выходе будет высокий уровень, а в течение t2=0,693(R2)C1 - низкий.

3. Бистабильный.

В этом режиме микросхема используется как выключатель. Нажал одну кнопку - выход включился, нажал другую - выключился. Довольно теоретического экскурса, наверняка ты уже захотел приступить к практике.

Собирать простые железки удобно на макетной плате без пайки - ее, как и все детали, можно прикупить в любой радиолавке, за пару сотен рублей. Но у меня почта ближе, чем магазин, и я заказывал все детали из Гонконга на sureelectronics.net, хотя этот вариант на любителя - нужно много терпения: посылка будет идти почти месяц.

Здравствуй, свет!

Задача №1: собрать «хэллоу ворлд» - моргалку светодиодиком. Все просто, как и в мире софта, но в железе даже для такой безделушки можно придумать полезное применение.

От каких деталей уж совсем никак не отвертеться? Во-первых, сам таймер 555 (на схеме IC1). Подойдет таймер любого производителя, но чтобы экспериментировать на макетке - бери в корпусе DIP с длинными ножками. Его названия у разных производителей незначительно отличаются, но три пятерочки в них есть всегда. Например, та, что я использую в примерах этой статьи, называется NE555N. Существуют и другие версии схемы, 556 и 558, у которых в одном корпусе стоит 2 и 4 таймера соответственно.

Они тоже подойдут для всех примеров, просто у них больше ног и расположены они иначе. Во-вторых, потребуются конденсаторы: электролитический C1 емкостью от 5 до 10 мкФ и керамический C3 на 10 нФ. Еще будут нужны: светодиод (LED1) любого цвета и к нему токоограничительный резистор (R5) на 300-600 Ом (у меня 470 Ом), а также резисторы, задающие частоту R1 на 1 кОм и R2 на 10 кОм. Последнее из обязательной программы - маленькая кнопка (типа той, что ставят в мыши и на всяческие приборные панели).

Еще на схеме есть конденсатор C2 на 100 мкФ, который перекинут от плюса к минусу. Если у тебя с питанием все хорошо (например, ты используешь батарейку), то необходимости в нем нет, а с дешевым сетевым адаптером без такого конденсатора никуда. В примерах я использовал пятивольтовый блок питания от детской китайской игрушки, на выпрямителе которого производитель сэкономил - в результате без этой сглаживающей емкости схема не работала вовсе. Поэтому на всех схемах в статье этот конденсатор есть, а ставить его или нет - решать тебе.

Также при желании можно опустить и конденсатор C3, который притягивает пятую ногу к земле, но в этом случае стабильность гарантировать не стану.
Схема работает в нестабильном режиме и собрана таким образом, что пока подключена к питанию, то постоянно генерирует выходные импульсы, а как только мы нажимаем кнопку, то замыкаем ее выход на светодиод и ее работа становится видна. Теперь можешь собрать все по схеме.

При нажатии кнопки светодиод должен бодро начать моргать. Если не заработало, то проверяй контакты и полярности. На микросхеме 555 у одного из краев есть выемка: поставь схему так, чтобы выемка была слева, тогда ножки в нижнем ряду будут нумероваться слева направо от 1 до 4, а в верхнем - справа налево от 5 до 8. У светодиода более длинный выход должен подключаться к плюсу, а более короткий - к минусу. Если у диода ножки одной длины, то на помощь придет плоская литиевая батарейка, вроде той, что стоят на материнских платах. Подключи светодиод и так и эдак, когда он засветится - плюс и минус у него будут расположены, как на батарейке.

Если не заработал в обоих положениях, то либо диод горелый, либо это не диод - фототранзисторы могут выглядеть точно так же, как светодиоды. У электролитических конденсаторов минус, как правило, помечен светлой полосой на корпусе. Для остальных деталей полярность не важна.

Теперь о практической пользе. В некоторых играх бывает необходимо щелкать по левой кнопке беспрестанно, натирая мозоли на пальце, но это не наш метод. Можно собрать эту схему покомпактнее, припаяв детали напрямую к выходам микросхемы, и запихнуть в корпус любой USB-мыши - места там, как правило, хватает. Из схемы нужно только выкинуть светодиод с его резистором, а третью ножку микросхемы подпаять напрямую к плюсу левой кнопки мыши.

Определить, где в мышиной кнопке плюс (зеленая точка на фото), а где - минус, обычно несложно: контакт с нулем более толстый и идет к черному проводу от USB, а другой - это плюс, к нему и подпаивайся. Для питания подключайся к красному и черному проводам, уходящим в сторону компьютера, их контакты также помечены на фото. Просверли слева в корпусе мышки отверстие (так, чтобы было удобно дотягиваться до него большим пальцем) и установи туда кнопку при помощи термоклеевого пистолета. Все, теперь можешь нещадно валить врагов.

Создаем электронную музыку

Еще одна схемка, в которой таймер также работает в режиме мультивибратора, но задача у нее другая. Она перенесет тебя в прошлое, в прокуренные студии отцов андеграундной электронной музыки, которым приходилось самим ваять устройства, при помощи которых они создавали бессмертные хиты.

Изменения в предыдущей схеме придется сделать совсем небольшие. Вместо светодиода с его резистором здесь установлен динамик, подключенный к земле через конденсатор C4 - он нужен, чтобы отфильтровать постоянную составляющую выхода и прогонять через динамик только переменный ток. Для максимальной громкости этот конденсатор должен быть электролитическим, емкостью порядка 10 мкФ, но подобный звук будет резать ухо, и если такой задачи не стоит, поставь керамический на 100 нФ, будет потише. Можешь взять динамик из сломанных больших наушников или бипер из старого системного блока. Пьезодинамик (в виде круглой металлической пластинки) также подойдет, плюс ему не нужен конденсатор С4.

Поскольку звуковые частоты несколько выше, чем частота моргания диода, то RC-цепочку тоже придется чутка переделать. Конденсатор C1 заменить на керамический 100 нФ, резистор R2 заменить на 1 кОм и последовательно с ним поставить переменный резистор R3 на 10 кОм. У переменных резисторов обычно 3 ножки, расположенные в ряд, но тебе нужно подключить только две - любую из крайних и центральную. Такие параметры не позволят частоте убежать за слышимый диапазон на всем диапазоне R3. Резистором выставляй частоту, нажимай кнопку и слушай, что звучит. При некоторой сноровке получится музыка.

Сервомашинка как удлинитель пальца

Еще одна схема в режиме мультивибратора. Здесь при помощи таймера 555 ты будешь управлять сервомашинкой. Крути переменный резистор, а машинка будет крутить все, что угодно. Сервоприводы (или просто сервы) используются обычно в радиоуправляемых модельках машин/вертолетов/самолетов, но это не значит, что ты не найдешь им другого применения.

Для начала тебе нужно эту машинку где-нибудь достать. Неплохой выбор недорогих серв есть в популярном китайском онлайнмагазинчике DealExtreme (s.dealextreme.com/search/servo), все свои я заказывал именно там. В наших магазинах они тоже есть, но заметно дороже.

Типичная хобби-серво имеет три провода: черный или коричневый минус питания, который нужно подключить к контакту SERVO-3 на схеме, красный плюс - к SERVO-1, желтый или белый для управляющих команд - к SERVO-2.

Серво ждет, что по сигнальному проводу 50 раз в секунду будут приходить короткие импульсы длиной от 0,9 до 2,1 мс, и длительность сигнала подскажет, на какой угол нужно отклониться. Параметры RC-цепочки в схеме подобраны таким образом, чтобы обеспечить именно такие сигналы. Поскольку время импульса должно быть меньше, чем время между ними, то в схему нужно добавить диод D1. В схеме указан 1n4148, так как он один из самых распространенных, но можно заменить его на другой. Определить полярность диода просто - перпендикулярная полоска на корпусе соответствует черте на схеме.

Таймер 555 - штука простая, хоть 15 вольт на вход подавай, ей все нипочем. А сервомашинка требует более бережного отношения и работает только в диапазоне напряжений от 4,8 В до 6 В. Так что если для питания ты использовал батарейку на 9 В, то придется напряжение понижать. С этой задачей отлично справляется стабилизатор 7805, который срезает все лишнее и оставляет на выходе чистые 5 В. Правда, все лишние вольты он попросту преобразует в тепло и может сильно нагреваться. Хотя, нагреваясь, стабилизатор поддерживает приятный теплый микроклимат в комнате, его не стоит применять в проектах, питающихся от батареек - прожорливый он. Включить его в схему просто: если ты возьмешь его за выходы и будешь читать надписи на корпусе, то первая нога окажется слева - ее нужно подсоединить к плюсу батареи, вторую - к общей земле, а третья - выход +5 В.

Собрав эту штуку, ты сможешь не просто тестировать сервы на работоспособность, а еще удаленно управлять выключателями и открывать замки.

Постоянная кнопка

Порой необходимо, чтобы твоя схемка работала, как телевизор: нажал кнопочку, она включилась, нажал еще раз - выключилась. И эту задачу тоже можно решить на 555. Внутри микросхемы запрятан триггер, который для этой цели можно использовать.

Основная часть схемы уже не должна вызывать у тебя особых вопросов, остановлюсь лишь на выходе третьей ножки, а именно - резисторе R4 и транзисторе T1. Ведь мы делаем кнопку, а значит - она должна уметь пропускать ток, и не факт, что 200 мА, на которые способен 555, будет достаточно. Здесь в качестве ключа используется небольшой NPN-транзистор 2N3904, который способен пропускать те же 200 мА, что и сам таймер, и смысла в нем немного, но его всегда можно заменить на более мощный МОП-транзистор - например, IRF630, который позволит подключить нагрузку до 9А. Правда, для такого транса напряжение придется увеличить на схеме до 12 вольт, иначе затвор не откроется.

Еще не очень круто применять такой выключатель в мобильных устройствах, так как даже в выключенном состоянии он потребляет ток в 3-6 мА, что заметно подсаживает батарею.

Гаджет для приготовления чая

Когда я только начал знакомиться с linux’ом, мне попалась небольшая, но очень важная программа для приготовления чая. В ней можно выбрать сорт чая, и по прошествии времени, необходимого для заварки, она начинала помаргивать иконкой в трее и пищать. Из какого дистрибутива была программа, я уже не помню, но она пару раз помогла мне выпить не остывший чай. С программами всегда так: снес операционку - и нет ее, а железка на столе куда надежнее!

Для реализации этой штуковины понадобится целых два таймера 555. Один (тот, что на схеме слева) будет отсчитывать 4 минуты, за которые заварка превращается в благоуханный напиток, а другой - генерировать импульсы для пищалки.

Генератор на IC2 трудолюбиво и непрерывно генерирует импульсы. Рассмотрим подробнее первый таймер. Он подсоединен в моностабильном режиме. В нормальном состоянии сразу после включения питания на выходе 3 низкий уровень - он притянут к земле, а значит - пищит динамик и горит светодиод LED2 (на самом деле светодиод моргает, но очень быстро, и это незаметно). Как только нажимается кнопка S1, таймер включается, на выходе 3 становится высокий уровень, зажигается светодиод LED1, а динамик выключается, ведь LED2 хоть и «свето-», но все-таки диод, и в обратную сторону ток пропускать не будет. Так продолжается, пока конденсатор C4 заряжается через резистор R1. Когда напряжение на ножке 6 станет больше 2/3 Vcc, то таймер выключится и вновь запищит бипер.

Схему можно чутка модифицировать, добавив последовательно R1 - переменный резистор на 500 кОм, тогда можно будет регулировать время заварки для разных сортов чая.

Уверен, этих схем тебе хватит для вдохновения. Если нет - попробуй поискать чтонибудь на сайте instructables.com . Также со схемами может помочь программа 555 Timer Pro schematica.com/555_Timer_design/555_Timer_PRO_EX.htm , которая позволяет в пару кликов рассчитать детали для любого режима (правда, стоит она «всего» $29, но если постараться, то можно найти в сети более старую бесплатную версию).