В деле познания SAN столкнулся с определённым препятствием - труднодоступностью базовой информации. В вопросе изучения прочих инфраструктурных продуктов, с которыми доводилось сталкиваться, проще - есть пробные версии ПО, возможность установить их на вирутальной машине, есть куча учебников, референс гайдов и блогов по теме. Cisco и Microsoft клепают очень качественные учебники, MS вдобавок худо-бедно причесал свою адскую чердачную кладовку под названием technet, даже по VMware есть книга, пусть и одна (и даже на русском языке!), причём с КПД около 100%. Уже и по самим устройствам хранения данных можно получить информацию с семинаров, маркетинговых мероприятий и документов, форумов. По сети же хранения - тишина и мёртвые с косами стоять. Я нашёл два учебника, но купить не решился. Это "Storage Area Networks For Dummies " (есть и такое, оказывается. Очень любознательные англоговорящие «чайники» в целевой аудитории, видимо) за полторы тысячи рублей и "Distributed Storage Networks: Architecture, Protocols and Management " - выглядит более надёжно, но 8200р при скидке 40%. Вместе с этой книгой Ozon рекомендует также книгу «Искусство кирпичной кладки».

Что посоветовать человеку, который решит с нуля изучить хотя бы теорию организации сети хранения данных, я не знаю. Как показала практика, даже дорогостоящие курсы могут дать на выходе ноль. Люди, применительно к SAN делятся на три категории: те, кто вообще не знает что это, кто знает, что такое явление просто есть и те, кто на вопрос «зачем в сети хранения делать две и более фабрики» смотрят с таким недоумением, будто их спросили что-то вроде «зачем квадрату четыре угла?».

Попробую восполнить пробел, которого не хватало мне - описать базу и описать просто. Рассматривать буду SAN на базе её классического протокола - Fibre Channel.

Итак, SAN - Storage Area Network - предназначена для консолидации дискового пространства серверов на специально выделенных дисковых хранилищах. Суть в том, что так дисковые ресурсы экономнее используются, легче управляются и имеют большую производительность. А в вопросах виртуализации и кластеризации, когда нескольким серверам нужен доступ к одному дисковому пространству, подобные системы хранения данных вообще незаменимая штука.

Кстати, в терминологиях SAN, благодаря переводу на русский, возникает некоторая путаница. SAN в переводе означает «сеть хранения данных» - СХД. Однако классически в России под СХД понимается термин «система хранения данных», то есть именно дисковый массив (Storage Array ), который в свою очередь состоит из Управляющего блока (Storage Processor, Storage Controller ) и дисковых полок (Disk Enclosure ). Однако, в оригинале Storage Array является лишь частью SAN, хотя порой и самой значимой. В России получаем, что СХД (система хранения данных) является частью СХД (сети хранения данных). Поэтому устройства хранения обычно называют СХД, а сеть хранения - SAN (и путают с «Sun», но это уже мелочи).

Компоненты и термины

Технологически SAN состоит из следующих компонентов:
1. Узлы, ноды (nodes)
  • Дисковые массивы (системы хранения данных) - хранилища (таргеты )
  • Серверы - потребители дисковых ресурсов (инициаторы ).
2. Сетевая инфраструктура
  • Коммутаторы (и маршрутизаторы в сложных и распределённых системах)
  • Кабели

Особенности

Если не вдаваться в детали, протокол FC похож на протокол Ethernet с WWN-адресами вместо MAC-адресов. Только, вместо двух уровней Ethernet имеет пять (из которых четвёртый пока не определён, а пятый - это маппинг между транспортом FC и высокоуровневыми протоколами, которые по этому FC передаются - SCSI-3, IP). Кроме того, в коммутаторах FC используются специализированные сервисы, аналоги которых для IP сетей обычно размещаются на серверах. Например: Domain Address Manager (отвечает за назначение Domain ID коммутаторам), Name Server (хранит информацию о подключенных устройствах, эдакий аналог WINS в пределах коммутатора) и т.д.

Для SAN ключевыми параметрами являются не только производительность, но и надёжность. Ведь если у сервера БД пропадёт сеть на пару секунд (или даже минут) - ну неприятно будет, но пережить можно. А если на это же время отвалится жёсткий диск с базой или с ОС, эффект будет куда более серьёзным. Поэтому все компоненты SAN обычно дублируются - порты в устройствах хранения и серверах, коммутаторы, линки между коммутаторами и, ключевая особенность SAN, по сравнению с LAN - дублирование на уровне всей инфраструктуры сетевых устройств - фабрики.

Фабрика (fabric - что вообще-то в переводе с английского ткань, т.к. термин символизирует переплетённую схему подключения сетевых и конечных устройств, но термин уже устоялся) - совокупность коммутаторов, соединённых между собой межкоммутаторными линками (ISL - InterSwitch Link ).

Высоконадёжные SAN обязательно включают две (а иногда и более) фабрики, поскольку фабрика сама по себе - единая точка отказа. Те, кто хоть раз наблюдал последствия кольца в сети или ловкого движения клавиатуры, вводящего в кому коммутатор уровня ядра или распределения неудачной прошивкой или командой, понимают о чём речь.

Фабрики могут иметь идентичную (зеркальную) топологию или различаться. Например одна фабрика может состоять из четырёх коммутаторов, а другая - из одного, и к ней могут быть подключены только высококритичные узлы.

Топология

Различают следующие виды топологий фабрики:

Каскад - коммутаторы соединяются последовательно. Если их больше двух, то ненадёжно и непроизводительно.

Кольцо - замкнутый каскад. Надёжнее просто каскада, хотя при большом количестве участников (больше 4) производительность будет страдать. А единичный сбой ISL или одного из коммутаторов превращает схему в каскад со всеми вытекающими.

Сетка (mesh ). Бывает Full Mesh - когда каждый коммутатор соединяется с каждым. Характерно высокой надёжностью, производительностью и ценой. Количество портов, требуемое под межкоммутаторные связи, с добавлением каждого нового коммутатора в схему растёт экспоненциально. При определённой конфигурации просто не останется портов под узлы - все будут заняты под ISL. Partial Mesh - любое хаотическое объединение коммутаторов.

Центр/периферия (Core/Edge) - близкая к классической топологии LAN, но без уровня распределения. Нередко хранилища подключаются к Core-коммутаторам, а серверы - к Edge. Хотя для хранилищ может быть выделен дополнительный слой (tier) Edge-коммутаторов. Также и хранилища и серверы могут быть подключены в один коммутатор для повышения производительности и снижения времени отклика (это называется локализацией). Такая топология характеризуется хорошей масштабируемостью и управляемостью.

Зонинг (зонирование, zoning)

Ещё одна характерная для SAN технология. Это определение пар инициатор-таргет. То есть каким серверам к каким дисковым ресурсам можно иметь доступ, дабы не получилось, что все серверы видят все возможные диски. Достигается это следующим образом:
  • выбранные пары добавляются в предварительно созданные на коммутаторе зоны (zones);
  • зоны помещаются в наборы зон (zone set, zone config), созданные там же;
  • наборы зон активируются в фабрике.

Для первоначального поста по теме SAN, думаю, достаточно. Прошу прощения за разномастные картинки - самому нарисовать на работе пока нет возможности, а дома некогда. Была мысль нарисовать на бумаге и сфотографировать, но решил, что лучше так.

Напоследок, в качестве постскриптума, перечислю базовые рекомендации по проектированию фабрики SAN .

  • Проектировать структуру так, чтобы между двумя конечными устройствами было не более трёх коммутаторов.
  • Желательно чтобы фабрика состояла не более чем из 31 коммутатора.
  • Стоит задавать Domain ID вручную перед вводом нового коммутатора в фабрику - улучшает управляемость и помогает избежать проблем одинаковых Domain ID, в случаях, например, переподключения коммутатора из одной фабрики в другую.
  • Иметь несколько равноценных маршрутов между каждым устройством хранения и инициатором.
  • В случаях неопределённых требований к производительности исходить из соотношения количества Nx-портов (для конечных устройств) к количеству ISL-портов как 6:1 (рекомендация EMC) или 7:1 (рекомендация Brocade). Данное соотношение называется переподпиской (oversubscription).
  • Рекомендации по зонингу:
    - использовать информативные имена зон и зон-сетов;
    - использовать WWPN-зонинг, а не Port-based (основанный на адресах устройств, а не физических портов конкретного коммутатора);
    - каждая зона - один инициатор;
    - чистить фабрику от «мёртвых» зон.
  • Иметь резерв свободных портов и кабелей.
  • Иметь резерв оборудования (коммутаторы). На уровне сайта - обязательно, возможно на уровне фабрики.

SAN Коммутаторы (SAN switches)

SAN коммутаторы используются в качестве центрального коммутирующего устройства для узлов сети SAN. Вы вставляете один конец оптического кабеля в разъем на адаптере вашего сервера или контроллере дискового массива, а другой в порт на коммутаторе. Коммутатор можно сравнить с набором проводов, которые скроссированы таким образом, чтобы позволить каждому устройству сети «говорить» по одному проводу с любым другим устройством сети одновременно. Т.е, иными словами все абоненты могут разговаривать одновременно.
Один или несколько коммутаторов, соединенных между собой образуют фабрику. Одна фабрика может состоять из одного или нескольких коммутаторов (до 239 в настоящее время). Поэтому, фабрику можно определить как сеть, состоящую из соединенных между собой коммутаторов. SAN может состоять из нескольких фабрик. Большинство SAN состоит по крайне мере из двух фабрик, одна из которых является резервной.
Вы можете подключить серверы и хранилища к SAN используя один коммутатор, но правилом хорошего тона является использование двух коммутаторов, дабы избежать потерю данных и простои при выходе из строя одного из них. На рисунке 1 показана обычная фабрика, использующая два коммутатора для соединения серверов с дисковым массивом.

Рис 1. Простейшая фабрика с использованием 2-х коммутаторов.

С увеличением количества серверов и хранилищ в вашей SAN вы просто добавляете коммутаторы.

Рис 2. Расширение SAN Fabric

Модульные или обычные коммутаторы (modular switches)

SAN коммутаторы бывают на любой вкус от 8 до сотен портов. Большинство модульных коммутаторов поставляется с 8 или 16 портами. Последним веянием является возможность наращивать количество портов на приобретенном коммутаторе с инкрементом 4. Типичным примером такого коммутатора может служить Qlogic SANbox 5200 (рис. 3). Этот продукт вы можете приобрести с 8-ю портами в базе, и наращивать затем до 16 в одном модуле и до 64 портов (!) в четырех модулях, соединяемых между собой 10 гигабитным FC.

Рис 3. Qlogic SANbox 5200 - четырехмодульный стек с 64 портами

Директоры или коммутаторы класса предприятия (director switches)

Директоры на много дороже модульных коммутаторов и обычно содержат сотни портов (рис. 4). Директоры можно увидеть в центре очень больших коммутированных фабрик в качестве ядра сети. Директоры обладают исключительной отказоустойчивостью и поддерживают работоспособность всей инфраструктуры 24 часа в сутки, 7 дней в неделю. Они позволяют осуществлять регламентные работы и замену модулей «на лету».

Рис. 4. SilkWorm 1200 128 port и McData InterPid 6140

Директор состоит из платформы, модулей портов горячей замены (обычно 12 или 16 портов) и процессорных модулей горячей замены (обычно двухпроцессорных). Директор можно приобрести с 32 портами и наращивать его до 128 – 140 портов.
В корпоративных сетях SAN обычно используют директоры в качестве ядра сети. К ним подключают модульные коммутаторы в качестве оконечных (граничных) коммутаторов. К тем, в свою очередь подключают серверы и хранилища. Такая топология называется ядро-граница (core-to-edge topology) и позволяет масштабировать сеть до тысяч портов (рис. 5).

Рис. 5. Топология ядро-граница с использованием директоров.


SAN маршрутизаторы или мультипротокльные коммутаторы (multiprotocol switches)

SAN маршрутизаторы служат для соединения удаленных островков SAN в единую сеть для решения задач защиты от катастроф, консолидации ресурсов хранения, организации процедур back-up данных удаленных подразделений на ленточные и дисковые ресурсы головного центра данных и т.д (рис 6.). Объединение удаленных сетей SAN в единый ресурс это следующий шаг в эволюции сетей хранения данных после внедрения SAN в головной структуре и подразделениях предприятий (рис. 7).

Рис. 6: McDATA Eclipse 1620, 3300 и 4300

Рис. 7: Объединение удаленных сетей SAN в единый ресурс

Островки SAN можно соединить, используя протокол FC и обычные модульные коммутаторы или директоры, через одномодовый оптический кабель (single mode cable или dark fiber) или же используя оборудование мультиплексирования (DWDM). Однако такой метод не позволит вам выйти за рамки города (радиус 70 км.). Для большего удаления понадобится протокол Fiber Channel over IP (FCIP, http://www.iscsistorage.com/ipstorage.htm), реализованный в маршрутизаторах Eclipse компании McData (рис. 6). FCIP «заворачивает» каждый кадр FC в пакет IP для транспорта через сеть IP. Принимающая сторона распаковывает пакет IP и достает оттуда оригинальный кадр FC для дальнейшей передачи уже по локальной сети FC. Здесь расстояния не ограничены. Все дело лишь в скорости вашего канала IP.

Типы FC кабелей

В качестве физической среды передачи данных в сетях FC используют оптоволоконный или медный кабель. Медный кабель представляет собой витую пару в оболочке и использовался в основном для местных подключений в сетях FC 1Gbit/s. В современных сетях FC 2Gbit/s в основном используется оптоволоконный кабель.
Существует два вида оптоволоконного кабеля: одномодовый и многомодовый.

Одномодовый кабель (long wave)

В одномодовом кабеле (SM) существует единственный путь распространения световой волны. Размер сердцевины (core size) обычно составляет 8.3 мк. Одномодовые кабели используются в устройствах, в которых требуется низкий уровень исчезновения (потери) сигнала и высокая скорость передачи данных, например на больших интервалах между двумя системами или сетевыми устройствами. Например, между сервером и хранилищем, расстояние между которыми, несколько десятков километров.

Максимальное расстояние между двумя узлами сети FC 2Gbit, соединенных одномодовым кабелем 80км без повторителей.

Многомодовый кабель (short wave)

Многомодовый кабель (MM) способен передавать по одному волокну несколько световых волн, так как относительно большой размер сердцевины позволяет свету распространяться под различными углами (рефракция). Типичными размерами сердцевины для MM являются 50 мк и 62.5 мк. Многомодовые волоконные соединения лучше всего подходят для устройств, работающих на небольших расстояниях. Внутри офиса, здания.

Максимальное расстояние на которое многомодовый кабель поддерживает скорость 2 Gbit/s – 300 (50um) и 150м (62,5 um).

Типы разъемов FC кабелей (Cable connector types)

Разъемы FC кабелей бывают:

Типы трансиверов (GBIC types)

Устройства для преобразования света в электрический сигнал и наоборот, называют трансиверами. Их еще называют GBIC (Gigabit Interface Connectors). Трансивер находится на плате FC адаптера (FC HBA), обычно он впаян в нее, в свитче - в виде съемного модуля (см. рис.) и на устройстве хранения в том или ином виде.

Трансиверы бывают:


SFP-LC HSSDC2

Cъемные модули трансиверов (SFP)

HSSDC2 : для 1/2Gbit FC для медного кабеля
SFP-LC : (Small Form Factor Pluggable LC) 1/2Gbit FC Short/Long wave для оптоволоконного кабеля с LC коннектором
SFP-SC : (Small Form Factor Pluggable SC) 1/2Gbit FC Short/Long wave для оптоволоконного кабеля с SC коннектором

В деле познания SAN столкнулся с определённым препятствием - труднодоступностью базовой информации. В вопросе изучения прочих инфраструктурных продуктов, с которыми доводилось сталкиваться, проще - есть пробные версии ПО, возможность установить их на вирутальной машине, есть куча учебников, референс гайдов и блогов по теме. Cisco и Microsoft клепают очень качественные учебники, MS вдобавок худо-бедно причесал свою адскую чердачную кладовку под названием technet, даже по VMware есть книга, пусть и одна (и даже на русском языке!), причём с КПД около 100%. Уже и по самим устройствам хранения данных можно получить информацию с семинаров, маркетинговых мероприятий и документов, форумов. По сети же хранения - тишина и мёртвые с косами стоять. Я нашёл два учебника, но купить не решился. Это "Storage Area Networks For Dummies " (есть и такое, оказывается. Очень любознательные англоговорящие «чайники» в целевой аудитории, видимо) за полторы тысячи рублей и "Distributed Storage Networks: Architecture, Protocols and Management " - выглядит более надёжно, но 8200р при скидке 40%. Вместе с этой книгой Ozon рекомендует также книгу «Искусство кирпичной кладки».

Что посоветовать человеку, который решит с нуля изучить хотя бы теорию организации сети хранения данных, я не знаю. Как показала практика, даже дорогостоящие курсы могут дать на выходе ноль. Люди, применительно к SAN делятся на три категории: те, кто вообще не знает что это, кто знает, что такое явление просто есть и те, кто на вопрос «зачем в сети хранения делать две и более фабрики» смотрят с таким недоумением, будто их спросили что-то вроде «зачем квадрату четыре угла?».

Попробую восполнить пробел, которого не хватало мне - описать базу и описать просто. Рассматривать буду SAN на базе её классического протокола - Fibre Channel.

Итак, SAN - Storage Area Network - предназначена для консолидации дискового пространства серверов на специально выделенных дисковых хранилищах. Суть в том, что так дисковые ресурсы экономнее используются, легче управляются и имеют большую производительность. А в вопросах виртуализации и кластеризации, когда нескольким серверам нужен доступ к одному дисковому пространству, подобные системы хранения данных вообще незаменимая штука.

Кстати, в терминологиях SAN, благодаря переводу на русский, возникает некоторая путаница. SAN в переводе означает «сеть хранения данных» - СХД. Однако классически в России под СХД понимается термин «система хранения данных», то есть именно дисковый массив (Storage Array ), который в свою очередь состоит из Управляющего блока (Storage Processor, Storage Controller ) и дисковых полок (Disk Enclosure ). Однако, в оригинале Storage Array является лишь частью SAN, хотя порой и самой значимой. В России получаем, что СХД (система хранения данных) является частью СХД (сети хранения данных). Поэтому устройства хранения обычно называют СХД, а сеть хранения - SAN (и путают с «Sun», но это уже мелочи).

Компоненты и термины

Технологически SAN состоит из следующих компонентов:
1. Узлы, ноды (nodes)
  • Дисковые массивы (системы хранения данных) - хранилища (таргеты )
  • Серверы - потребители дисковых ресурсов (инициаторы ).
2. Сетевая инфраструктура
  • Коммутаторы (и маршрутизаторы в сложных и распределённых системах)
  • Кабели

Особенности

Если не вдаваться в детали, протокол FC похож на протокол Ethernet с WWN-адресами вместо MAC-адресов. Только, вместо двух уровней Ethernet имеет пять (из которых четвёртый пока не определён, а пятый - это маппинг между транспортом FC и высокоуровневыми протоколами, которые по этому FC передаются - SCSI-3, IP). Кроме того, в коммутаторах FC используются специализированные сервисы, аналоги которых для IP сетей обычно размещаются на серверах. Например: Domain Address Manager (отвечает за назначение Domain ID коммутаторам), Name Server (хранит информацию о подключенных устройствах, эдакий аналог WINS в пределах коммутатора) и т.д.

Для SAN ключевыми параметрами являются не только производительность, но и надёжность. Ведь если у сервера БД пропадёт сеть на пару секунд (или даже минут) - ну неприятно будет, но пережить можно. А если на это же время отвалится жёсткий диск с базой или с ОС, эффект будет куда более серьёзным. Поэтому все компоненты SAN обычно дублируются - порты в устройствах хранения и серверах, коммутаторы, линки между коммутаторами и, ключевая особенность SAN, по сравнению с LAN - дублирование на уровне всей инфраструктуры сетевых устройств - фабрики.

Фабрика (fabric - что вообще-то в переводе с английского ткань, т.к. термин символизирует переплетённую схему подключения сетевых и конечных устройств, но термин уже устоялся) - совокупность коммутаторов, соединённых между собой межкоммутаторными линками (ISL - InterSwitch Link ).

Высоконадёжные SAN обязательно включают две (а иногда и более) фабрики, поскольку фабрика сама по себе - единая точка отказа. Те, кто хоть раз наблюдал последствия кольца в сети или ловкого движения клавиатуры, вводящего в кому коммутатор уровня ядра или распределения неудачной прошивкой или командой, понимают о чём речь.

Фабрики могут иметь идентичную (зеркальную) топологию или различаться. Например одна фабрика может состоять из четырёх коммутаторов, а другая - из одного, и к ней могут быть подключены только высококритичные узлы.

Топология

Различают следующие виды топологий фабрики:

Каскад - коммутаторы соединяются последовательно. Если их больше двух, то ненадёжно и непроизводительно.

Кольцо - замкнутый каскад. Надёжнее просто каскада, хотя при большом количестве участников (больше 4) производительность будет страдать. А единичный сбой ISL или одного из коммутаторов превращает схему в каскад со всеми вытекающими.

Сетка (mesh ). Бывает Full Mesh - когда каждый коммутатор соединяется с каждым. Характерно высокой надёжностью, производительностью и ценой. Количество портов, требуемое под межкоммутаторные связи, с добавлением каждого нового коммутатора в схему растёт экспоненциально. При определённой конфигурации просто не останется портов под узлы - все будут заняты под ISL. Partial Mesh - любое хаотическое объединение коммутаторов.

Центр/периферия (Core/Edge) - близкая к классической топологии LAN, но без уровня распределения. Нередко хранилища подключаются к Core-коммутаторам, а серверы - к Edge. Хотя для хранилищ может быть выделен дополнительный слой (tier) Edge-коммутаторов. Также и хранилища и серверы могут быть подключены в один коммутатор для повышения производительности и снижения времени отклика (это называется локализацией). Такая топология характеризуется хорошей масштабируемостью и управляемостью.

Зонинг (зонирование, zoning)

Ещё одна характерная для SAN технология. Это определение пар инициатор-таргет. То есть каким серверам к каким дисковым ресурсам можно иметь доступ, дабы не получилось, что все серверы видят все возможные диски. Достигается это следующим образом:
  • выбранные пары добавляются в предварительно созданные на коммутаторе зоны (zones);
  • зоны помещаются в наборы зон (zone set, zone config), созданные там же;
  • наборы зон активируются в фабрике.

Для первоначального поста по теме SAN, думаю, достаточно. Прошу прощения за разномастные картинки - самому нарисовать на работе пока нет возможности, а дома некогда. Была мысль нарисовать на бумаге и сфотографировать, но решил, что лучше так.

Напоследок, в качестве постскриптума, перечислю базовые рекомендации по проектированию фабрики SAN .

  • Проектировать структуру так, чтобы между двумя конечными устройствами было не более трёх коммутаторов.
  • Желательно чтобы фабрика состояла не более чем из 31 коммутатора.
  • Стоит задавать Domain ID вручную перед вводом нового коммутатора в фабрику - улучшает управляемость и помогает избежать проблем одинаковых Domain ID, в случаях, например, переподключения коммутатора из одной фабрики в другую.
  • Иметь несколько равноценных маршрутов между каждым устройством хранения и инициатором.
  • В случаях неопределённых требований к производительности исходить из соотношения количества Nx-портов (для конечных устройств) к количеству ISL-портов как 6:1 (рекомендация EMC) или 7:1 (рекомендация Brocade). Данное соотношение называется переподпиской (oversubscription).
  • Рекомендации по зонингу:
    - использовать информативные имена зон и зон-сетов;
    - использовать WWPN-зонинг, а не Port-based (основанный на адресах устройств, а не физических портов конкретного коммутатора);
    - каждая зона - один инициатор;
    - чистить фабрику от «мёртвых» зон.
  • Иметь резерв свободных портов и кабелей.
  • Иметь резерв оборудования (коммутаторы). На уровне сайта - обязательно, возможно на уровне фабрики.

С повседневным усложнением сетевых компьютерных систем и глобальных корпоративных решений мир начал требовать технологий, которые бы дали толчок к возрождению корпоративных систем хранения информации (сторедж-систем). И вот, одна единая технология приносит в мировую сокровищницу достижений в области сторедж невиданное ранее быстродействие, колоссальные возможности масштабирования и исключительные преимущества общей стоимости владения. Обстоятельства, которые сформировались с появлением стандарта FC-AL (Fibre Channel - Arbitrated Loop) и SAN (Storage Area Network), которая развивается на его основе, обещают революцию в дата-ориентированных технологиях компьютинга.

«The most significant development in storage we"ve seen in 15 years»

Data Communications International, March 21, 1998

Формальное определение SAN в трактовке Storage Network Industry Association (SNIA):

«Сеть, главной задачей которой является передача данных между компьютерными системами и устройствами хранения данных, а также между самими сторедж-системами. SAN состоит из коммуникационной инфраструктуры, которая обеспечивает физическую связь, а также отвечает за уровень управления (management layer), который объединяет связи, сторедж и компьютерные системы, осуществляя передачу данных безопасно и надежно».

SNIA Technical Dictionary, copyright Storage Network Industry Association, 2000

Варианты организации доступа к сторедж-системам

Различают три основных варианта организации доступа к системам хранения:

  • SAS (Server Attached Storage), сторедж, присоединенный к серверу;
  • NAS (Network Attached Storage), сторедж, подсоединенный к сети;
  • SAN (Storage Area Network), сеть хранения данных.

Рассмотрим топологии соответствующих сторедж-систем и их особенности.

SAS

Сторедж-система, присоединенная к серверу. Знакомый всем, традиционный способ подключения системы хранения данных к высокоскоростному интерфейсу в сервере, как правило, к параллельному SCSI интерфейсу.

Рисунок 1. Server Attached Storage

Использование отдельного корпуса для сторедж-системы в рамках топологии SAS не является обязательным.

Основное преимущество сторедж, подсоединенного к серверу, в сравнении с другими вариантами - низкая цена и высокое быстродействие из расчета один сторедж для одного сервера. Такая топология является самой оптимальной в случае использования одного сервера, через который организуется доступ к массиву данных. Но у нее остается ряд проблем, которые побудили проектировщиков искать другие варианты организации доступа к системам хранения данных.

К особенностям SAS можно отнести:

  • Доступ к данных зависит от ОС и файловой системы (в общем случае);
  • Сложность организации систем с высокой готовностью;
  • Низкая стоимость;
  • Высокое быстродействие в рамках одной ноды;
  • Уменьшение скорости отклика при загрузке сервера, который обслуживает сторедж.

NAS

Сторедж-система, подсоединенная к сети. Этот вариант организации доступа появился сравнительно недавно. Основным его преимуществом является удобство интеграции дополнительной системы хранения данных в существующие сети, но сам по себе он не привносит сколь-нибудь радикальных улучшений в архитектуру сторедж. Фактически NAS есть чистый файл-сервер, и сегодня можно встретить немало новых реализаций сторедж типа NAS на основе технологии тонкого сервера (Thin Server).


Рисунок 2. Network Attached Storage.

Особенности NAS:

  • Выделенный файл-сервер;
  • Доступ к данным не зависит от ОС и платформы;
  • Удобство администрирования;
  • Максимальная простота установки;
  • Низкая масштабируемость;
  • Конфликт с трафиком LAN/WAN.

Сторедж, построенный по технологии NAS, является идеальным вариантом для дешевых серверов с минимальным набором функций.

SAN

Сети хранения данных начали интенсивно развиваться и внедряться лишь с 1999 года. Основой SAN является отдельная от LAN/WAN сеть, которая служит для организации доступа к данным серверов и рабочих станций, занимающихся их прямой обработкой. Такая сеть создается на основе стандарта Fibre Channel, что дает сторедж-системам преимущества технологий LAN/WAN и возможности по организации стандартных платформ для систем с высокой готовностью и высокой интенсивностью запросов. Почти единственным недостатком SAN на сегодня остается относительно высокая цена компонент, но при этом общая стоимость владения для корпоративных систем, построенных с использованием технологии сетей хранения данных, является довольно низкой.


Рисунок 3. Storage Area Network.

К основным преимуществам SAN можно отнести практически все ее особенности:

  • Независимость топологии SAN от сторедж-систем и серверов;
  • Удобное централизованное управление;
  • Отсутствие конфликта с трафиком LAN/WAN;
  • Удобное резервирование данных без загрузки локальной сети и серверов;
  • Высокое быстродействие;
  • Высокая масштабируемость;
  • Высокая гибкость;
  • Высокая готовность и отказоустойчивость.

Следует также заметить, что технология эта еще довольно молодая и в ближайшее время она должна пережить немало усовершенствований в области стандартизации управления и способов взаимодействия SAN подсетей. Но можно надеяться, что это угрожает пионерам лишь дополнительными перспективами первенства.

FC как основа построения SAN

Подобно LAN, SAN может создаваться с использованием различных топологий и носителей. При построении SAN может использоваться как параллельный SCSI интерфейс, так и Fibre Channel или, скажем, SCI (Scalable Coherent Interface), но своей все возрастающей популярностью SAN обязана именно Fibre Channel. В проектировании этого интерфейса принимали участие специалисты со значительным опытом в разработке как канальных, так и сетевых интерфейсов, и им удалось объединить все важные положительные черты обеих технологий для того, чтобы получить что-то в самом деле революционно новое. Что именно?

Основные ключевые особенности канальных:

  • Низкие задержки
  • Высокие скорости
  • Высокая надежность
  • Топология точка-точка
  • Небольшие расстояния между нодами
  • Зависимость от платформы
и сетевых интерфейсов:
  • Многоточечные топологии
  • Большие расстояния
  • Высокая масштабируемость
  • Низкие скорости
  • Большие задержки
объединились в Fibre Channel:
  • Высокие скорости
  • Независимость от протокола (0-3 уровни)
  • Большие расстояния
  • Низкие задержки
  • Высокая надежность
  • Высокая масштабируемость
  • Многоточечные топологии

Традиционно сторедж интерфейсы (то, что находится между хостом и устройствами хранения информации) были преградой на пути к росту быстродействия и увеличению объема систем хранения данных. В то же время прикладные задачи требуют значительного прироста аппаратных мощностей, которые, в свою очередь, тянут за собой потребность в увеличении пропускной способности интерфейсов для связи со сторедж-системами. Именно проблемы построения гибкого высокоскоростного доступа к данным помогает решить Fibre Channel.

Стандарт Fibre Channel был окончательно определен за последние несколько лет (с 1997-го по 1999-й), на протяжении которых была проведена колоссальная работа по согласованию взаимодействия производителей различных компонент, и было сделано все необходимое, чтобы Fibre Channel превратился из чисто концептуальной технологии в реальную, которая получила поддержку в виде инсталляций в лабораториях и вычислительных центрах. В году 1997 были спроектированы первые коммерческие образцы краеугольных компонент для построения SAN на базе FC, таких как адаптеры, хабы, свичи и мосты. Таким образом, уже начиная с 1998-го года FC используется в коммерческих целях в деловой сфере, на производстве и в масштабных проектах реализации систем, критичных к отказам.

Fibre Channel - это открытый промышленный стандарт высокоскоростного последовательного интерфейса. Он обеспечивает подключение серверов и сторедж-систем на расстоянии до 10 км (при использовании стандартного оснащения) на скорости 100 MB/s (на выставке Cebit"2000 были представлены образцы продукции, которые используют новый стандарт Fibre Channel со скоростями 200 MB/s на одно кольцо, а в лабораторных условиях уже эксплуатируются реализации нового стандарта со скоростями 400 MB/s, что составляет 800 MB/s при использовании двойного кольца). (На момент публикации статьи ряд производителей уже начал отгружать сетевые карточки и свичи на FC 200 MB/s.) Fibre Channel одновременно поддерживает целый ряд стандартных протоколов (среди которых TCP/IP и SCSI-3) при использовании одного физического носителя, который потенциально упрощает построение сетевой инфраструктуры, к тому же это предоставляет возможности для уменьшения стоимости монтажа и обслуживания. Тем не менее использование отдельных подсетей для LAN/WAN и SAN имеет ряд преимуществ и является рекомендованным по умолчанию.

Одним из важнейших преимуществ Fibre Channel наряду со скоростными параметрами (которые, кстати, не всегда являются главными для пользователей SAN и могут быть реализованы с помощью других технологий) является возможность работы на больших расстояниях и гибкость топологии, которая пришла в новый стандарт из сетевых технологий. Таким образом, концепция построения топологии сети хранения данных базируется на тех же принципах, что и традиционные сети, как правило, на основе концентраторов и коммутаторов, которые помогают предотвратить падение скорости при возрастании количества нод и создают возможности удобной организации систем без единой точки отказов.

Для лучшего понимания преимуществ и особенностей этого интерфейса приведем сравнительную характеристику FC и Parallel SCSI в виде таблицы.

Таблица 1. Сравнение технологий Fibre Channel и параллельного SCSI

В стандарте Fibre Channel предполагается использование разнообразных топологий, таких как точка-точка (Point-to-Point), кольцо или FC-AL концентратор (Loop или Hub FC-AL), магистральный коммутатор (Fabric/Switch).

Топология point-to-point используется для подсоединения одиночной сторедж-системы к серверу.

Loop или Hub FC-AL - для подсоединения множественных сторедж устройств к нескольким хостам. При организации двойного кольца увеличивается быстродействие и отказоустойчивость системы.

Коммутаторы используются для обеспечения максимального быстродействия и отказоустойчивости для сложных, больших и разветвленных систем.

Благодаря сетевой гибкости в SAN заложена чрезвычайно важная особенность - удобная возможность построения отказоустойчивых систем.

Предлагая альтернативные решения для систем хранения данных и возможности по объединению нескольких сторедж для резервирования аппаратных средств, SAN помогает обеспечивать защиту аппаратно-программных комплексов от аппаратных сбоев. Для демонстрации приведем пример создания двухнодовой системы без точек отказов.


Рисунок 4. No Single Point of Failure.

Построение трех- и более нодовых систем осуществляется простым добавлением в FC сеть дополнительных серверов и подключением их к обоим концентраторам/ коммутаторам).

При использовании FC построение устойчивых к сбоям (disaster tolerant) систем становится прозрачным. Сетевые каналы и для сторедж, и для локальной сети можно проложить на основе оптоволокна (до 10 км и больше с использованием усилителей сигнала) как физического носителя для FC, при этом используется стандартная аппаратура, которая дает возможность значительно уменьшить стоимость подобных систем.

Благодаря возможности доступа ко всем компонентам SAN из любой ее точки мы получаем чрезвычайно гибко управляемую сеть данных. При этом следует заметить, что в SAN обеспечивается прозрачность (возможность видеть) всех компонентов вплоть до дисков в сторедж-системах. Эта особенность подтолкнула производителей компонентов к использованию своего значительного опыта в построении систем управления для LAN/WAN с тем, чтобы заложить широкие возможности по мониторингу и управлению во все компоненты SAN. Эти возможности включают в себя мониторинг и управление отдельных нод, сторедж компонентов, корпусов, сетевых устройств и сетевых подструктур.

В системе управления и мониторинга SAN используются такие открытые стандарты, как:

  • SCSI command set
  • SCSI Enclosure Services (SES)
  • SCSI Self Monitoring Analysis and Reporting Technology (S.M.A.R.T.)
  • SAF-TE (SCSI Accessed Fault-Tolerant Enclosures)
  • Simple Network Management Protocol (SNMP)
  • Web-Based Enterprise Management (WBEM)

Системы, построенные с использованием технологий SAN, не только обеспечивают администратору возможность следить за развитием и состоянием сторедж ресурсов, но и открывают возможности по мониторингу и контролю трафика. Благодаря таким ресурсам программные средства управления SAN реализуют наиболее эффективные схемы планирования объема сторедж и балансирование нагрузки на компоненты системы.

Сети хранения данных прекрасно интегрируются в существующие информационные инфраструктуры. Их внедрение не требует каких-либо изменений в уже существующих сетях LAN и WAN, а лишь расширяет возможности существующих систем, избавляя их от задач, ориентированных на передачу больших объемов данных. Причем при интеграции и администрировании SAN очень важным является то, что ключевые элементы сети поддерживают горячую замену и установку, с возможностями динамического конфигурирования. Так что добавить тот или другой компонент или осуществить его замену администратор может, не выключая систему. И весь этот процесс интеграции может быть визуально отображен в графической системе управления SAN.

Рассмотрев вышеперечисленные преимущества, можно выделить ряд ключевых моментов, которые непосредственно влияют на одно из основных преимуществ Storage Area Network - общую стоимость владения (Total Cost Ownership).

Невероятные возможности масштабирования позволяют предприятию, которое использует SAN, вкладывать деньги в серверы и сторедж по мере необходимости. А также сохранить свои вложения в уже инсталлированную технику при смене технологических поколений. Каждый новый сервер будет иметь возможность высокоскоростного доступа к сторедж и каждый дополнительный гигабайт сторедж будет доступен всем серверам подсети по команде администратора.

Прекрасные возможности по построению отказоустойчивых систем могут приносить прямую коммерческую выгоду от минимизации простоев и спасать систему в случае возникновения стихийного бедствия или каких-нибудь других катаклизмов.

Управляемость компонентов и прозрачность системы предоставляют возможность осуществлять централизованное администрирование всех сторедж ресурсов, а это, в свою очередь, значительно уменьшает затраты на их поддержку, стоимость которой, как правило, составляет более 50% от стоимости оснащения.

Влияние SAN на прикладные задачи

Для того чтобы нашим читателям стало понятней, насколько практически полезны технологии, которые рассматриваются в этой статье, приведем несколько примеров прикладных задач, которые без использования сетей хранения данных решались бы неэффективно, требовали бы колоссальных финансовых вложений или же вообще не решались бы стандартными методами.

Резервирование и восстановление данных (Data Backup and Recovery)

Используя традиционный SCSI интерфейс, пользователь при построении систем резервирования и восстановления данных сталкивается с рядом сложных проблем, которые можно очень просто решить, используя технологии SAN и FC.

Таким образом, использование сетей хранения данных выводит решение задачи резервирования и восстановления на новый уровень и предоставляет возможность осуществлять бэкап в несколько раз быстрее, чем раньше, без загрузки локальной сети и серверов работой по резервированию данных.

Кластеризация серверов (Server Clustering)

Одной из типичных задач, для которых эффективно используется SAN, является кластеризация серверов. Поскольку один из ключевых моментов в организации высокоскоростных кластерных систем, которые работают с данными - это доступ к сторедж, то с появлением SAN построение многонодовых кластеров на аппаратном уровне решается простым добавлением сервера с подключением к SAN (это можно сделать, даже не выключая системы, поскольку свичи FC поддерживают hot-plug). При использовании параллельного SCSI интерфейса, возможности по подсоединению и масштабируемость которого значительно хуже, чем у FC, кластеры, ориентированные на обработку данных, было бы тяжело сделать с количеством нод больше двух. Коммутаторы параллельного SCSI - весьма сложные и дорогие устройства, а для FC это стандартный компонент. Для создания кластера, который не будет иметь ни единой точки отказов, достаточно интегрировать в систему зеркальную SAN (технология DUAL Path).

В рамках кластеризации одна из технологий RAIS (Redundant Array of Inexpensive Servers) кажется особенно привлекательной для построения мощных масштабируемых систем интернет-коммерции и других видов задач с повышенными требованиями к мощности. По словам Alistair A. Croll, сооснователя Networkshop Inc, использование RAIS оказывается достаточно эффективным:«Например, за $12000-15000 вы можете купить около шести недорогих одно-двухпроцессорных (Pentium III) Linux/Apache серверов. Мощность, масштабируемость и отказоустойчивость такой системы будет значительно выше, чем, например, у одного четырехпроцессорного сервера на базе процессоров Xeon, а стоимость одинаковая».

Одновременный доступ к видео и распределение данных (Concurrent video streaming, data sharing)

Вообразите себе задачу, когда вам нужно на нескольких (скажем, >5) станциях редактировать видео или просто работать над данными огромного объема. Передача файла размером 100GB по локальной сети займет у вас несколько минут, а общая работа над ним будет очень сложной задачей. При использовании SAN каждая рабочая станция и сервер сети получают доступ к файлу на скорости, эквивалентной локальному высокоскоростному диску. Если вам нужны еще одна станция/сервер для обработки данных, вы сможете ее прибавить к SAN, не выключая сети, простым подсоединением станции к SAN коммутатору и предоставлением ей прав доступа к сторедж. Если же вас перестанет удовлетворять быстродействие подсистемы данных, вы сможете просто прибавить еще один сторедж и с использованием технологии распределения данных (например, RAID 0) получить вдвое большее быстродействие.

Основные компоненты SAN

Среда

Для соединения компонентов в рамках стандарта Fibre Channel используют медные и оптические кабели. Оба типа кабелей могут использоваться одновременно при построении SAN. Конверсия интерфейсов осуществляется с помощью GBIC (Gigabit Interface Converter) и MIA (Media Interface Adapter). Оба типа кабеля сегодня обеспечивают одинаковую скорость передачи данных. Медный кабель используется для коротких расстояний (до 30 метров), оптический - как для коротких, так и для расстояний до 10 км и больше. Используют многомодовый и одномодовый оптические кабели. Многомодовый (Multimode) кабель используется для коротких расстояний (до 2 км). Внутренний диаметр оптоволокна мультимодового кабеля составляет 62,5 или 50 микрон. Для обеспечения скорости передачи 100 МБ/с (200 МБ/с в дуплексе) при использовании многомодового оптоволокна длина кабеля не должна превышать 200 метров. Одномодовый кабель используется для больших расстояний. Длина такого кабеля ограничена мощностью лазера, который используется в передатчике сигнала. Внутренний диаметр оптоволокна одномодового кабеля составляет 7 или 9 микрон, он обеспечивает прохождение одиночного луча.

Коннекторы, адаптеры

Для подсоединения медных кабелей используются коннекторы типа DB-9 или HSSD. HSSD считается более надежным, но DB-9 используется так же часто, потому что он более простой и дешевый. Стандартным (наиболее распространенным) коннектором для оптических кабелей является SC коннектор, он обеспечивает качественное, четкое соединение. Для обычного подключения используются многомодовые SC коннекторы, а для отдаленного - одномодовые. В многопортовых адаптерах используются микроконнекторы.

Наиболее распространены адаптеры для FC под шину PCI 64 bit. Также много FC адаптеров вырабатывается под шину S-BUS, для специализированного использования выпускаются адаптеры под MCA, EISA, GIO, HIO, PMC, Compact PCI. Самые популярные - однопортовые, встречаются двух- и четырехпортовые карточки. На PCI адаптерах, как правило, используют DB-9, HSSD, SC коннекторы. Также часто встречаются GBIC-based адаптеры, которые поставляются как с модулями GBIC, так и без них. Fibre Channel адаптеры отличаются классами, которые они поддерживают, и разнообразными особенностями. Для понимания отличий приведем сравнительную таблицу адаптеров производства фирмы QLogic.

Fibre Channel Host Bus Adapter Family Chart
SANblade 64 Bit FCAL Publ. Pvt Loop FL Port Class 3 F Port Class 2 Point to Point IP/ SCSI Full Duplex FC Tape PCI 1.0 Hot Plug Spec Solaris Dynamic Reconfig VIВ 2Gb
2100 Series 33 & 66MHz PCI X X X
2200 Series 33 & 66MHz PCI X X X X X X X X X
33MHz PCI X X X X X X X X X X
25 MHZ Sbus X X X X X X X X X X
2300 Series 66 MHZ PCI/ 133MHZ PCI-X X X X X X X X X X X X

Концентраторы

Fibre Channel HUBs (концентраторы) используются для подключения нод к FC кольцу (FC Loop) и имеют структуру, похожую на Token Ring концентраторы. Поскольку разрыв кольца может привести к прекращению функционирования сети, в современных FC концентраторах используются порты обхода кольца (PBC-port bypass circuit), которые разрешают автоматически открывать/закрывать кольцо (подключать/отключать системы, присоединенные к концентратору). Обычно FC HUBs поддерживают до 10 подключений и могут стекироваться до 127 портов на кольцо. Все устройства, подключенные к HUB, получают общую полосу пропускания, которую они могут разделять между собой.

Коммутаторы

Fibre Channel Switches (коммутаторы) имеют те же функции, что и привычные читателю LAN коммутаторы. Они обеспечивают полноскоростное неблокированное подключение между нодами. Любая нода, подключенная к FC коммутатору, получает полную (с возможностями масштабирования) полосу пропускания. При увеличении количества портов коммутированной сети ее пропускная способность увеличивается. Коммутаторы могут использоваться вместе с концентраторами (которые используют для участков, не требующих выделенной полосы пропуска для каждой ноды) для достижения оптимального соотношения цена/производительность. Благодаря каскадированию свичи потенциально могут использоваться для создания FC сетей с количеством адресов 2 24 (свыше 16 миллионов).

Мосты

FC Bridges (мосты или мультиплексоры) используются для подключения устройств с параллельным SCSI к сети на базе FC. Они обеспечивают трансляцию SCSI пакетов между Fibre Channel и Parallel SCSI устройствами, примерами которых могут служить Solid State Disk (SSD) или библиотеки на магнитных лентах. Следует заметить, что в последнее время практически все устройства, которые могут быть утилизированы в рамках SAN, производители начинают выпускать с вмонтированным FC интерфейсом для прямого их подключения к сетям хранения данных.

Серверы и Сторедж

Несмотря на то что серверы и сторедж - далеко не последние по важности компоненты SAN, мы на их описании останавливаться не будем, поскольку уверены, что с ними хорошо знакомы все наши читатели.

В конце хочется добавить, что эта статья - лишь первый шаг к сетям хранения данных. Для полного понимания темы читателю следует уделить немало внимания особенностям реализации компонент производителями SAN и программным средствам управления, поскольку без них Storage Area Network - это всего лишь набор элементов для коммутации сторедж-систем, которые не принесут вам полноты преимуществ от реализации сети хранения данных.

Заключение

Сегодня Storage Area Network является довольно новой технологией, которая в скором времени может стать массовой в кругу корпоративных заказчиков. В Европе и США предприятия, которые имеют достаточно большой парк инсталлированных сторедж-систем, уже начинают переходить на сети хранения данных для организации сторедж с наилучшим показателем общей стоимости владения.

По прогнозам аналитиков, в 2005 году значительное количество серверов среднего и верхнего уровня будут поставляться с предварительно установленным интерфейсом Fibre Channel (такую тенденцию можно заметить уже сегодня), и лишь для внутреннего подключения дисков в серверах будет использоваться параллельный SCSI интерфейс. Уже сегодня при построении сторедж-систем и приобретении серверов среднего и верхнего уровня следует обратить внимание на эту перспективную технологию, тем более, что уже сегодня она дает возможность реализовать ряд задач куда дешевле, чем с помощью специализированных решений. Кроме того, вкладывая в технологию SAN сегодня, вы не потеряете свои вложения завтра, поскольку особенности Fibre Channel создают прекрасные возможности для использования в будущем вложенных сегодня инвестиций.

P.S.

Предыдущая версия статьи была написана в июне 2000 года, но в связи с отсутствием массового интереса к технологии сетей хранения данных публикация была отложена на будущее. Это будущее настало сегодня, и я надеюсь, что данная статья побудит читателя осознать необходимость перехода на технологию сетей хранения данных, как передовую технологию построения сторедж-систем и организации доступа к данным.