Программирование на Python

Часть 1. Возможности языка и основы синтаксиса

Серия контента:

Стоит ли изучать Python?

Python – это один из наиболее популярных современных языков программирования. Он пригоден для решения разнообразных задач и предлагает те же возможности, что и другие языки программирования: динамичность, поддержку ООП и кросс-платформенность. Разработку Python начал Гвидо Ван Россум (Guido Van Rossum) еще в середине 1990-х годов, поэтому к настоящему времени удалось избавиться от стандартных «детских» болезней, существенно развить лучшие стороны языка и привлечь множество программистов, использующих Python для реализации своих проектов.

Многие программисты считают, что необходимо изучать только «классические» языки программирования, такие как Java или C++, так как другие языки все равно не смогут обеспечить таких же возможностей. Однако в последнее время возникло убеждение, что программисту желательно знать более одного языка, так как это расширяет его кругозор, позволяя более творчески решать поставленные задачи и повышая его конкурентоспособность на рынке труда.

Изучить в совершенстве два таких языка как Java и C++ достаточно сложно и заняло бы много времени; кроме того, многие аспекты этих языков противоречат друг другу. В то же время Python идеально подходит на роль второго языка, так как он сразу же усваивается благодаря уже имеющимся знаниям в ООП, и тому, что его возможности не конфликтуют, а дополняют опыт, накопленный при работе с другим языком программирования.

Если же программист только начинает свой путь в области разработки ПО, то Python станет идеальным «вводным» языком программирования. Благодаря своей лаконичности он позволит быстрее овладеть синтаксисом языка, а отсутствие «наследства» в виде формировавшихся на протяжении многих лет аксиом поможет быстро освоить ООП. В силу этих факторов «кривая обучения» Python будет довольно короткой, и программист сможет перейти от учебных примеров к коммерческим проектам.

Поэтому кем бы ни являлся читатель данной статьи – опытным программистом или новичком в области разработки ПО, ответом на вопрос, который является и названием этого раздела, должно стать убедительное «да».

Этот цикл статей предназначен для того, чтобы помочь успешному преодолению «кривой обучения», последовательно предоставляя информацию, начиная с самых базовых принципов языка до его продвинутых возможностей в плане интеграции с другими технологиями. В первой статье речь пойдет об основных возможностях и синтаксисе Python. В дальнейшем мы рассмотрим более сложные аспекты работы с этим популярным языком, в частности объектно- ориентированное программирование на Python.

Архитектура Python

Любой язык, неважно – для программирования или общения, состоит как минимум из двух частей – словаря и синтаксиса. Язык Python организован точно так же, предоставляя синтаксис для формирования выражений, образующих исполняемые программы, и словарь – набор функциональности в виде стандартной библиотеки и подключаемых модулей.

Как уже упоминалось, синтаксис Python достаточно лаконичный, особенно если сравнивать с Java или C++. С одной стороны – это хорошо, так как чем проще синтаксис, тем проще его изучить и тем меньше ошибок можно совершить в процессе его использования. Однако у подобных языков есть недостаток – с их помощью можно передавать самую простую информацию и нельзя выражать сложные конструкции.

К Python это не относится, так как это язык простой, но упрощенный. Дело в том, что Python является языком с более высоким уровнем абстракции, выше, например, чем у Java и C++, и позволяет передать такое же количество информации в меньшем объеме исходного кода.

Также Python является языком общего назначения, поэтому может применяться практически в любой области разработки ПО (standalone, клиент-сервер, Web-приложения) и в любой предметной области. Кроме того, Python легко интегрируется с уже существующими компонентами, что позволяет внедрять Python в уже написанные приложения.

Другая составляющая успеха Python – это его модули расширения, как стандартные, так и специфические. Стандартные модули расширения Python – это отлично спроектированная и неоднократно проверенная функциональность для решения задач, возникающих в каждом проекте по разработке ПО, обработка строк и текстов, взаимодействие с операционной системой, поддержка Web-приложений. Эти модули также написаны на языке Python, поэтому обладают его важнейшим свойством – кросс-платформенностью, позволяющей безболезненно и быстро переносить проекты с одной операционной системы на другую.

Если необходимой функциональности не оказалось в стандартной библиотеке Python, то можно создать собственный модуль расширения для его последующего неоднократного использования. Здесь стоит отметить, что модули расширения для Python можно создавать не только на самом языке Python, но и с помощью других языков программирования. В этом случае появляется возможность более эффективной реализации ресурсоемких задач, например сложных научных вычислений, однако теряется преимущество кросс-платформенности, если язык модуля расширения не является сам по себе кросс-платформенным, как Python.

Среда исполнения Python

Как известно, все кросс-платформенные языки программирования построены по одной модели: это действительно переносимый исходный код и среда исполнения (runtime environment), которая не является переносимой и специфична для каждой конкретной платформы. В эту среду исполнения обычно входит интерпретатор, который исполняет исходный код, и различные утилиты, необходимые для сопровождения приложения – отладчик, обратный ассемблер и т.д.

В среду исполнения Java дополнительно входит компилятор, так как исходный код необходимо скомпилировать в байт-код для виртуальной Java-машины. В среду исполнения Python входит только интерпретатор, который одновременно является и компилятором, однако компилирует исходный код Python непосредственно в машинный код целевой платформы.

На данный момент существуют три известных реализации среды исполнения для Python: CPython, Jython и Python.NET. Как можно догадаться из названия, первая среда реализована на языке C, вторая на языке Java, а последняя – на платформе.NET.

Среда исполнения CPython обычно называется просто Python, и когда говорят о Python, то чаще всего имеется в виду именно эта реализация. Эта реализация состоит из интерпретатора и модулей расширения, написанных на языке C, и может использоваться на любой платформе, для которой доступен стандартный компилятор C. Кроме того, существуют уже скомпилированные версии среды исполнения для различных операционных систем, включая различные версии OC Windows и различные дистрибутивы Linux. В этой и последующих статьях будет рассматриваться именно CPython, если иное не оговаривается отдельно.

Среда исполнения Jython – это реализация Python для работы с виртуальной Java-машиной (JVM). Поддерживается любая версия JVM, начиная с версии 1.2.2 (текущая версия Java – 1.6). Для работы с Jython требуется установленная Java-машина (среда исполнения Java) и определенное знание языка программирования Java. Уметь писать исходный код на языке Java не обязательно, однако придется иметь дело c JAR-файлами и Java-апплетами, а также документацией в формате JavaDOC.

Какую версию среды выбрать – зависит исключительно от предпочтений программиста, вообще же рекомендуется держать на компьютере и CPython, и Jython, так как они не конфликтуют между собой, а взаимно дополняют друг друга. Среда CPython работает быстрее, так как нет промежуточного уровня в виде JVM; кроме того, обновленные версии Python сначала выпускают именно в виде среды CPython. Однако Jython может использовать любой класс Java в качестве модуля расширения и работать на любой платформе, для которой существует реализация JVM.

Обе среды исполнения выпущены под лицензией, совместимой с известной лицензией GPL, поэтому могут использоваться для разработки как коммерческого, так и свободного или бесплатного ПО. Большая часть модулей расширения для Python также выходит в рамках лицензии GPL и может свободно применяться в любых проектах, однако существуют и коммерческие расширения или расширения с более строгими лицензиями. Поэтому при использовании Python в коммерческом проекте необходимо знать, какие ограничения существуют в лицензиях подключаемых модулей расширения.

Начало работы с Python

Прежде чем начать использовать Python, необходимо установить его среду исполнения – в данной статье это CPython и соответственно интерпретатор python. Существуют различные способы установки: опытные пользователи могут сами скомпилировать Python из его общедоступного исходного кода, также можно загрузить с Web-сайта www.python.org уже готовые исполняемые файлы для конкретной операционной системы, наконец, многие дистрибутивы Linux поставляются с уже предустановленным интерпретатором Python. В этой статье используется версия Python 2.x для ОС Windows, однако представленные примеры можно запускать на любой версии Python.

После того как программа установки развернет исполняемые файлы Python в указанный каталог, необходимо проверить значения следующих системных переменных:

  • PATH . В этой переменной должен содержаться путь к каталогу, где установлен Python, чтобы его могла найти операционная система.
  • PYTHONHOME . Эта переменная должна содержать только путь к каталогу, где установлен Python. Также в этом каталоге должен содержаться подкаталог lib, в котором будет выполняться поиск стандартных модулей Python.
  • PYTHONPATH . Переменная со списком каталогов, содержащих модули расширения, которые будут подключаться к Python (элементы списка должны разделяться системным разделителем).
  • PYTHONSTARTUP . Не обязательная переменная, определяющая путь к сценарию Python, который должен выполняться каждый раз при запуске интерактивного сеанса интерпретатора Python.

Командная строка для работы с интерпретатором имеет следующую структуру.

PYTHONHOME\python (опции) [ -с команда | файл со сценарием | - ] {аргументы}

Интерактивный режим работы Python

Если запустить интерпретатор, не указывая команды или файла со сценарием, то он запустится в интерактивном режиме. В этом режиме запускается специальная оболочка Python, в которую можно вводить отдельные команды или выражения, а их значение будет немедленно вычисляться. Это очень удобно во время изучения Python, так как можно сразу проверить правильность той или иной конструкции.

Значение вычисленного выражения сохраняется в специальную переменную с именем «Одиночное подчеркивание» (_), так что его можно использовать в последующих выражениях. Завершить интерактивный сеанс можно сочетанием клавиш Ctrl–Z в ОС Windows или Ctrl–D в ОС Linux.

Опции – это не обязательные строковые значения, которые могут изменять поведение интерпретатора во время сеанса; их значение будет рассматриваться в этой и последующих статьях. За опциями указывается либо отдельная команда, которую должен выполнить интерпретатор, либо путь к файлу, в котором содержится сценарий для выполнения. Стоит отметить, что команда может состоять из нескольких выражений, разделенных точкой с запятой, и должна быть заключена в кавычки, чтобы операционная система смогла ее корректно передать интерпретатору. Аргументы – те параметры, которые передаются для последующей обработки в исполняемый сценарий; они передаются в программу в виде строк и разделяются пробелами.

Для проверки правильности установки и работоспособности Python можно выполнить следующие команды:

c:\> python- v
c:\> python –c “import time; print time.asctime()”

Опция –v выводит версию используемой реализации Python и завершает работы, а вторая команда распечатывает на экран значение системного времени.

Писать сценарии Python можно в любом текстовом редакторе, так как они представляют собой обычные текстовые файлы, однако существуют и специальные среды разработки, предназначенные для работы с Python.

Основы синтаксиса Python

Сценарии исходного кода Python состоят из так называемых логических строк , каждая из которых в свою очередь состоит из физических строк . Для обозначения комментариев используется символ #. Комментарии и пустые строки интерпретатор игнорирует.

Далее приведен очень важный аспект, который может показаться странным программистам, изучающим Python в качестве второго языка программирования. Дело в том, что в Python нет символа, который бы отвечал за отделение выражений друг от друга в исходном коде, как, например, точка с запятой (;) в C++ или Java. Точка с запятой позволяет разделить несколько инструкций, если они находятся на одной физической строке. Также отсутствует такая конструкция, как фигурные скобки {}, позволяющая объединить группу инструкций в единый блок.

Физические строки разделяются самим символом конца строки, но если выражение слишком длинное для одной строки, то две физических строки можно объединить в одну логическую. Для этого необходимо в конце первой строки ввести символ обратного слеша (\), и тогда следующую строку интерпретатор будет трактовать как продолжение первой, однако при этом нельзя, чтобы на первой строке за символом \ находились бы другие символы, например, комментарий с #. Для выделения блоков кода используются исключительно отступы. Логические строки с одинаковым размером отступа формируют блок, и заканчивается блок в том случае, когда появляется логическая строка с отступом меньшего размера. Именно поэтому первая строка в сценарии Python не должна иметь отступа. Усвоение этих несложных правил поможет избежать большинства ошибок, связанных с освоением нового языка.

Других радикальных отличий от других языков программирования в синтаксисе Python нет. Имеется стандартный набор операторов и ключевых слов, большая часть которых уже знакома программистам, а специфические для Python будут рассматриваться в этой и последующих статьях. Также используются стандартные правила для заданий идентификаторов переменных, методов и классов – имя должно начинаться с подчеркивания или латинского символа любого регистра и не может содержать символов @, $, %. Также не может использоваться в качестве идентификатора только один символ подчеркивания (см. сноску, в которой говорится об интерактивном режиме работы).

Типы данных, используемых в Python

Типы данных, используемых в Python, также совпадают с другими языками – целые и вещественные типы данных; дополнительно поддерживается комплексный тип данных – с вещественной и мнимой частью (пример такого числа – 1.5J или 2j, где J представляет собой квадратный корень из -1). Python поддерживает строки, которые могут быть заключены в одинарные, двойные или тройные кавычки, при этом строки, как и в Java, являются immutable-объектами, т.е. не могут изменять свое значение после создания.

Есть в Python и логический тип данных bool c двумя вариантами значения – True и False. Однако в старых версиях Python такого типа данных не было, и, кроме того, любой тип данных мог быть приведен к логическому значению True или False. Все числа, отличные от нуля, и непустые строки или коллекции с данными трактовались как True, а пустые и нулевые значения рассматривались как False. Эта возможность сохранилась и в новых версиях Python, однако для повышения читаемости кода рекомендуется использовать для логических переменных тип bool. В то же время, если необходимо поддерживать обратную совместимость со старыми реализациями Python, то в качестве логических переменных стоит использовать 1 (True) или 0 (False).

Функциональность для работы с наборами данных

В Python определены три типа коллекций для хранения наборов данных:

  • кортеж (tuple);
  • список (list);
  • словарь (dictionary).

Кортеж представляет собой неизменяемую упорядоченную последовательность данных. В нем могут содержаться элементы различных типов, например другие кортежи. Кортеж определяется в круглых скобках, а его элементы разделяются запятыми. Специальная встроенная функция tuple() позволяет создавать кортежи из представленной последовательности данных.

Список – это изменяемая упорядоченная последовательность элементов. Элементы списка также разделяются запятыми, но задаются уже в квадратных скобках. Для создания списков предлагается функция list().

Словарь является хеш-таблицей, сохраняющей элемент вместе с его идентификатором-ключом. Последующий доступ к элементам выполняется тоже по ключу, поэтому единица хранения в словаре – это пара объект-ключ и связанный с ним объект-значение. Словарь – это изменяемая, но не упорядоченная коллекция, так что порядок элементов в словаре может меняться со временем. Задается словарь в фигурных скобках, ключ отделяется от значения двоеточием, а сами пары ключ/значение разделяются запятыми. Для создания словарей доступна функция dict().

В листинге 1 приведены примеры различных коллекций, доступных в Python.

Листинг 1. Виды коллекций, доступные в Python
(‘w’,‘o’,‘r’,‘l’,‘d’) # кортеж из пяти элементов (2.62,) # кортеж из одного элемента [“test”,"me"] # список из двух элементов # пустой список { 5:‘a’, 6:‘b’, 7:‘c’ } # словарь из трех элементов с ключами типа int

Определение функций в Python

Хотя Python поддерживает ООП, однако многие его возможности реализованы в виде отдельных функций; кроме того, модули расширения чаще всего делаются тоже в виде библиотеки функций. Функции также применяются и в классах, где они по традиции называются методами.

Синтаксис определения функций в Python крайне простой; с учетом изложенных выше требований:

def ИМЯ_ФУНКЦИИ(параметры): выражение № 1 выражение № 2 ...

Как видно, необходимо использовать служебное слово def, двоеточие и отступы. Вызвать функцию также очень просто:

ИМЯ_ФУНКЦИИ(параметры)

Есть только несколько моментов, специфичных для Python, которые стоит учитывать. Как и в Java, примитивные значения передаются по значению (в функцию попадает копия параметра, и она не может изменить значение, установленное до вызова функции), а сложные объектные типы передаются по ссылке (в функцию передается ссылка и она вполне может изменить объект).

Параметры могут передаваться как просто по порядку перечисления, так и по именам, в этом случае не нужно указывать при вызове те параметры, для которых есть значения по умолчанию, а передавать только обязательные или менять порядок параметров при вызове функции:

#функция, выполняющая деление нацело – с помощью оператора // def foo(delimoe, delitel): return delimoe // delitel print divide(50,5) # результат работы: 10 print divide(delitel=5, delimoe=50) # результат работы: 10

Функция в Python обязательно возвращает значение – это делается либо явно с помощью оператора return, за которым следует возвращаемое значение, либо, в случае отсутствия оператора return, возвращается константа None, когда достигается конец функции. Как видно из примеров объявлений функций, в Python нет необходимости указывать, возвращается что-либо из функции или нет, однако если в функции имеется один оператор return, возвращающей значение, то и другие операторы return в этой функции должны возвращать значения, а если такого значения нет, то необходимо явно прописывать return None.

Если функция очень простая и состоит из одной строки, то ее можно определить прямо на месте использования, в Python подобная конструкция называется лямбда-функцией (lambda). lambda-функция – это анонимная функция (без собственного имени), телом которой является оператор return, возвращающий значение некоторого выражения. Такой подход может оказаться удобным в некоторых ситуациях, однако стоит заметить, что повторное использование подобных функций невозможно («где родился, там и пригодился»).

Еще стоит описать отношение Python к использованию рекурсии. По умолчанию глубина рекурсии ограничена 1000 уровней, и когда этот уровень будет пройден, возникнет исключительная ситуация, и работа программы будет остановлена. Однако при необходимости величину этого предела можно изменить.

У функций в Python есть еще и другие интересные особенности, например документирование или возможность определения вложенных функций, однако они будут рассматриваться в следующих статьях серии на более сложных примерах.

Представляем вашему вниманию новый курс от команды The Codeby - "Тестирование Веб-Приложений на проникновение с нуля". Общая теория, подготовка рабочего окружения, пассивный фаззинг и фингерпринт, Активный фаззинг, Уязвимости, Пост-эксплуатация, Инструментальные средства, Social Engeneering и многое другое.


Язык программирования Python уже давно занял лидирующее место среди всех языков программирования. По количеству сфер применения и возможностям он конкурирует с такими языками, как C++ и JavaScript. Конечно же, Python гораздо моложе, чем классические языки программирования, но он является идеальным для новичков и не только. Python используется в таких крупных компаниях, как Pixar, NASA.

Во-первых: данный язык программирования обладает динамической типизацией, что означает отсутствие необходимости объявлять тип переменных, приводить один тип к другому и задумываться о каких-либо ограничениях по количеству символов, содержащихся в этих переменных. Динамическая типизация облегчает участь новичков, потому что они не должны глубоко вникать в устройство оперативной памяти и центрального процессора, чтобы понимать, как устроен язык. Конечно же, существуют правила, объясняющие некоторые принципы приведения одного типа данных к другому. На них, конечно же, стоит обратить внимание при изучении Python: так вы сможете избежать логических ошибок, которые не распознаются компилятором.

Пример динамической типизацией:

Во-вторых: этот язык обладает мощнейшими возможностями объектно-ориентированного программирования. Это значит то, что логическая структура программы на языке Python может быть построена так, что её код уместится в сравнительно малое количество строк. Действительно, программы, написанные на языке Python, занимают в полтора-два раза меньше строк, чем те же самые программы, написанные, например, на C++.

Python является языком общего назначения. Это значит то, что он может применяться в абсолютно любой сфере разработки программного обеспечения. Действительно, на Python можно разработать всё: сложные математические системы с помощью модуля NumPy (альтернатива MatLab), веб-приложения с помощью Django, графические интерфейсы с помощью Tkinter, игры с помощью PyGame и так далее.

Единственным минусом данного языка является его низкая скорость работы по сравнению с классическими языками (C++, Java). С другой стороны, вычислительная мощность современных компьютеров делает эту разницу незаметной. Однако и здесь разработчики Python нашли гениальное решение. Среда исполнения CPython компилирует код без промежуточной стадии машинного кода, что ускоряет работу программы. Таким образом, модули программы, скорость работы которых имеет решающее значение, могут быть разработаны с помощью CPython.

Из всего вышесказанного следует, что Python достоин того, чтобы быть изученным. Если вы начинающий программист, то смело выбирайте Python в качестве первого языка. Это облегчит вам обучение искусству программирования и даст вам возможность для роста в дальнейшем. Для установки Python на линуксе можете прочитати

Программа представляет собой набор алгоритмов, которые обеспечивают выполнение необходимых действий. Условно таким же образом можно запрограммировать обычного человека, написав точные команды, для того чтобы, например, он приготовил чай. Если в последнем варианте будет использоваться естественная речь (русская, украинская, английская, корейская и т. д.), то для компьютера понадобится специальный язык программирования. Python - один из таковых. Среда программирования впоследствии переведет команды в и цель человека, ради которой создавался алгоритм, будет выполнена. «Питон» имеет свой синтаксис, который будет рассмотрен ниже.

История языка

Разработка началась в 1980-х году, а завершилась она в 1991. Язык Python был создан Гвидо ван Россумом. Хоть основным символом «Питона» является змея, назван он был так в честь комедийного американского шоу.

При создании языка разработчик использовал некоторые команды, заимствованные уже у существующих Pascal, С и С++. После выхода в интернет первой официальной версии целая группа программистов присоединилась к его доработке и улучшению.

Одним из факторов, которые позволили стать «Питону» достаточно известным, является дизайн. Многими весьма успешными специалистами он признается одним из лучших.

Особенности «Питона»

Язык программирования Python для начинающих специалистов станет отличным учителем. Он имеет достаточно простой синтаксис. Понять код будет легко, ведь он не включает в себя много вспомогательных элементов, а особенная структура языка будет учить делать отступы. Конечно же, хорошо оформленная программа с небольшим количеством команд станет понятной сразу же.

Многие синтаксические системы были созданы с опорой на объектно-ориентированное программирование. Не исключением является и язык Python. Для чего же именно он появился на свет? Он облегчит обучение новичкам, поможет вспомнить некоторые элементы уже квалифицированным сотрудникам.

Синтаксис языка

Как уже было сказано, код читается достаточно легко и просто. «Питон» имеет последовательные команды, отличающиеся четкостью выполнения. В принципе, используемые операторы не покажутся даже новичкам трудными. Этим и отличается язык Python. Синтаксис его легок и прост.

Традиционные операторы:

  • При задавании условия следует использовать конструкцию if-else. Если таких строк слишком много, можно вписывать команду elif.
  • Class предназначен для понимания класса.
  • Один из простых операторов - pass. Он ничего не делает, вписывается для пустых блоков.
  • Цикловыми командами являются while и for.
  • Функция, метод и генератор определяется благодаря def.

Кроме одиночных слов, в качестве операторов язык программирования Python позволяет использовать и выражения. Благодаря использованию цепочек строк можно уменьшить количество отдельных команд и скобок. Используются и так называемые ленивые вычисления, т. е. те, которые выполняются лишь тогда, когда того требует условие. К ним относятся and и or.

Процесс написания программ

Интерпретатор работает на едином механизме: при написании строки (после которой ставится «Энтер») она сразу же выполняется, и человек может уже видеть какой-то результат. Это пригодится и будет достаточно удобным для новичков или тех, кто хочет протестировать небольшой кусочек кода. В компилируемых средах пришлось бы сначала написать программу целиком, лишь потом запустить ее и проверить на ошибки.

Язык программирования Python (для начинающих, как уже стало понятно, он подходит идеально) в операционной системе Linux позволяет работать непосредственно в самой консоли. Следует написать в командной строке название кода «Питон» на английском языке. Свою первую программу создать будет нетрудно. Прежде всего, стоит учитывать и то, что пользоваться интерпретатором здесь можно в качестве калькулятора. Так как с синтаксисом зачастую молодые и начинающие специалисты не дружат, то написать алгоритм можно таким образом:

После каждой строки необходимо ставить «Ентер». Ответ будет выводиться непосредственно после его нажатия.

Данные, используемые «Питоном»

Данные, которыми пользуются компьютеры (и языки программирования), представлены несколькими типами, и это вполне очевидно. Числа бывают дробными, целыми, могут состоять из множества цифр или быть весьма массивными из-за дробной части. Чтобы интерпретатору было проще работать с ними, и он мог понять, с чем имеет дело, следует задать определенный тип. Более того, он необходим, чтобы числа поместились в отведенную ячейку памяти.

Наиболее распространенные типы данных, которым пользуется язык программирования Python:

  • Integer. Речь идет о целых числах, имеющих как отрицательное, так и положительное значение. Ноль также входит в данный тип.
  • Для того чтобы интерпретатор понял, что работает с дробными частями, следует задать тип float point. Как правило, им пользуются в случае использования чисел с варьирующейся точкой. Следует помнить, что при написании программы нужно придерживаться записи «3.25», а не использовать запятую «3,25».
  • В случае добавления строк язык программирования Python позволяет добавить тип string. Зачастую слова или фразы заключаются в одинарные или

Недостатки и преимущества

В последние несколько десятилетий людей больше интересовало, как больше времени потратить на освоение данных и меньше - на то, чтобы они были обработаны компьютером. Язык о котором лишь положительные, является высшим кодом.

Недостатков у «Питона» практически нет. Единственный серьезный минус - медлительность при выполнении алгоритма. Да, если сравнивать его с «Си» или «Джава», он, откровенно говоря, черепашка. Объясняется это тем, что данный

Разработчик позаботился о том, чтобы добавить в «Питон» самое хорошее. Поэтому при его использовании можно заметить, что он вобрал в себя лучшие черты других высших языков программирования.

В том случае, если идея, которая реализуется интерпретатором, не впечатляет, то понять это можно будет практически сразу, после написания нескольких десятков строк. Если программа стоящая, то критический участок можно в любое время усовершенствовать.

Сейчас над улучшением «Питона» работает не одна группа программистов, поэтому не факт, что код, написанный на С++ будет лучше, чем тот, который создан при помощи Python.

С какой версией лучше работать?

Сейчас широко используются сразу две версии такой синтаксической системы, как язык Python. Для начинающих выбор между ними будет достаточно трудным. Следует заметить тот факт, что 3.х все еще находится на разработке (хотя и выпущен в массы), в то время как 2.х - полностью завершенная версия. Многие советуют использовать 2.7.8, так как она практически не лагает и не сбивается. В 3.х версии нет радикальных изменений, поэтому в любое время свой код можно перенести в среду программирования с обновлением. Чтобы скачать необходимую программу, следует зайти на официальный сайт, выбрать свою операционную систему и дождаться окончания загрузки.

Язык программирования Python является универсальным языком высокого уровня. Он может быть встроен и расширен. Например, он входит в некоторые приложения в виде инструмента для написания макросов. Такая особенность делает язык программирования Python разумным выбором для осуществления многих задач программирования. Где лучше его использовать? Python прекрасно подойдет для проектов, которые требуют быстрой разработки. Данный язык программирования поддерживает несколько парадигм. Это особенно хорошо для программ, которые требуют гибкости. Наличие множества модулей и пакетов экономит время и обеспечивает универсальность. Создателем языка Python является Гвидо ван Россум. В свое время сообщество удостоило его званием «великодушный пожизненный диктатор». Гвидо в конце 80-х годов нравились особенности нескольких языков программирования. Однако ни один из этих языков не обладал теми возможностями, которые ему хотелось бы иметь. Так, например, язык должен был обладать следующими возможностями:

— язык сценариев. Сценарий представляет собой программу, которая используется для управления другими программами. Языки сценариев могут использоваться для прототипирования и быстрой разработки. По этой причине они прекрасно справляются с передачей данных от одного компонента к другому и избавляют программистов от таких сложных вещей, как управление памятью. Программисты называют Python динамическим языком программирования.

— отступ для группирования операторов. Язык программирования Python определяет принадлежность выражений к одной группе при помощи отступов. Данная группа называется блоком кода. В других языках программирования используются другие знаки препинания и синтаксис. Так, например, в языке С символ «{» означает начало последовательности команд. Наличие отступов является хорошей практикой в других языках программирования. Однако один из первых языков программирования, в котором принудительно обеспечивается соблюдение отступов, является Python. Что же это дает? Прежде всего отступы делают код более удобным для чтения. Кодовые блоки требуют меньше обозначения начала и конца. А это значит, то в коде будет меньше знаков препинания, которые так просто можно пропустить. Это все ведет к уменьшению количества ошибок в коде.

— типы данных высокого уровня. Персональные компьютеры хранят данные в нулях и единицах. Однако люди нуждаются в более сложных формах хранения информации, таких как текст. Если язык поддерживает сложные данные, про него говорят, что он поддерживает типы данных высокого уровня. Оперировать такими типами данных легко. В Python, например, строки можно объединять или разделять, переводить в нижней или верхний регистр, осуществлять поиск и т.п. Типы данных высокого уровня, такие как словари и списка, которые могут хранить в себе другие данные, имеют более широкие функциональные возможности.

— расширяемость. Расширяемость означает, что язык программирования может быть дополнен. Расширяемые языки программирования являются очень мощными. Дополнения делают их пригодными для огромного количества операционных систем и применений. Расширения могут добавлять новые типы данных, плагины и модули. Для расширения в языке Python предусмотрено несколько способов. Главная группа программистов работает над его улучшением и изменением. Сотни других пишут модули для выполнения конкретных целей.

— интерпретация. Выполняются интерпретируемые языки непосредственно из исходного кода, который был написан людьми. Программы, написанные на компилируемых языках, типа C++, должны быть переведены в машинный код. Как правило, интерпретируемые языки программирования работают более медленно, поскольку трансляция осуществляется не мгновенно. Однако отладка и написание самих программ осуществляется заметно быстрее, поскольку нет необходимости ожидать завершения работы компилятора. Интерпретируемые языки программирования легче переносятся на различные платформы. Можно долго спорить, является ли Python компилируемым или интерпретируемым языком. Несмотря на то, что во многих отношениях данный язык программирования работает как интерпретируемый, его код перед выполнением компилируется. Многие его компоненты работают на полной скорости компьютера, поскольку написаны они на С.

Писать язык Python Гвидо начал во время каникул в 1989 году. Весь следующий год он дорабатывал язык, ориентируясь на отзывы коллег. Перед широкой публикой результат предстал в 1991 году. Именно тогда он был размещен в одной из новостных групп Usenet.

Python для новичков

Прежде чем приступать к написанию программ на Python, его необходимо установить. У версий Python 3.5 и Python 2.7 имеются существенные отличия. Из-за них программы, которые на них написаны, несовместимы. Данный язык предустановлен на компьютеры «Макинтош». Его версия будет зависеть от возраста операционной системы. Если вы работаете с Windows, то вам придется самостоятельно устанавливать Python на свой компьютер. Выбрать файлы инсталляционного пакета можно непосредственно на сайте Python.org

Способы взаимодействия

Одна из причин простоты, которая проявляется при программировании на Python, заключается в том, что он поставляется в комплекте с инструментами, которые могут писать, разрабатывать и отлаживать программы. Команды в интерактивном режиме вводятся по одной строке за раз. Этот процесс аналогичен тому, как операционная система воспринимает команды из командной строки. Можно также создавать и короткие многострочные программы или импортировать код из текстовых файлов или модулей Python. Начинающим наверняка будет полезно узнать о том, что интерактивный режим включает в себя обширную справочную систему. Для изучения возможностей языка программирования такой способ является очень удобным. В среду разработки IDLE входят инструменты для написания и запуска программ, система отслеживания имен. Данная среда написана на языке программирования Python. Она демонстрирует обширные возможности данного языка.

Интерактивный режим

В интерактивном режиме можно делать практически все то же самое, что и в программе. Здесь можно даже писать многострочные коды. Этот режим может использоваться в качестве песочницы для безопасных экспериментов. Кроме того, интерактивный режим может выступать в качестве среды, позволяющей изучать программирование на Python. Также он может использоваться как инструмент для поиска и исправления ошибок. Стоит учитывать, что сохранить информацию, которая была введена в интерактивном режиме невозможно. Для этого следует записать копию кода и полученный результат в отдельный файл. Можно использовать интерактивный режим в качестве калькулятора. Здесь также можно манипулировать текстом или присваивать значения переменным. Также имеется возможность импортирования модулей, функций или частей программ для их тестирования. Все это дает возможность экспериментировать с объектами Python без необходимости написания длинных программ. Также нет необходимости и в отладке программ путем импортирования их частей по одной за раз.

Работа в интерактивном режиме

После того, как Python будет запущен, в окне терминала отобразиться информация об используемой версии программы, ее дате выпуска. Также здесь будет приведено несколько подсказок для осуществления дальнейших действий и приглашение ввода: >>>. Чтобы начать работать в интерактивном режиме необходимо ввести выражение и команду и нажать на кнопку ввода. Python после этого должен интерпретировать введенную команду или отреагировать должным образом, если набранное не требует ответа. Приведем команду, которая печатает строку. Так как место печати в команде не указано, вывод информации будет осуществляться на экран.

>>> print «Hello World!»

Трудно поверить, но эта единственная строка является программой. Python в интерактивном режиме обрабатывает каждую строку введенного кода после того, как будет нажата клавиша Enter. Результат появится ниже.

Просмотр информации об объекте

В интерактивном режиме существует два способа, которые могут быть использованы для просмотра информации об объекте:

— ввести имя объекта и нажать на клавишу ввода;

— ввести команду Print, имя объекта и нажать на Enter.

Результат будет зависеть от выбранного вами объекта. При использовании определенных типов данных два этих метода могут дать совершенно одинаковый результат.

>>> x=

>>> print x

Результат набора команды «print имя» будет немного отличаться от результата, который был получен для ввода имени. Значение в первом случае заключается в кавычки, а во втором нет.

>>> x= «MySrting»

В тех случаях, когда имя относится к целому блоку кода, ввод имени даст информацию о виде данных, их имени и месте хранения.

В следующем примере приведена команда создания класса, имеющего имя Message и выводится информация о нем:

>>> class Message:

>>> Message

>>> print Message

Строки в Python

В языке программирования Python строки представляют собой последовательности символов. Создается строковый литерал путем заключения символов в одинарные, двойные или тройные кавычки. Переменной в приведенном примере присваивается значение x.

>>>x= «My String»

У строки Python имеется несколько встроенных возможностей. Одной из таких возможностей является способность вернуть копию строки со строчными буквами. Известны эти возможности как методы. Для того чтобы вызвать метод объекта, необходимо использовать точечный синтаксис. Это означает, что после ввода имени переменной, которая является в данном случае ссылкой на объект строки, необходимо поставить оператор точку – (.). Затем следует название метода с последующим открытием или закрытием скобки.

>>>x.lower ()

При помощи оператора индексирования s[i] можно получить только часть строки. В данном случае индексация будет начинаться с нуля. S возвращает первый символ в строке, s – второй, и так далее.

Строковые методы могут работать как обычными кодами, так и с «Юникодом». Они позволяют выполнять следующие операции:

— изменение кодировки (decode, encode);

— изменение регистра (lower, swapcase, upper, capitalize, title);

— подсчет (count);

— замену и поиск (replace, find, rfind, rindex, index, translate);

— объединение и разделение (partition, join, split, rpartition, splitlines);

— проверка выполнения условий (endswith, startwith, isalnum, isdigit, isalpha, isspace, istitle, isupper);

— форматирование (ljust, center, rstring, strip, expandtabs, rjust).

Python: работа со списками

Если в языке программирования Python строки ограничены символами, то списки не имеют каких-либо ограничений. Списки представляют собой упорядоченные последовательности произвольных объектов, в которые также могут входить и другие списки. Также существует возможность удалять, добавлять или изменять их элементы. Далее приведены примеры выполнения данных операций со списками:

>>> bases = [‘A’, ‘C’, ‘G’, ‘D’]

[‘A’, ‘C’, ‘G’, ‘D’]

>>> bases.append(‘T’)

>>> bases [‘A’, ‘C’, ‘G’, ‘D’, ‘T’]

>>> bases.reverse()

>>> bases [‘T’, ‘D’, ‘G’, ‘C’, ‘A’]

‘T’ >>>

>>> bases.remove(‘T’)

>>> bases [‘D’, ‘G’, ‘C’, ‘A’]

>>> bases.sort()

[‘A’, ‘C’, ‘G’, ‘D’]

В приведенном примере был создан список символов. После этого в один конец списка был добавлен элемент. Затем порядок элементов был обращен. Также элементы извлекались по позиции их индекса. Элемент со значение «T» был удален, после чего была выполнена сортировка элементов. Пример команды по удалению элемента из списка иллюстрирует ситуацию, в которой методу remove () нужно предоставить дополнительную информацию. В данном случае это было то значение, которое требуется удалить. Кроме методов вроде remove (), язык программирования Python также обладает еще одной похожей возможностью, которая называется функцией. Основное отличие между методом и функцией состоит в том, что функция не связана с каким-то конкретным объектом.

Функции в языке программирования Python

В языке программирования Python функции используются для выполнения действий над одним или несколькими значениями. После этого они возвращают результат. В Python имеется большое количество встроенных функций. Рассмотрим некоторые примеры встроенных функций:

— len () – возвращает количество элементов в последовательности;

— list () – возвращает новый список, который инициализирован из какой-либо другой последовательности;

— dir () – возвращает список строк, которые представляют атрибуты объекта.

Также в Python есть возможность определения собственных функций.

Когда-то давным давно, на одном закрытом форуме я пытался проводить обучение Пайтону. В общем дело там заглохло. Мне стало жалко написанных уроков, и я решил их выложить для широкой общественности. Пока самый первый, самый простой. Дальше идет интереснее, но может быть это будет не интересно. В общем, этот пост будет пробным шаром, если понравится, буду выкладывать дальше.

Python для начинающих. Глава первая. «О чем это мы»

На всякий случай, немного скучного «evangelism». Кому он надоел, можно пропустить несколько абзацев.
Python (читается как «Пайтон» а не «питон») - скриптовый язык, разработанный Гвидо ван Россумом в качестве простого языка, легкого в изучении новичку.
В наше время Пайтон – широко распространенный язык, который используется во многих областях:
- Разработка прикладного ПО (например linux-утилиты yum, pirut, system-config-*, IM-клиент Gajim и многие другие)
- Разработка web-приложений (мощнейший Application-сервер Zope и разработанная на его основе CMS Plone, на основе которой работает например сайт ЦРУ, и масса фреймворков для быстрой разработки приложений Plones, Django, TurboGears и многие другие)
- Использование в качестве встраиваемого скриптового языка во многих играх, и не только (в офисном пакете OpenOffice.org, 3d редакторе Blender, СУБД Postgre)
- Использование в научных рассчетах (с пакетами SciPy и numPy для расчетов и PyPlot для рисования графиков Пайтон становится практически сравним с пакетами типа MatLab)

И это конечно далеко не полный список проектов, использующих этот замечательный язык.

1. Сам интерпретатор, его можно взять тут (http://python.org/download/).
2. Среда разработки. Она для начала необязательна, да и идущий в дистрибутиве IDLE подойдет новичку, но для серъезных проектов нужно что-то посерьезней.
Для Windows я использую замечательный легковесный PyScripter (http://tinyurl.com/5jc63t), для Linux – Komodo IDE.

Хотя для первого урока достаточно будет просто интерактивной оболочки самого Пайтона.

Просто запустите python.exe. Приглашение ввода не заставит себя долго ждать, оно выглядит так:

Также можно записывать программы в файлы с расширением py, в вашем любимом текстовом редакторе, который не добавляет к тексту своих символов разметки (нет Word не подойдет). Также желательно чтобы этот редактор умел делать «умные табуляторы» и не заменял пробелы знаком табуляции.
Для запуска файлов на исполнение по ним можно щелкать 2 раза. Если консольное окно закрывается слишком быстро, вставьте в конце программы следующую строку:

Тогда интерпретатор будет в конце программы ждать нажатия enter.

Или ассоциируйте py-файлы в Far с Пайтоном и открывайте нажимая enter.

Наконец можно воспользоваться одной из многих удобных IDE для Пайтона, которые предоставляют и возможности отладки и подсветку синтаксиса и многие другие «удобства».

Немного теории.

Для начала, Пайтон – язык со строгой динамической типизацией. Что это означает?

Есть языки со строгой типизацией (pascal, java, c и т.п.), у которых тип переменной определяется заранее и не может быть изменен, и есть языки с динамической типизацией (python, ruby, vb), в которых тип переменной трактуется в зависимости от присвоенного значения.
Языки с динамической типизацией можно разделить еще на 2 вида. Строгие, которые не допускают неявного преобразования типа (Пайтон) и нестрогие, которые выполняют неявные преобразования типа (например VB, в котором можно легко сложить строку "123" и число 456).
Разобравшись с классификацией Пайтона, попробуем немного «поиграть» с интерпретатором.

>>> a = b = 1 >>> a, b (1, 1) >>> b = 2 >>> a, b (1, 2) >>> a, b = b, a >>> a, b (2, 1)

Таким, образом мы видим что присваивание осуществляется с помощью знака =. Присвоить значение можно сразу нескольким переменным. При указании интерпретатору имени переменной в интерактивном режиме, он выводит ее значение.

Следующее, что необходимо знать – как строятся базовые алгоритмические единицы – ветвления и циклы. Для начала, необходима небольшая справка. В Пайтоне нет специального ограничителя блоков кода, их роль выполняют отступы. То есть то что написано с одинаковым отступом – является одним командным блоком. Поначалу это может показаться странным, но после легкого привыкание, понимаешь что эта «вынужденная» мера позволяет получать очень читабельный код.
Итак условия.

Условие задается с помощью оператора if, который заканчивается «:». Альтернативные условия которые будут выполняться если первая проверка «не прошла» задаются оператором elif. Наконец else задает ветку, которая будет выполнена если ни одно из условий не подошло.
Обратите внимание, что после ввода if интерпретатор с помощью приглашения «...» показывает что он ожидает продолжения ввода. Чтобы сообщить ему что мы закончили, необходимо ввести пустую строку.

(Пример с ветвлениями почему-то рвет разметку на хабре, не смотря на танцы с тегами pre и code. Простите за неудобство, я его кинул сюда pastebin.com/f66af97ba , если кто-то подскажет что не так - буду очень признателен)

Циклы.

Простейшим случаем цикла является цикл while. В качестве параметра он принимает условие и выполняется до тех пор, пока оно истино.
Вот маленький пример.

>>> x = 0 >>> while x<=10: ... print x ... x += 1 ... 0 1 2 ........... 10

Обратите внимание что поскольку и print x и x+=1 написаны с одинаковым отступом, они считаются телом цикла (помните что я говорил про блоки? ;-)).

Второй вид циклов в Пайтон – цикл for. Он аналогичен циклу foreach других языков. Его синтаксис условно таков.

For переменная in список:
команды

Переменной будут присваиваться по очереди все значения из списка (на самом деле там может быть не только список, но и любой другой итератор, но не будем пока этим забивать голову).

Вот простой пример. В роли списка будет выступать строка, которая является ничем иным как списком символов.

>>> x = "Hello, Python!" >>> for char in x: ... print char ... H e l ........... !

Таким образом мы можем разложить строку по символам.
Что же делать если нам нужен цикл, повторяющийся определенное число раз? Очень просто, на помощь придет функция range.

На входе она принимает от одного до трех параметров, на выходе возвращает список чисел, по которому мы можем «пройтись» оператором for.

Вот несколько примеров использования функции range, которые объясняют роль ее параметров.

>>> range(10) >>> range(2, 12) >>> range(2, 12, 3) >>> range(12, 2, -2)

И маленький пример с циклом.

>>> for x in range(10): ... print x ... 0 1 2 ..... 9

Ввод-вывод

Последнее, что следует знать перед тем как начать использовать Пайтон полноценно – это как осуществляется в нем ввод-вывод.

Для вывода используется команда print, которая выводит на печать все свои аргументы в удобочитаемом виде.

Для ввода с консоли используется функция raw_input(приглашение), которая выводит на экран приглашение и ожидает ввода пользователя, возвращая то что ввел пользователь в виде своего значения.

X = int(raw_input ("Введи число:")) print "Квадрат этого числа составляет ", x * x

Внимание! Несмотря на существование функции input() схожего действия, использовать ее в программах не рекомендуется, так как интерпретатор пытается выполнить вводимые с ее помощью синтаксические выражения, что является серьезной дырой в безопасности программы.

Вот и все для первого урока.

Домашнее задание.

1. Составить программу расчета гипотенузы прямоугольного треугольника. Длина катетов запрашивается у пользователя.
2. Составить программу нахождения корней квадратного уравнения в общем виде. Коэффициенты запрашиваются у пользователя.
3. Составить программу вывода таблицы умножения на число M. Таблица составляется от M * a, до M * b, где M, a, b запрашиваются у пользователя. Вывод должен осуществляется в столбик, по одному примеру на строку в следующем виде (например):
5 х 4 = 20
5 х 5 = 25
И так далее.