Перед использованием светодиодов важным этапом является предварительная проверка работоспособности этих приборов. Особенно актуальным этот вопрос становится при монтаже светодиодов в труднодоступных местах. Например, при установке светодиодов в светильниках, располагаемых на уличных мачтах или потолках промышленных предприятий.

Как и для обычного диода, наиболее простым методом оценки работоспособности является проверка светодиодов тестером или мультиметром. Для этого достаточно подключить его анодом к плюсу измерительного прибора, а катодом — к минусу. Чтобы правильно различать анод и катод необходимо помнить, что обычно вывод анода у светодиода длиннее вывода катода. Но такой «прозвон» возможен только для таких светодиодов, у которых малое рабочее напряжение. Для мощных, с повышенным рабочим напряжением — такой метод неприемлем.

Для оценки исправности светодиодов можно использовать имеющийся в мультиметре разъем для проверки транзисторов.

При этом вывод анода светодиода надо вставить в отверстие, предназначенное для эмиттера проверяемого транзистора (обозначение Е), а вывод катода — в отверстие, в которое должен вставляться коллектор проверяемого транзистора (обозначение C для PNP). При включении мультиметра исправный светодиод будет гореть.

Часто требуется более точное обследование светодиода. Особенно, это касается мощных светодиодов, характеристики которых предназначены для работы с токами в сотни миллиампер и более.

Эти светодиоды могут подсвечиваться при «прозвонке», но при включении их в рабочий режим на полный ток, они горят очень слабо. Такая неисправность может быть связана с дефектом кристалла. И этот дефект может быть выявлен только при более тщательном тестировании прибора.

Как произвести точное тестирование на работоспособность?

Для более точного тестирования исправности светодиода, кроме мультиметра требуется дополнительный источник стабилизированного тока. Тестирование производится следующим образом:

  1. Собирается схема из последовательного включения стабилизированного источника тока, светодиода и мультиметра (предел измерения тока в мультиметре устанавливается в 10 А).
  2. В стабилизированном источнике тока выставляется номинальный ток светодиода, величина которого контролируется с помощью мультиметра.
  3. Источник питания выключается.
  4. Мультиметр подключается параллельно светодиоду (предел измерения напряжения в мультиметре устанавливается в 20 В).
  5. После включения источника тока производится измерение рабочего напряжения на светодиоде.
  6. По полученным данным и вольт амперной характеристике светодиода, приведенной в паспорте на прибор, производится проверка соответствия измеренных и паспортных значений тока и напряжения.
  7. По результатам сравнения делается вывод об исправности светодиода и возможности его эксплуатации.

При сравнении паспортных и измеренных основных характеристик светодиода необходимо учитывать:

  • точности измерений тока и напряжения;
  • тот факт, что вольт амперная характеристика данного типа светодиода отражает усредненную зависимость тока от напряжения.

Вольт амперная характеристика конкретного экземпляра светодиода может несколько отличаться от паспортной характеристики.

Выводы :

1. Перед монтажом светодиодов желательно произвести проверку их работоспособности.

2. При предварительной проверке исправности светодиодов можно использовать мультиметр.

3. Для тщательного тестирования светодиодов, особенно мощных, необходимо использовать схему, включающую мультиметр и источник стабилизированного тока.

Простой способ проверки светодиода мультиметром на видео

ПРОВЕРКА СВЕТОДИОДОВ МУЛЬТИМЕТРОМ

Сейчас стало много техники, где применяются светодиоды и область их применения очень широка: от простого фонарика до автомобиля и даже прожектора.

Из достоинств светодиодов отметим, что в светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение практически без потерь, светодиод излучает в узкой части спектра и его цвет чист, а ультрафиолетовое и инфракрасное излучения, как правило, отсутствуют. Так-же он механически прочнее ламп и весьма надежен, его срок службы может быть в сотни раз больше, чем у лампочки накаливания. А одним из немногих его недостатков является цена. Но в ближайшие пару лет этот показатель будет снижен до приемлимых цен.

Всё чаще приходится нам сталкиваться с ремонтом всевозможных приборов на светодиодах. Вот тут и возникает проблема. Как проверить светодиод? Вопрос может показаться странным! Казалось бы, ответ очевиден: мультиметром. Те кто имеют обычный мультиметр знают, что им можно проверить любой диод, просто переведя переключатель диапазона на звуковой сигнал или просто на проверку диодов. Но данное правило подходит для обычных диодов и очень маломощных красных и зеленых светодиодов (при проверке вы увидите их слабое свечение, если светодиод исправен). И такой вариант совсем не подойдет для проверки белых, синих, а иногда и желтых светодиодов, так как их рабочее напряжение находится в пределах 3,3 В. Конечно можно проверить светодиод с помощью двух последовательно включенных батареек на 1,5В, но это неоправданное усложнение. Сейчас речь идет именно о мультиметре. Практически у всех современных цифровых мультиметров есть режим измерения параметра транзисторов - hFE (h21Э). Для этого в мультиметре предусмотрена специальная колодка, куда подключаются маломощные транзисторы. Вот она то нам и нужна.

Если взять светодиод и его анодный вывод подключить к колодке PHP (транзисторы PHPструктуры) - в разъём E (эмиттер), а вывод катода в разъём С (коллектор) той же PHP колодки, то если мультиметр включен - светодиод засветится.

Он будет светиться при любом положении переключателя режимов измерения и потухнет только тогда, когда прибор будет выключен. Данную особенность цифровых мультиметров и будем использовать при проверке светодиодов. Узнать какой из выводов у светодиода анод, а какой катод очень просто: анодный вывод более длинный, чем у катода.

После некоторых испытаний выяснился один недостаток. Чтобы проверить светодиод его приходилось выпаивать, что бывает не всегда оправдано. Было решено дополнить мультиметор модифицированными дополнительными щупами для проверки светодиодов сразу в плате. Для изготовления этого приспособления нам понадобятся: 1 - Стандартные щупы тестера с обрезанными штекерами. 2 - Двусторонний текстолит, две скрепки (в идеале еще бы хорошо иметь SMD светодиод как индикатор но в наличии его не оказалось). Из текстолита вырезаем маленький прямоугольник и припаиваем к нему с двух сторон скрепки, что бы получилась вилка, провода щупов и в идеале SMD светодиод как индикатор. Никаких дополнительных резисторов не надо. Вот что мы имеем в итоге:

Скрепки очень крепкие, хорошо пружинят и в итоге надежно стоят в колодке транзисторов мультиметра. Толщина текстолита как раз соответствует расстоянию между отверстий транзисторной колодки прибора. На фото видно, что выводы скрепок стоят не по середине. Это сделано специально, теперь текстолит еще будет выполнять роль стрелки при подсоединении вилки в разъем транзисторов, чтоб на щупах сохранялась правильная полярность.

В итоге мы теперь можем проверять любые светодиоды, не выпаивая их из платы и не применяя дополнительных пробников или источников питания. Ну и чтоб дополнить немного сведений о вы можете скачать с нашего сайта хорошую схему и описание данного мультиметра. Материал предоставил: А.Кулибин

Дополнение от kkn8052 : Один раз на радиорынке продавался самодельный логический пробник или он был почти кустарного производства так вот там для щупа использовалась обычная иголка. берется иголка и на нее наматывается проволочка 0,2 мм такие проволочки уже залуженные можно найти в обычном многожильном проводе они там в невероятном количестве. Это тонкая проволочка наматывается на иголку виток к витку и потом пропаиваится паяльником. Прекрасно все припаялось. Здесь оказалось, что иголка не нержавеющая и не стальная, а она покрыта никелем и к никелю все мгновенно припаивается. Просто ткнул паяльником и сразу все готово. Таким образом получается щуп. Контакт невероятно хороший. Я переделал щупы на тестер замечательно все никаких претензий. Все очень хорошо работает!

Часто у мастеров возникает необходимость проверить на исправность такой радиоэлемент, как полупроводниковый диод. Его назначение состоит в том, чтобы пропускать ток при его протекании в одном направлении (от анода к катоду) и не пропускать при протекании его в обратном направлении (от катода к аноду). Это свойство объясняет само название полупроводник. В этом и состоит суть проверки диода: он должен выполнять заданные функции так, как требуется в схеме.

Пороговое значение напряжения

Одна из основных характеристик полупроводниковых элементов - пороговое значение напряжения , то есть значение прикладываемого напряжения к элементу в прямом включении, при котором через него начинает протекать ток. Для разных типов диодов это напряжение имеет разные диапазоны значений. Для германиевых этот диапазон составляет от 0,3 до 0,7 вольта, для кремниевых - от 0,7 до 1,0 вольта. По этому значению судят об исправности полупроводникового диода.

Диоды могут выходить из строя по разным причинам . Наиболее распространенные из них: протекание повышенного тока через схему, превышение максимального значения обратного напряжения и другие (например, тепловое или механическое воздействие). Основные неисправности этих полупроводников - пробой и обрыв. Обе неисправности можно выявить с помощью мультиметра. При пробое подключенный к элементу мультиметр в режиме измерения сопротивления показывает минимальное сопротивление порядка единиц Ом. При обрыве измерительный прибор в том же режиме покажет бесконечное сопротивление как при прямом, так и при обратном подключении.

Проверка измерителем

Перед началом работы любые типы элементов нуждаются в проверке. Не пренебрегайте этим правилом. Существует несколько способов проверить диод:

Диагностика исправности стабилитрона

Стабилитроном называется полупроводниковый элемент , стабилизирующий напряжение в довольно узком диапазоне. При этом через него могут протекать разные токи как большие, так и маленькие. Диапазон стабилизации стабилитрона по напряжению обычно ограничен сотней милливольт. Конструктивно стабилитрон представляет собой диод, и в прямом включении он так и работает. Стабилизацию напряжения он производит при подаче на него напряжения в обратном включении. Проверить исправность стабилитрона мультиметром можно точно так же, как и исправность обычного диода.

Необходимо собрать небольшую схему . Для этого нужно последовательно соединить регулируемый источник питания (он должен показывать напряжение и ток через нагрузку), токоограничивающее сопротивление (номиналом от одного до 10 кОм, мощность рассеивания зависит от напряжения стабилизации, но берите не менее 0,125 Вт) и стабилитрон. Катод стабилитрона подключается к плюсу источника питания, анод соединяется с токоограничивающим резистором. Далее выполните следующие действия:

  1. Подключите мультиметр к стабилитрону (красный щуп к катоду, черный к аноду), переключите его в режим определения постоянного напряжения и выберите диапазон измерения до 200 В.
  2. На источнике питания установите минимальное напряжение.
  3. Включите источник питания и постепенно увеличивайте уровень напряжения на нем.
  4. Как только увидите, что начал протекать ток через схему, прекратите регулировку источника питания и отследите на мультиметре напряжение стабилизации стабилитрона.

При проверке элементов внутри схем возникают некоторые трудности с определением их характеристик, так как измерительный прибор тестирует все части схемы, включенные между его измерительными щупами. Таким образом, нужно исключить возможные варианты протекания тока в схеме, в которую установлен нужный элемент. Самый простой вариант - выпаять один из выводов нужного вам для проверки диода. Тогда результаты измерения будут достоверными. После проведения выпаивания одного из выводов элемента можно проверить его любым из перечисленных выше способов.

Если выпаять один из выводов проблематично, отключите источник питания схемы и попробуйте проверить диод, не выпаивая его. При этом в схеме не должно быть элементов, шунтирующих проверяемый элемент. Результаты проверки также должны быть достоверны.

Как проверить диод мультиметром

Обычно выходят из строя силовые, выпрямительные диоды, т. к. через них проходит значительный прямой ток. Причиной неисправностей диодов может быть их перегрев, нарушение теплового контакта с радиатором или увеличение температуры окружающей среды, выход из строя других элементов схемы которые вызвали увеличение допустимого напряжение на диоде, низкое качество их исполнения.

Неисправность выпрямительных диодов может быть причиной повышения напряжения питания на компонентах схемы и возникновения дополнительных неисправностей. Отказ диода может выражаться в коротком замыкании между разными полупроводниками p-n слоя, отсутствию контакта между ними (обрыв) и появлению тока утечки.

Диод является полупроводником, работа которого основана на свойствах p-n перехода. Работа элемента заключается в том, что при прямом направлении анод (+) — катод (-) ток проходит через полупроводниковый переход, так как его сопротивление составляет всего несколько десятков Ом, а в противоположном направлении катод — анод (перевернутый диод) ток отсутствует, т. к. сопротивление перехода достаточно велико.

Используя это свойство p-n полупроводников не трудно проверить работоспособность диода мультиметром. На некоторых мультиметрах есть режим проверки диодов, отмечается он символом диода. При касании красным щупом прибора анода полупроводника, а отрицательного катода другим щупом, то на экране измерительного прибора, при исправном элементе, отобразится напряжение на переходе, в случае германиевых диодов от 0,3 до 0,7 В, и от 0,7 до 1 В для кремниевых полупроводников.

Режим проверки диодов на мультиметре

Различие величины прямого падения напряжения этих полупроводников зависят от различных сопротивлений переходов. Если перевернуть щупы, к положительному аноду прикоснуться чёрным щупом, а к отрицательному катоду красным, то дисплей отобразит падение напряжения близкое к нулю, (в случае рабочего элемента). Если у мультиметра отсутствует такой режим проверки, тогда работоспособность элемента проверяется в режиме сопротивления.

Ставят переключатель мультиметра в положении измерения сопротивлений 1 Ком, и далее красный щуп прикладывают к аноду элемента, а чёрный к катоду. Экран прибора должен отобразить значение сопротивления прямого перехода для исправного диода от десятков до сотен Ом, что зависит от типа полупроводника. Если материал полупроводника германий, то сопротивление прямого перехода меньше, чем у кремниевых элементов.

Если щупы перевернуть, то сопротивление p-n перехода будет велико (при исправном полупроводнике) от нескольких сотен Ком до Мом. Когда сопротивление обратного перехода заметно ниже, тогда можно говорить о недопустимом токе утечки и неисправном элементе.

Как проверить светодиод, стабилитрон, диод Шоттки мультиметром

Светодиоды проверяются таким же образом, как и силовые диоды — на сопротивление. При прямом подключении щупов прибора к светодиоду дисплей покажет небольшое сопротивление. При этом светодиод может иметь тусклое свечение. Если поменять щупы, то сопротивление перехода будет велико.

Диод Шоттки проверяется способом проверки обычного диода. Стабилитрон тоже проверяется в разных положениях электродов. Но этого для проверки стабилитронов недостаточно. Мультиметр может показать допустимые значения сопротивлений в обоих направлениях перехода, а напряжение стабилизации будет отличаться от необходимого значения.

Простая схема проверки стабилитрона

Для проверки напряжения стабилизации нужно собрать простейшую схему с токогасящим сопротивлением. Напряжение источника питания обычно берется на 2 — 3 В выше напряжения стабилизации стабилитрона. В качестве примера возьмем стабилитрон Д814Б с напряжением стабилизации 9 В и током стабилизации 5 ма. Ограничительный резистор можно приблизительно рассчитать по формуле:

R = U1-U2/I = 12 -9/0,005 = 600 Ом.

I – номинальный ток стабилитрона.

Поставив такое сопротивление в схему проверки стабилитрона, меряют напряжение стабилизации на стабилитроне, оно должно быть 9 В с учетом отклонения + 0,5 — 1 В, то есть напряжение стабилизации должно иметь значение 8 — 9,5 Вольт.

Как проверить диодный мост мультиметром

Простой диодный мост состоит из четырех диодов, собранных по мостовой схеме и предназначен для первичного выпрямления переменного напряжения. В случае грубой проверке диодного моста можно измерить сопротивление переходов отдельных диодов как обычно. Но тогда ток утечки нельзя будет проверить.

Для проверки этого важного параметра нужно отсоединить любой электрод полупроводника от электрической схемы. Проверить наличие тока утечки отдельных силовых диодов, не отключая их от схемы, возможно по разнице температуры корпусов полупроводников. У неисправного полупроводника температура корпуса будет выше, чем у исправных элементов.

Для такого метода проверки диодов на ток утечки важно чтобы они были отдельно стоящими и без радиаторов. Руками (при выключенном источнике питания) проверить разницу температуры не всегда получается. Поэтому температуру лучше измерять датчиком мультиметра, который имеет такой режим. Грубо проверить диод мультиметром, не выпаивая из платы можно обычным способом, и в большинстве случаев этого вполне достаточно.

Светодиоды в последнее время получили невероятно широкое распространение. Сегодня светодиоды можно встретить не только в высокотехнологичных приборах, но и в обыкновенных бытовых осветителях.

Мощные светодиоды LED COM SMB можно приобрести по доступной цене. Однако перед тем, как осуществлять штучную покупку необходимо провести проверку светодиода на работоспособность.

Естественно, перед покупкой или перед непосредственной установкой полупроводникового элемента в плату необходимо провести его полную проверку. Это позволит избежать траты времени.

Итак, как же можно проверить светодиод домашнему мастеру в бытовых условиях? Для этого потребуется следующее:

  • увеличительное стекло;
  • документация на светодиод (при необходимости);
  • тестер (мультиметр);
  • источник питания.

Дело в том, что для проверки светодиода небольшой мощности можно обойтись и без источника питания. Для этого необходимо лишь включить его напрямую в цепь.

Устанавливаем тестер в специальный режим проверки светодиодов и проверяем элемент. Сигналом должно служить яркое свечение. Однако, стоит помнить, что подключать тестер необходимо строго к определённым выводам (анод, катод).

Их определение и является основной задачей. Как правило, катод – короткий вывод, анод – длинный. Но может случиться так, что оба вывода будут одинаковой длины. В этом случае необходимо посмотреть элемент на просвет.

Сквозь стекло можно будет увидеть основания электродов. Тот, что большой является катодом. Однако это правило работает не всегда. Полную уверенность даст лишь подробная документация на элемент.

Большинство мультиметров обладают специальным слотом, включая элемент в который становится ясно, исправный он или нет. При подключении необходимо помнить, что отверстие C – это коллектор, а отверстие E – это эмиттер.

Для мощных моделей светодиодов этот тест может не подойти. В этом случае необходимо использовать любой источник питания (с заданной величиной тока, которая имеет необходимые ограничения в соответствии с мощностью элемента).