К концу 2012 года более 50% приложений работающих на х86 платформе виртуализированы. Вместе с тем виртуализировано только 20% бизнес критических приложений.

Это из-за того что ИТ отделы не доверяют платформам виртуализации? Считают ли они платформы виртуализации не достаточно стабильными для поддержки работы критически важных приложений?

За последние 10 лет VMware доказала что виртуализация это уже реальность, и, фактически, виртуализированные приложения часто более стабильны, когда работают на инфраструктуре под управлением VMware.

Тогда если доверие или стабильность не являются проблемой в чём же причина того что ИТ отделы еще не виртуализировали оставшиеся приложения?

Scale out
Scale out или горизонтальное масштабирование - добавление новых ресурсов в инфраструктуру, например, серверов в кластер.

Так как цены продолжают падать, а производительность расти то дешёвые, commodity (широкого потребления) сервера являются идеальным решением для горизонтального масштабирования, и могут быть собраны в большие кластера для объединения вычислительных ресурсов.

Последние семь лет архитекторы инфраструктур на VMware молились на горизонтальное масштабирование. Кто-то может аргументировать за использование именного этого подхода, но он тоже имеет свои нюансы, и всё зависит от требований бизнеса. Плюс горизонтального масштабирования в том, что commodity сервера дёшевы, и в случае выхода сервера из строя это влияет на небольшое количество ВМ. Минус в бОльших затратах на лицензии на vSphere, большие требования к площади ЦОД, и обычно такие commodity сервера не обладают большими вычислительными ресурсами.

Scale up
Вертикальное масштабирование - добавление вычислительных ресурсов в какой-то уже используемый сервер. Обычно это процессоры или оперативная память.

Обычно такие сервера довольно мощные - с поддержкой 4 процессоров и 512ГБ памяти. Кроме того встречаются системы с 8 процессорами и 1ТБ памяти, а некоторым повезло увидеть даже 16-ти процессорные сервера с 4ТБ памяти. И нет, это не мейнфреймы или что-то типа того, это сервера на основе классической х86 архитектуры.

Переход ко второй волне виртуализации, которая обеспечивает гибкость предоставляемую данной технологией для бизнес критических приложений, оказывает сегодня огромное давление на используемые сегодня инфраструктуры VMware из-за следующих проблем:

  • Недостаточные возможности по масштабированию. Нагрузки с высокими требованиями к объёму вычислительных ресурсов являются проблемой из-за ограниченного объёма ресурсов доступных с дешёвыми commodity серверами.
  • Недостаточная надёжность. Commodity оборудование или аппаратное обеспечение использующее такие компоненты может быть менее надёжным. Проблему надёжности можно решить с помощью функций о которых я расскажу в следующих статьях.
  • Увеличение сложности управления и рост операционных расходов. Легче управлять 100 серверами, а не 1000, ну и, как следствие, 10 серверами управлять проще чем 100. Тоже самое касается и операционных расходов - 10 серверов гораздо дешевле поддерживать чем 100.
Вертикальное масштабирование отлично подходит для бизнес критических приложений с их огромными требованиями к ресурсам. Привет, Monster VM! Все эти прожорливые критичные базы данных, огромные ERP системы, системы аналитики больших данных, JAVA приложения и так далее и тому подобное получат прямую выгоду от вертикального масштабирования.

С выходом vSphere 5 количество ресурсов, доступных одной ВМ выросло в 4 раза.

А с выходом vSphere 5.1 монструозные ВМ могут быть еще монструознее.

Для того чтобы vSphere 5.1 могла запустить ВМ-монстра планировщику необходимо иметь и спланировать запуск потоков на 64 физических процессорах. Не так много серверов, которые могут поддерживать столько ядер, а серверов с поддержкой 16 сокетов и 160 ядер и того меньше.

Всего существует два типа вертикального масштабирования серверов: glueless и glued. На русский язык эти слова переводятся так: без интегрирующих технологий и с интегрирующими технологиями, соответственно.

Glueless архитектура
Данная архитектура была разработана в Intel, и представлена в Intel Xeon E7.

Для связи между устройствами ввода-вывода, сетевыми интерфейсами и процессорам используется специально разработанная шина QPI.

В серверах с 4-мя процессоров все они соединяются между собой напрямую через эту шину. Glueless процессор использует один из каналов для подключения процессора к интерфейсам ввода-вывода, а остальные три для подключения к соседним процессорам.

В 8-ми процессорном сервере каждый процессор напрямую подключается к трём соседним, и через другой процессор к другим четырём.

Преимущества такой архитектуры:

  • Нет необходимости в специальной разработке или специализации у производителя серверов
  • Любой производитель серверов может выпускать 8-ми процессорные сервера
  • Снижается стоимость как 4-ёх так и 8-ми процессорного сервера
Недостатки:
  • Общая стоимость владения растёт при горизонтальном масштабировании
  • Архитектура ограничена 8-ми процессорными серверами
  • Тяжело поддерживать целостность кэша при увеличении сокетов
  • Нелинейный рост производительности
  • Соотношение цены к производительности падает
  • Неоптимальная эффективность при использовании больших ВМ
  • Вплоть до 65% пропускной способности шины уходит на широковещательные сообщения болтливого протокола QPI
В чём же причина болтливости протокола QPI? Для того чтобы достичь целостности процессорного кэша каждая операция на чтение должна быть реплицирована на все процессоры. Это можно сравнить с широковещательным пакетом в IP сети. Каждый процессор должен проверить у себя затребованную строку памяти, и в случае использования последней версии данных предоставить её. В случае если актуальные данные находятся в другом кэше протокол QPI с минимальными задержками копирует данную строку памяти из удалённого кэша. Таким образом на репликацию каждой операции чтения тратиться пропускная способность шины и такты кэша, которые могли бы использоваться для передачи полезных данных.

Основные приложения, производительность которых страдает от недостатков протокола QPI это Java приложения, большие БД, чувствительные к задержкам приложения.

Результатом вертикального масштабирования должно быть отсутствие бутылочного горлышка, иначе данная архитектура становится бессмысленной. Таким образом, линейность увеличения производительности должна соответствовать линейности добавления ресурсов.

Glued архитектура
Для решения описанных выше проблем разработчики аппаратного обеспечения разработали glued архитектуру. Данная архитектура использует внешний контроллер нод для организации взаимосвязи островков QPI - кластеров процессоров.


Intel QPI предлагает специальное масштабируемое решение - eXternal Node-Controllers (или XNC), практическая реализация которого разрабатывается сторонними OEM компаниями. Внешний контроллер нод, используемый начиная с Intel Xeon E7-4800, со встроенным контроллером памяти, включает в себя также систему Cache Coherent Non-Uniform Memory Access (ccNUMA) задача которой отслеживать актуальность данных в каждой строке памяти процессорного кэша были актуальные данные.

Задержки между процессором и памятью в ccNUMA зависят от местоположения этих двух компонентов в отношении друг друга, в результате XNC контроллеры становятся критически важным компонентом сервера, и очень небольшое количество производителей серверов могут разработать сервера с возможностью вертикального масштабирования.

Представим, что мы сделали сайт. Процесс был увлекательным и очень приятно наблюдать, как увеличивается число посетителей.

Но в какой-то момент, траффик начинает расти очень медленно, кто-то опубликовал ссылку на ваше приложение в Reddit или Hacker News , что-то случилось с исходниками проекта на GitHub и вообще, все стало как будто против вас.

Ко всему прочему, ваш сервер упал и не выдерживает постоянно растущей нагрузки. Вместо приобретения новых клиентов и/или постоянных посетителей, вы остались у разбитого корыта и, к тому же, с пустой страничкой.

Все ваши усилия по возобновлению работы безрезультатны – даже после перезагрузки, сервер не может справиться с потоком посетителей. Вы теряете трафик!

Никто не может предвидеть проблемы с трафиком. Очень немногие занимаются долгосрочным планированием, когда работают над потенциально высокодоходным проектом, чтобы уложиться в фиксированные сроки.

Как же тогда избежать всех этих проблем? Для этого нужно решить два вопроса: оптимизация и масштабирование .

Оптимизация

Первым делом, стоит провести обновление до последней версии PHP (текущая версия 5.5, использует OpCache ), проиндексировать базу данных и закэшировать статический контент (редко изменяющиеся страницы вроде About , FAQ и так далее).

Оптимизация затрагивает не только кэширование статических ресурсов. Также, есть возможность установить дополнительный не-Apache-сервер (например, Nginx ), специально предназначенный для обработки статического контента.

Идея заключается в следующем: вы помещаете Nginx перед вашим Apache-сервером (Ngiz будет frontend -сервером, а Apache — backend ), и поручаете ему, перехват запросов на статические ресурсы (т.е. *.jpg , *.png , *.mp4 , *.html …) и их обслуживание БЕЗ ОТПРАВЛЕНИЯ запроса на Apache.

Такая схема называется reverse proxy (её часто упоминают вместе с техникой балансировки нагрузки, о которой рассказано ниже).

Масштабирование

Существует два типа масштабирования – горизонтальное и вертикальное .

Мы говорим, что сайт масштабируем, когда он может выдерживать увеличение нагрузки без необходимости внесения изменений в программное обеспечение.

Вертикальное масштабирование

Представьте, что у вас имеется веб-сервер, обслуживающий веб-приложение. Этот сервер имеет следующие характеристики 4GB RAM , i5 CPU и 1TB HDD .

Он хорошо выполняет возложенные на него задачи, но чтобы лучше справляться с нарастающим трафиком, вы решаете заменить 4GB RAM на 16GB, устанавливаете новый i7 CPU и добавляете гибридный носитель PCIe SSD/HDD .

Сервер теперь стал более мощным и может выдерживать увеличенные нагрузки. Именно это и называется вертикальным масштабированием или «масштабированием вглубь » – вы улучшаете характеристики машины, чтобы сделать её более мощной.

Это хорошо проиллюстрировано на изображении ниже:

Горизонтальное масштабирование

С другой стороны, мы имеем возможность произвести горизонтальное масштабирование. В примере, приведенном выше, стоимость обновления железа едва ли будет меньше стоимости первоначальных затрат на приобретение серверного компьютера.

Это очень финансово затратно и часто не дает того эффекта, который мы ожидаем – большинство проблем масштабирования относятся к параллельному выполнению задач.

Если количества ядер процессора недостаточно для выполнения имеющихся потоков, то не имеет значения, насколько мощный установлен CPU – сервер все равно будет работать медленно, и заставит посетителей ждать.

Горизонтальное масштабирование подразумевает построение кластеров из машин (часто достаточно маломощных), связанных вместе для обслуживания веб-сайта.

В данном случае, используется балансировщик нагрузки (load balancer ) – машина или программа, которая занимается тем, что определяет, какому кластеру следует отправить очередной поступивший запрос.

А машины в кластере автоматически разделяют задачу между собой. В этом случае, пропускная способность вашего сайта возрастает на порядок по сравнению с вертикальным масштабированием. Это также известно как «масштабирование вширь ».

Есть два типа балансировщиков нагрузки – аппаратные и программные . Программный балансировщик устанавливается на обычную машину и принимает весь входящий трафик, перенаправляя его в соответствующий обработчик. В качестве программного балансировщика нагрузки, может выступить, например, Nginx .

Он принимает запросы на статические файлы и самостоятельно их обслуживает, не обременяя этим Apache. Другим популярным программным обеспечением для программной балансировки является Squid , который я использую в своей компании. Он предоставляет полный контроль над всеми возможными вопросами посредством очень дружественного интерфейса.

Аппаратные балансировщики представляет собой отдельную специальную машину, которая выполняет исключительно задачу балансировки и на которой, как правило, не установленного другого программного обеспечения. Наиболее популярные модели разработаны для обработки огромного количества трафика.

При горизонтальном масштабировании происходит следующее:


Заметьте, что два описанных способа масштабирования не являются взаимоисключающими – вы можете улучшать аппаратные характеристики машин (также называемых нодами — node ), используемых в масштабированной вширь кластерной системе.

В данной статье мы сфокусируемся на горизонтальном масштабировании, так как в большинстве случаев оно предпочтительнее (дешевле и эффективнее), хотя его и труднее реализовать с технической точки зрения.

Сложности с разделением данных

Имеется несколько скользких моментов, возникающих при масштабировании PHP-приложений. Узким местом здесь является база данных (мы еще поговорим об этом во второй части данного цикла).

Также, проблемы возникают с управлением данными сессий, так как залогинившись на одной машине, вы окажетесь неавторизованным, если балансировщик при следующем вашем запросе перебросит вас на другой компьютер. Есть несколько способов решения данной проблемы – можно передавать локальные данные между машинами, либо использовать постоянный балансировщик нагрузки.

Постоянный балансировщик нагрузки

Постоянный балансировщик нагрузки запоминает, где обрабатывался предыдущий запрос того или иного клиента и, при следующем запросе, отправляет запрос туда же.

Например, если я посещал наш сайт и залогинился там, то балансировщик нагрузки перенаправляет меня, скажем, на Server1 , запоминает меня там, и при следующем клике, я вновь буду перенаправлен на Server1 . Все это происходит для меня совершенно прозрачно.

Но что, если Server1 упал? Естественно, все данные сессии будут утеряны, а мне придется логиниться заново уже на новом сервере. Это очень неприятно для пользователя. Более того, это лишняя нагрузка на балансировщик нагрузки: ему нужно будет не только перенаправить тысячи людей на другие сервера, но и запомнить, куда он их перенаправил.

Это становится еще одним узким местом. А что, если единственный балансировщик нагрузки сам выйдет из строя и вся информации о расположении клиентов на серверах будет утеряна? Кто будет управлять балансировкой? Замысловатая ситуация, не правда ли?

Разделение локальных данных

Разделение данных о сессиях внутри кластера определенно кажется неплохим решением, но требует изменений в архитектуре приложения, хотя это того стоит, потому что узкое место становится широким. Падение одного сервера перестает фатально влиять на всю систему.

Известно, что данные сессии хранятся в суперглобальном PHP-массиве $_SESSION . Также, ни для кого не секрет, что этот массив $_SESSION хранится на жестком диске.

Соответственно, так как диск принадлежит той или иной машине, то другие к нему доступа не имеют. Тогда как же организовать к нему общий доступ для нескольких компьютеров?

Замечу, что обработчики сессий в PHP могут быть переопределены – вы можете определить свой собственный класс/функцию для управления сессиями.

Использование базы данных

Используя собственный обработчик сессий, мы можем быть уверены, что вся информация о сессиях хранится в базе данных. База данных должна находиться на отдельном сервере (или в собственном кластере). В таком случае, равномерно нагруженные сервера, будут заниматься только обработкой бизнес-логики.

Хотя данный подход работает достаточно хорошо, в случае большого трафика, база данных становится не просто уязвимым местом (потеряв её, вы потеряете все), к ней будет много обращений из-за необходимости записывать и считывать данные сессий.

Это становится очередным узким местом в нашей системе. В этом случае, можно применить масштабирование вширь, что проблематично при использовании традиционных баз данных типа MySQL , Postgre и тому подобных (эта проблема будет раскрыта во второй части цикла).

Использование общей файловой системы

Можно настроить сетевую файловую систему, к которой будут обращаться все серверы, и работать с данными сессий. Так делать не стоит. Это совершенно неэффективный подход, при котором велика вероятность потери данных, к тому же, все это работает очень медленно.

Это еще одна потенциальная опасность, даже более опасная, чем в случае с базой данных, описанном выше. Активация общей файловой системы очень проста: смените значение session.save_path в файле php.ini , но категорически рекомендуется использовать другой способ.

Если вы все-таки хотите реализовать вариант с общей файловой системой, то есть гораздо более лучшее решение — GlusterFS .

Memcached

Вы можете использовать memcached для хранения данных сессий в оперативной памяти. Это очень небезопасный способ, так как данные сессий будут перезаписаны, как только закончится свободное дисковое пространство.

Какое-либо постоянство отсутствует – данные о входе будут храниться до тех пор, пока memcached -сервер запущен и имеется свободное пространство для хранения этих данных.

Вы можете быть удивлены – разве оперативная память не отдельна для каждой машины? Как применить данный способ к кластеру? Memcached имеет возможность виртуально объединять всю доступную RAM нескольких машин в единое хранилище:

Чем больше машин у вас в наличии, тем больше будет размер созданного общего хранилища. Вам не нужно вручную распределять память внутри хранилища, однако вы можете управлять этим процессом, указывая, какое количество памяти можно выделить от каждой машины для создания общего пространства.

Таким образом, необходимое количество памяти остается в распоряжении компьютеров для собственных нужд. Остальная же часть используется для хранения данных сессий всего кластера.

В кэш, помимо сессий могут попадать и любые другие данные по вашему желанию, главное чтобы хватило свободного места. Memcached это прекрасное решение, которое получило широкое распространение.

Использовать этот способ в PHP-приложениях очень легко: нужно изменить значение в файле php.ini :

session.save_handler = memcache session.save_path = "tcp://path.to.memcached.server:port"

Redis Cluster

Redis это не SQL хранилище данных, расположенное в оперативной памяти, подобно Memcached , однако оно имеет постоянство и поддерживает более сложные типы данных, чем просто строки PHP-массива в форме пар «key => value ».

Это решение не имеет поддержки кластеров, поэтому реализация его в горизонтальной системе масштабирования не так проста, как может показаться на первый взгляд, но вполне выполняема. На самом деле, альфа-версия кластерной версии уже вышла и можно её использовать.

Если сравнивать Redis с решениями вроде Memcached , то он представляет собой нечто среднее между обычной базой данных и Memcached .

Масштабируемость - способность устройства увеличивать свои
возможности
путем наращивания числа функциональных блоков,
выполняющих одни и
те же задачи.
Глоссарий.ru

Обычно о масштабировании начинают думать тогда, когда один
сервер не справляется с возложенной на него работой. С чем именно он не
справляется? Работа любого web-сервера по большому счету сводится к основному
занятию компьютеров - обработке данных. Ответ на HTTP (или любой другой) запрос
подразумевает проведение некоторых операций над некими данными. Соответственно,
у нас есть две основные сущности - это данные (характеризуемые своим объемом) и
вычисления (характеризуемые сложностью). Сервер может не справляться со своей
работой по причине большого объема данных (они могут физически не помещаться на
сервере), либо по причине большой вычислительной нагрузки. Речь здесь идет,
конечно, о суммарной нагрузке - сложность обработки одного запроса может быть
невелика, но большое их количество может «завалить» сервер.

В основном мы будем говорить о масштабировании на примере
типичного растущего web-проекта, однако описанные здесь принципы подходят и для
других областей применения. Сначала мы рассмотрим архитектуру проекта и простое
распределение ее составных частей на несколько серверов, а затем поговорим о
масштабировании вычислений и данных.

Типичная архитектура сайта

Жизнь типичного сайта начинается с очень простой архитектуры
- это один web-сервер (обычно в его роли выступает Apache),
который занимается всей работой по обслуживанию HTTP-запросов,
поступающих от посетителей. Он отдает клиентам так называемую «статику», то
есть файлы, лежащие на диске сервера и не требующие обработки: картинки (gif,
jpg, png), листы стилей (css), клиентские скрипты (js, swf). Тот же сервер
отвечает на запросы, требующие вычислений - обычно это формирование
html-страниц, хотя иногда «на лету» создаются и изображения и другие документы.
Чаще всего ответы на такие запросы формируются скриптами, написанными на php,
perl или других языках.

Минус такой простой схемы работы в том, что разные по
характеру запросы (отдача файлов с диска и вычислительная работа скриптов)
обрабатываются одним и тем же web-сервером. Вычислительные запросы требуют
держать в памяти сервера много информации (интерпретатор скриптового языка,
сами скрипты, данные, с которыми они работают) и могут занимать много
вычислительных ресурсов. Выдача статики, наоборот, требует мало ресурсов
процессора, но может занимать продолжительное время, если у клиента низкая
скорость связи. Внутреннее устройство сервера Apache предполагает, что каждое
соединение обрабатывается отдельным процессом. Это удобно для работы скриптов,
однако неоптимально для обработки простых запросов. Получается, что тяжелые (от
скриптов и прочих данных) процессы Apache много времени проводят в ожидании (сначала при получении
запроса, затем при отправке ответа), впустую занимая память сервера.

Решение этой проблемы - распределение работы по обработке
запросов между двумя разными программами - т.е. разделение на frontend и
backend. Легкий frontend-сервер выполняет задачи по отдаче статики, а остальные
запросы перенаправляет (проксирует) на backend, где выполняется формирование
страниц. Ожидание медленных клиентов также берет на себя frontend, и если он использует
мультиплексирование (когда один процесс обслуживает нескольких клиентов - так
работают, например, nginx или lighttpd), то ожидание практически ничего не
стоит.

Из других компонент сайта следует отметить базу данных, в
которой обычно хранятся основные данные системы - тут наиболее популярны
бесплатные СУБД MySQL и PostgreSQL. Часто отдельно выделяется хранилище
бинарных файлов, где содержатся картинки (например, иллюстрации к статьям
сайта, аватары и фотографии пользователей) или другие файлы.

Таким образом, мы получили схему архитектуры, состоящую из
нескольких компонент.

Обычно в начале жизни сайта все компоненты архитектуры
располагаются на одном сервере. Если он перестает справляться с нагрузкой, то
есть простое решение - вынести наиболее легко отделяемые части на другой
сервер. Проще всего начать с базы данных - перенести ее на отдельный сервер и
изменить реквизиты доступа в скриптах. Кстати, в этот момент мы сталкиваемся с
важностью правильной архитектуры программного кода. Если работа с базой данных
вынесена в отдельный модуль, общий для всего сайта - то исправить параметры
соединения будет просто.

Пути дальнейшего разделения компонент тоже понятны - например, можно вынести frontend на отдельный сервер. Но обычно frontend
требует мало системных ресурсов и на этом этапе его вынос не даст существенного
прироста производительности. Чаще всего сайт упирается в производительность
скриптов - формирование ответа (html-страницы) занимает слишком долгое время.
Поэтому следующим шагом обычно является масштабирование backend-сервера.

Распределение вычислений

Типичная ситуация для растущего сайта - база данных уже
вынесена на отдельную машину, разделение на frontend и backend выполнено,
однако посещаемость продолжает увеличиваться и backend не успевает обрабатывать
запросы. Это значит, что нам необходимо распределить вычисления на несколько
серверов. Сделать это просто - достаточно купить второй сервер и поставить на
него программы и скрипты, необходимые для работы backend.
После этого надо сделать так, чтобы запросы пользователей распределялись
(балансировались) между полученными серверами. О разных способах балансировки
будет сказано ниже, пока же отметим, что обычно этим занимается frontend,
который настраивают так, чтобы он равномерно распределял запросы между
серверами.

Важно, чтобы все backend-серверы были способны правильно
отвечать на запросы. Обычно для этого необходимо, чтобы каждый из них работал с
одним и тем же актуальным набором данных. Если мы храним всю информацию в единой
базе данных, то СУБД сама обеспечит совместный доступ и согласованность данных.
Если же некоторые данные хранятся локально на сервере (например, php-сессии
клиента), то стоит подумать о переносе их в общее хранилище, либо о более
сложном алгоритме распределения запросов.

Распределить по нескольким серверам можно не только работу
скриптов, но и вычисления, производимые базой данных. Если СУБД выполняет много
сложных запросов, занимая процессорное время сервера, можно создать несколько
копий базы данных на разных серверах. При этом возникает вопрос синхронизации
данных при изменениях, и здесь применимы несколько подходов.

  • Синхронизация на уровне приложения . В этом случае наши
    скрипты самостоятельно записывают изменения на все копии базы данных (и сами несут
    ответственность за правильность данных). Это не лучший вариант, поскольку он
    требует осторожности при реализации и весьма неустойчив к ошибкам.
  • Репликация - то есть автоматическое тиражирование
    изменений, сделанных на одном сервере, на все остальные сервера. Обычно при
    использовании репликации изменения записываются всегда на один и тот же сервер - его называют master, а остальные копии - slave. В большинстве СУБД есть
    встроенные или внешние средства для организации репликации. Различают
    синхронную репликацию - в этом случае запрос на изменение данных будет ожидать,
    пока данные будут скопированы на все сервера, и лишь потом завершится успешно - и асинхронную - в этом случае изменения копируются на slave-сервера с
    задержкой, зато запрос на запись завершается быстрее.
  • Multi-master репликация. Этот подход аналогичен
    предыдущему, однако тут мы можем производить изменение данных, обращаясь не к
    одному определенному серверу, а к любой копии базы. При этом изменения
    синхронно или асинхронно попадут на другие копии. Иногда такую схему называют
    термином «кластер базы данных».

Возможны разные варианты распределения системы по серверам.
Например, у нас может быть один сервер базы данных и несколько backend (весьма
типичная схема), или наоборот - один backend и несколько БД. А если мы масштабируем
и backend-сервера, и базу данных, то можно объединить backend и копию базы на
одной машине. В любом случае, как только у нас появляется несколько экземпляров
какого-либо сервера, возникает вопрос, как правильно распределить между ними
нагрузку.

Методы балансировки

Пусть мы создали несколько серверов (любого назначения - http, база данных и т.п.), каждый из которых может обрабатывать запросы. Перед
нами встает задача - как распределить между ними работу, как узнать, на какой
сервер отправлять запрос? Возможны два основных способа распределения запросов.

  • Балансирующий узел . В этом случае клиент шлет запрос на один
    фиксированный, известный ему сервер, а тот уже перенаправляет запрос на один из
    рабочих серверов. Типичный пример - сайт с одним frontend и несколькими
    backend-серверами, на которые проксируются запросы. Однако «клиент» может
    находиться и внутри нашей системы - например, скрипт может слать запрос к
    прокси-серверу базы данных, который передаст запрос одному из серверов СУБД.
    Сам балансирующий узел может работать как на отдельном сервере, так и на одном
    из рабочих серверов.

    Преимущества этого подхода в том,
    что клиенту ничего не надо знать о внутреннем устройстве системы - о количестве
    серверов, об их адресах и особенностях - всю эту информацию знает только
    балансировщик. Однако недостаток в том, что балансирующий узел является единой
    точкой отказа системы - если он выйдет из строя, вся система окажется
    неработоспособна. Кроме того, при большой нагрузке балансировщик может просто перестать
    справляться со своей работой, поэтому такой подход применим не всегда.

  • Балансировка на стороне клиента . Если мы хотим избежать
    единой точки отказа, существует альтернативный вариант - поручить выбор сервера
    самому клиенту. В этом случае клиент должен знать о внутреннем устройстве нашей
    системы, чтобы уметь правильно выбирать, к какому серверу обращаться.
    Несомненным плюсом является отсутствие точки отказа - при отказе одного из
    серверов клиент сможет обратиться к другим. Однако платой за это является
    усложнение логики клиента и меньшая гибкость балансировки.


Разумеется, существуют и комбинации этих подходов. Например,
такой известный способ распределения нагрузки, как DNS-балансировка, основан на
том, что при определении IP-адреса сайта клиенту выдается
адрес одного из нескольких одинаковых серверов. Таким образом, DNS выступает в
роли балансирующего узла, от которого клиент получает «распределение». Однако
сама структура DNS-серверов предполагает отсутствие точки отказа за счет
дублирования - то есть сочетаются достоинства двух подходов. Конечно, у такого
способа балансировки есть и минусы - например, такую систему сложно динамически
перестраивать.

Работа с сайтом обычно не ограничивается одним запросом.
Поэтому при проектировании важно понять, могут ли последовательные запросы
клиента быть корректно обработаны разными серверами, или клиент должен быть
привязан к одному серверу на время работы с сайтом. Это особенно важно, если на
сайте сохраняется временная информация о сессии работы пользователя (в этом
случае тоже возможно свободное распределение - однако тогда необходимо хранить
сессии в общем для всех серверов хранилище). «Привязать» посетителя к
конкретному серверу можно по его IP-адресу (который, однако, может меняться),
или по cookie (в которую заранее записан идентификатор сервера), или даже
просто перенаправив его на нужный домен.

С другой стороны, вычислительные сервера могут быть и не равноправными.
В некоторых случаях выгодно поступить наоборот, выделить отдельный сервер для
обработки запросов какого-то одного типа - и получить вертикальное разделение
функций. Тогда клиент или балансирующий узел будут выбирать сервер в
зависимости от типа поступившего запроса. Такой подход позволяет отделить
важные (или наоборот, не критичные, но тяжелые) запросы от остальных.

Распределение данных

Мы научились распределять вычисления, поэтому большая
посещаемость для нас не проблема. Однако объемы данных продолжают расти,
хранить и обрабатывать их становится все сложнее - а значит, пора строить
распределенное хранилище данных. В этом случае у нас уже не будет одного или
нескольких серверов, содержащих полную копию базы данных. Вместо этого, данные
будут распределены по разным серверам. Какие возможны схемы распределения?

  • Вертикальное распределение (vertical partitioning) - в простейшем случае
    представляет собой вынесение отдельных таблиц базы данных на другой сервер. При
    этом нам потребуется изменить скрипты, чтобы обращаться к разным серверам за
    разными данными. В пределе мы можем хранить каждую таблицу на отдельном сервере
    (хотя на практике это вряд ли будет выгодно). Очевидно, что при таком
    распределении мы теряем возможность делать SQL-запросы, объединяющие данные из
    двух таблиц, находящихся на разных серверах. При необходимости можно реализовать
    логику объединения в приложении, но это будет не столь эффективно, как в СУБД.
    Поэтому при разбиении базы данных нужно проанализировать связи между таблицами,
    чтобы разносить максимально независимые таблицы.

    Более сложный случай
    вертикального распределения базы - это декомпозиция одной таблицы, когда часть
    ее столбцов оказывается на одном сервере, а часть - на другом. Такой прием
    встречается реже, но он может использоваться, например, для отделения маленьких
    и часто обновляемых данных от большого объема редко используемых.

  • Горизонтальное распределение (horizontal partitioning) - заключается в
    распределении данных одной таблицы по нескольким серверам. Фактически, на
    каждом сервере создается таблица такой же структуры, и в ней хранится
    определенная порция данных. Распределять данные по серверам можно по разным
    критериям: по диапазону (записи с id < 100000 идут на сервер А, остальные - на сервер Б), по списку значений (записи типа «ЗАО» и «ОАО» сохраняем на сервер
    А, остальные - на сервер Б) или по значению хэш-функции от некоторого поля
    записи. Горизонтальное разбиение данных позволяет хранить неограниченное
    количество записей, однако усложняет выборку. Наиболее эффективно можно выбирать
    записи только когда известно, на каком сервере они хранятся.

Для выбора правильной схемы распределения данных необходимо
внимательно проанализировать структуру базы. Существующие таблицы (и, возможно,
отдельные поля) можно классифицировать по частоте доступа к записям, по частоте
обновления и по взаимосвязям (необходимости делать выборки из нескольких
таблиц).

Как упоминалось выше, кроме базы данных сайту часто требуется
хранилище для бинарных файлов. Распределенные системы хранения файлов
(фактически, файловые системы) можно разделить на два класса.

  • Работающие на уровне операционной системы . При этом для
    приложения работа с файлами в такой системе не отличается от обычной работы с
    файлами. Обмен информацией между серверами берет на себя операционная система.
    В качестве примеров таких файловых систем можно привести давно известное
    семейство NFS или менее известную, но более современную систему Lustre.
  • Реализованные на уровне приложения распределенные
    хранилища подразумевают, что работу по обмену информацией производит само
    приложение. Обычно функции работы с хранилищем для удобства вынесены в
    отдельную библиотеку. Один из ярких примеров такого хранилища - MogileFS, разработанная
    создателями LiveJournal. Другой распространенный пример - использование
    протокола WebDAV и поддерживающего его хранилища.

Надо отметить, что распределение данных решает не только
вопрос хранения, но и частично вопрос распределения нагрузки - на каждом
сервере становится меньше записей, и потому обрабатываются они быстрее.
Сочетание методов распределения вычислений и данных позволяет построить
потенциально неограниченно-масштабируемую архитектуру, способную работать с
любым количеством данных и любыми нагрузками.

Выводы

Подводя итог сказанному, сформулируем выводы в виде кратких тезисов.

  • Две основные (и связанные между собой) задачи масштабирования - это распределение вычислений и распределение данных
  • Типичная архитектура сайта подразумевает разделение ролей и
    включает frontend, backend, базу данных и иногда хранилище файлов
  • При небольших объемах данных и больших нагрузках применяют
    зеркалирование базы данных - синхронную или асинхронную репликацию
  • При больших объемах данных необходимо распределить базу данных - разделить
    ее вертикально или горизонтально
  • Бинарные файлы хранятся в распределенных файловых системах
    (реализованных на уровне ОС или в приложении)
  • Балансировка (распределение запросов) может быть равномерная или
    с разделением по функционалу; с балансирующим узлом, либо на стороне клиента
  • Правильное сочетание методов позволит держать любые нагрузки;)

Ссылки

Продолжить изучение этой темы можно на интересных англоязычных сайтах и блогах.

С ростом популярности web-приложения его поддержка неизбежно начинает требовать всё больших и больших ресурсов. Первое время с нагрузкой можно (и, несомненно, нужно) бороться путём оптимизации алгоритмов и/или архитектуры самого приложения. Однако, что делать, если всё, что можно было оптимизировать, уже оптимизировано, а приложение всё равно не справляется с нагрузкой?

Оптимизация

Первым делом стоит сесть и подумать, а всё ли вам уже удалось оптимизировать:
  • оптимальны ли запросы к БД (анализ EXPLAIN, использование индексов)?
  • правильно ли хранятся данные (SQL vs NoSQL)?
  • используется ли кеширование?
  • нет ли излишних запросов к ФС или БД?
  • оптимальны ли алгоритмы обработки данных?
  • оптимальны ли настройки окружения: Apache/Nginx, MySQL/PostgreSQL, PHP/Python?
О каждом из этих пунктов можно написать отдельную статью, так что детальное их рассмотрение в рамках данной статьи явно избыточно. Важно лишь понимать, что перед тем как приступить к масштабированию приложения, крайне желательно максимально оптимизировать его работу – ведь возможно тогда никакого масштабирования и не потребуется.

Масштабирование

И так, допустим, что оптимизация уже проведена, но приложение всё равно не справляется с нагрузкой. В таком случае решением проблемы, очевидно, может послужить разнесение его по нескольким хостам, с целью увеличения общей производительности приложения за счёт увеличения доступных ресурсов. Такой подход имеет официальное название – «масштабирование» (scale) приложения. Точнее говоря, под «масштабируемостью » (scalability) называется возможность системы увеличивать свою производительность при увеличении количества выделяемых ей ресурсов. Различают два способа масштабирования: вертикальное и горизонтальное. Вертикальное масштабирование подразумевает увеличение производительности приложения при добавлении ресурсов (процессора, памяти, диска) в рамках одного узла (хоста). Горизонтальное масштабирование характерно для распределённых приложений и подразумевает рост производительности приложения при добавлении ещё одного узла (хоста).

Понятно, что самым простым способом будет простое обновление железа (процессора, памяти, диска) – то есть вертикальное масштабирование. Кроме того, этот подход не требует никаких доработок приложения. Однако, вертикальное масштабирование очень быстро достигает своего предела, после чего разработчику и администратору ничего не остаётся кроме как перейти к горизонтальному масштабированию приложения.

Архитектура приложения

Большинство web-приложений априори являются распределёнными, так как в их архитектуре можно выделить минимум три слоя: web-сервер, бизнес-логика (приложение), данные (БД, статика).

Каждый их этих слоёв может быть масштабирован. Поэтому если в вашей системе приложение и БД живут на одном хосте – первым шагом, несомненно, должно стать разнесение их по разным хостам.

Узкое место

Приступая к масштабированию системы, первым делом стоит определить, какой из слоёв является «узким местом» - то есть работает медленнее остальной системы. Для начала можно воспользоваться банальными утилитами типа top (htop) для оценки потребления процессора/памяти и df, iostat для оценки потребления диска. Однако, желательно выделить отдельный хост, с эмуляцией боевой нагрузки (c помощью или JMeter), на котором можно будет профилировать работу приложения с помощью таких утилит как xdebug , и так далее. Для выявления узких запросов к БД можно воспользоваться утилитами типа pgFouine (понятно, что делать это лучше на основе логов с боевого сервера).

Обычно всё зависит от архитектуры приложения, но наиболее вероятными кандидатами на «узкое место» в общем случае являются БД и код. Если ваше приложение работает с большим объёмом пользовательских данных, то «узким местом», соответственно, скорее всего будет хранение статики.

Масштабирование БД

Как уже говорилось выше, зачастую узким местом в современных приложениях является БД. Проблемы с ней делятся, как правило, на два класса: производительность и необходимость хранения большого количества данных.

Снизить нагрузку на БД можно разнеся её на несколько хостов. При этом остро встаёт проблема синхронизации между ними, решить которую можно путём реализации схемы master/slave с синхронной или асинхронной репликацией. В случае с PostgreSQL реализовать синхронную репликацию можно с помощью Slony-I , асинхронную – PgPool-II или WAL (9.0). Решить проблему разделения запросов чтения и записи, а так же балансировки нагрузку между имеющимися slave’ами, можно с помощью настройки специального слоя доступа к БД (PgPool-II).

Проблему хранения большого объёма данных в случае использования реляционных СУБД можно решить с помощью механизма партицирования (“partitioning” в PostgreSQL), либо разворачивая БД на распределённых ФС типа Hadoop DFS .

Однако, для хранения больших объёмов данных лучшим решением будет «шардинг » (sharding) данных, который является встроенным преимуществом большинства NoSQL БД (например, MongoDB).

Кроме того, NoSQL БД в общем работают быстрее своих SQL-братьев за счёт отсутствия overhead’а на разбор/оптимизацию запроса, проверки целостности структуры данных и т.д. Тема сравнения реляционных и NoSQL БД так же довольно обширна и заслуживает отдельной статьи .

Отдельно стоит отметить опыт Facebook, который используют MySQL без JOIN-выборок. Такая стратегия позволяет им значительно легче масштабировать БД, перенося при этом нагрузку с БД на код, который, как будет описано ниже, масштабируется проще БД.

Масштабирование кода

Сложности с масштабированием кода зависят от того, сколько разделяемых ресурсов необходимо хостам для работы вашего приложения. Будут ли это только сессии, или потребуется общий кеш и файлы? В любом случае первым делом нужно запустить копии приложения на нескольких хостах с одинаковым окружением.

Далее необходимо настроить балансировку нагрузки/запросов между этими хостами. Сделать это можно как на уровне TCP (haproxy), так и на HTTP (nginx) или DNS .

Следующим шагом нужно сделать так, что бы файлы статики, cache и сессии web-приложения были доступны на каждом хосте. Для сессий можно использовать сервер, работающий по сети (например, memcached). В качестве сервера кеша вполне разумно использовать тот же memcached, но, естественно, на другом хосте.

Файлы статики можно смонтировать с некого общего файлового хранилища по NFS /CIFS или использовать распределённую ФС (HDFS , GlusterFS , Ceph).

Так же можно хранить файлы в БД (например, Mongo GridFS), решая тем самым проблемы доступности и масштабируемости (с учётом того, что для NoSQL БД проблема масштабируемости решена за счёт шардинга).

Отдельно стоит отметить проблему деплоймента на несколько хостов. Как сделать так, что бы пользователь, нажимая «Обновить», не видел разные версии приложения? Самым простым решением, на мой взгляд, будет исключение из конфига балансировщика нагрузки (web-сервера) не обновлённых хостов, и последовательного их включения по мере обновления. Так же можно привязать пользователей к конкретным хостам по cookie или IP. Если же обновление требует значимых изменений в БД, проще всего, вообще временно закрыть проект.

Масштабирование ФС

При необходимости хранения большого объёма статики можно выделить две проблемы: нехватка места и скорость доступа к данным. Как уже было написано выше, проблему с нехваткой места можно решить как минимум тремя путями: распределённая ФС, хранение данных в БД с поддержкой шардинга и организация шардинга «вручную» на уровне кода.

При этом стоит понимать, что раздача статики тоже не самая простая задача, когда речь идёт о высоких нагрузках. Поэтому в вполне резонно иметь множество серверов предназначенных для раздачи статики. При этом, если мы имеем общее хранилище данных (распределённая ФС или БД), при сохранении файла мы можем сохранять его имя без учёта хоста, а имя хоста подставлять случайным образом при формировании страницы (случайным образом балансирую нагрузку между web-серверами, раздающими статику). В случае, когда шардинг реализуется вручную (то есть, за выбор хоста, на который будут залиты данные, отвечает логика в коде), информация о хосте заливки должна либо вычисляться на основе самого файла, либо генерироваться на основании третьих данных (информация о пользователе, количестве места на дисках-хранилищах) и сохраняться вместе с именем файла в БД.

Мониторинг

Понятно, что большая и сложная система требует постоянного мониторинга. Решение, на мой взгляд, тут стандартное – zabbix, который следит за нагрузкой/работой узлов системы и monit для демонов для подстраховки.

Заключение

Выше кратко рассмотрено множество вариантов решений проблем масштабирования web-приложения. Каждый из них обладает своими достоинствами и недостатками. Не существует некоторого рецепта, как сделать всё хорошо и сразу – для каждой задачи найдётся множество решений со своими плюсами и минусами. Какой из них выбрать – решать вам.

Модель доверенная подсистема (или доверенный сервер)

В некоторых ситуациях может потребоваться более одного доверенного удостоверения, например, при наличии двух групп пользователей, одна из которых должна быть авторизована на осуществление операций чтения/записи, а другая – только операций чтения. Использование множества доверенных удостоверений сервиса обеспечивает возможность более детального контроля доступа к ресурсам и аудита без особого влияния на масштабируемость. На рис. 14 показана модель с применением множества доверенных удостоверений сервиса.

Модель с применением множества доверенных удостоверений сервиса

Вертикальное и горизонтальное масштабирование

Подход к реализации масштабирования является критически важным аспектом проектирования. Независимо от того, планируется ли выполнять горизонтальное

масштабирование решения с помощью кластера с балансировкой нагрузки или секционированной базы данных, дизайн должен обеспечивать поддержку выбранной опции. Существует два основных типа масштабирования: вертикальное (большой блок) и

горизонтальное (больше блоков).

При вертикальном масштабировании поддержка повышенной нагрузки обеспечивается через введение в существующие серверы дополнительного оборудования, такого как процессоры, оперативная память и сетевые интерфейсные платы (network interface cards, NIC). Такой простой вариант не добавляет затрат на обслуживание и поддержку, но может быть экономически выгодным лишь до определенного момента. Однако всегда сохраняется вероятность сбоя, что является риском. Кроме того, введение дополнительного оборудования в существующие серверы обеспечивает желаемые результаты не бесконечно, и получение последних 10% расчетной производительности путем наращивания мощностей одного компьютера может быть очень дорогим удовольствием.

Эффективного вертикального масштабирования приложения можно добиться лишь при условии соответствующего вертикального масштабирования базовой инфраструктуры, среды выполнения и архитектуры компьютера. Продумайте, какие ресурсы ограничивают производительность приложения. Например, если это связано с нехваткой памяти или низкой пропускной способностью сети, добавление процессоров ничего не даст.

При горизонтальном масштабировании добавляется больше серверов и используются решения с балансировкой нагрузки и кластеризацией. Кроме возможности обработки большей нагрузки, горизонтальное масштабирование смягчает последствия сбоев оборудования. Если один из серверов выходит из строя, другие серверы кластера берут на себя его нагрузку. Например, уровень представления и бизнес-уровень приложения могут размещаться на нескольких Веб-серверах с балансировкой нагрузки, образующих Веб-ферму. Или можно физически отделить бизнес-логику приложения и использовать для нее отдельный средний уровень с балансировкой нагрузки, но при этом размещать уровень представления на внешнем уровне с балансировкой нагрузки. Если приложение имеет ограничения по вводу/выводу и должно поддерживать очень большую базу данных, ее можно распределить по нескольким серверам баз данных. Как правило, способность приложения масштабироваться горизонтально больше зависит от его архитектуры, чем от базовой инфраструктуры.

Вопросы вертикального масштабирования

Вертикальное масштабирование через повышение мощности процессора и увеличение объема памяти может быть экономически эффективным решением. Также при таком подходе не возникает необходимости в дополнительных затратах на управление, как с горизонтальным масштабированием в связи с применением Веб-ферм и кластеризации. Прежде всего, следует рассмотреть варианты вертикального масштабирования и провести тестирование производительности, чтобы убедиться в том, что вертикальное масштабирование решения соответствует заданному критерию масштабирования и обеспечивает приемлемый уровень производительности для требуемого числа одновременно работающих пользователей. Необходимо выработать план масштабирования для системы, который будет отражать перспективы ее роста.

Проектирование с поддержкой горизонтального масштабирования

Если вертикальное масштабирование решения не обеспечивает требуемой масштабирумости из-за достижения предельных показателей для процессора, подсистемы ввода/вывода или памяти, необходимо выполнять горизонтальное масштабирование и вводить дополнительные серверы. Для обеспечения эффективного горизонтального масштабирования приложения при проектировании пользуйтесь следующими практиками:

Узкие места идентификации и горизонтального масштабирования. Часто узким местом являются совместно используемые плохо масштабируемые в вертикальном направлении ресурсы. Например, имеется единственный экземпляр SQL Server, с которым работают множество серверов приложений. В этом случае разделение данных таким образом, чтобы они могли обслуживаться несколькими экземплярами SQL Server, обеспечит возможность горизонтального масштабирования решения. Если существует вероятность того, что узким местом станет сервер базы данных, предусмотрите секционирование данных при проектировании, это избавит от многих проблем в будущем.

Слабо связанный и многослойный дизайн. Слабо связанный многослойный дизайн с четкими интерфейсами, которые могут использоваться удаленно, проще масштабировать горизонтально, чем дизайн, использующий тесно связанные слои с детализированными интерфейсами. Многослойный дизайн будет иметь естественные точки разделения, что делает его идеальным для горизонтального масштабирования в границах уровней. Главное, правильно определить границы. Например, бизнес-логику проще перенести в ферму серверов приложений среднего уровня с балансировкой нагрузки.

Компромиссы и последствия их принятия

Следует учесть аспекты масштабируемости, которые могут быть разными для разных слоев, уровней или типов данных. Выявление необходимых компромиссов позволит увидеть, в каких аспектах имеется гибкость, а в каких нет. В некоторых случаях вертикальное масштабирование с последующим горизонтальным масштабированием с применением Веб-серверов или серверов приложений не является наилучшим подходом. Например, можно установить 8- процессорный сервер, но из соображений экономии, скорее всего, вместо одного большого сервера будут использоваться несколько меньших серверов.

С другой стороны, в определенных ситуациях, в зависимости от роли данных и их использования, вертикальное масштабирование с последующим горизонтальным масштабированием может быть оптимальным подходом для серверов баз данных. Однако возможности балансировки нагрузки и обработки отказов не бесконечны, и количество серверов, которые могут быть охвачены этими процессами, ограничено. Также влияние оказывают и другие аспекты, такие как секционирование базы данных. Кроме технических вопросов и вопросов производительности, нельзя забывать об эксплуатации и управлении и об общей стоимости всей системы.

Как правило, выполняется оптимизация цены и производительности в рамках, налагаемых всеми остальными ограничениями. Например, использование четырех 2-процессорных Веб-

серверов/серверов приложений может быть более оптимальным вариантом с точки зрения цены и производительности по сравнению с использованием двух 4-процессорных серверов. Однако должны быть учтены и другие ограничения, такие как какое максимальное число серверов, которые можно разместить в конкретной инфраструктуре балансировки нагрузки, а также энергопотребление или предоставляемая площадь в дата-центре.

Для реализации ферм серверов и для размещения сервисов могут использоваться виртуализированные серверы. Такой подход поможет найти оптимальное соотношение производительности и стоимости, обеспечивая при этом максимальное использование ресурсов и рентабельность инвестиций.

Компоненты без сохранения состояния

Применение компонентов без сохранения состояния (не сохраняющие промежуточного состояния компоненты, которые могут быть реализованы в клиентской части Веб-приложения) означает возможность создания дизайна с лучшими возможностями, как для горизонтального, так и для вертикального масштабирования. Для сознания дизайна без сохранения состояния придется пойти на многие компромиссы, но обеспечиваемые им преимущества с точки зрения масштабируемости, как правило, перевешивают все возможные недостатки.

Секционирование данных и базы данных

Если приложение работает с очень большой базой данных и есть опасения, что операции ввода/вывода станут узким местом системы, заранее предусмотрите секционирование базы данных. Секционирование базы данных на более поздних этапах проектирования обычно требует полной переработки дизайна базы данных и, соответственно, масштабных изменений всего кода приложения. Секционирование обеспечивает несколько преимуществ, включая возможность направления всех запросов к одной секции (таким образом, использование ресурсов ограничивается только одной частью данных) и возможность задействовать множество секций (таким образом, достигаются лучшие возможности одновременной работы и исключительная производительности за счет извлечения данных с множества дисков).

Однако в некоторых ситуациях наличие множества секций может иметь негативные последствия. Например, некоторые операции эффективнее выполнять с данными, сконцентрированными на одном накопителе.

Принимаемые в сценариях развертывания решения о секционировании хранилища данных во многом определяются типом данных. Рассмотрим значимые факторы:

Статические справочные данные только для чтения. Для этого типа данных в целях улучшения производительности и масштабируемости можно без особого труда поддерживать множество копий на разных накопителях, размещаемых в соответствующих местоположениях. Это имеет минимальное влияние на дизайн и обычно определяется соображениями оптимизации. Сведение нескольких логически отдельных и независимых баз данных на один сервер базы данных, даже если это позволяет объем дискового пространства, может быть неудачным решением, и размещение копий ближе к потребителям данных может оказаться в равной степени приемлемым подходом. Однако нельзя забывать, что любое

тиражирование требует применения механизмов обеспечения синхронизации системы.

Динамические (часто изменяющиеся) легко секционируемые данные. Это данные, относящиеся к конкретному пользователю или сеансу, такие как корзина в системе электронной коммерции, где данные пользователя А никак не связаны с данными пользователя В. Управлять такими данными немного сложнее, чем статическими данными только для чтения, но их довольно легко оптимизировать и распределять, поскольку они могут быть секционированы. Нет никаких зависимостей между группами вплоть до отдельных пользователей. Важная особенность эти данных в том, что здесь не выполняется запрос по всем секциям: запрашивается содержимое корзины пользователя А, но не все корзины, включающие определенный товар. Обратите внимание, если последующие запросы могут поступать на другой Веб-сервер или сервер приложений, все эти серверы должны иметь возможность доступа к соответствующей секции.

Основные данные . Это основной случай применения вертикального масштабирования с последующим горизонтальным масштабированием. Как правило, тиражировать данные этого типа нежелательно из-за сложности их синхронизации. Классическое решение для таких данных – вертикальное масштабирование до предельных возможностей (в идеале, сохранение единственного логического экземпляра с соответствующей кластеризацией) и применение секционирования и распределения, только если горизонтальное масштабирование является единственным допустимым вариантом. Прогресс и достижения в технологиях баз данных, такие как распределенные секционированные представления, намного упростили секционирование, тем не менее, оно должно применяться лишь в случае крайней необходимости. Слишком большой размер базы данных редко является определяющим фактором при принятии решения, намного чаще основную роль играют другие соображения, такие как кому принадлежат данные, географическое распределение пользователей, близость к потребителю и доступность.

Данные с отложенной синхронизацией. Некоторые используемые в приложениях данные не требуют немедленной синхронизации или синхронизации вообще. Отличный пример – такие данные онлайн-магазинов, как «С товаром Х часто покупают Y и Z». Эти данные извлекаются из основных данных, но не требуют обновления в режиме реального времени. Проектирование стратегий, обеспечивающих перевод данных из основных в секционируемые (динамические) и затем в статические, является ключевым фактором в построении высокомасштабируемых приложений.

Более подробно схемы перемещения и тиражирования данных рассматриваются в статье «Data Movement Patterns » (Шаблоны передачи данных) по адресу http://msdn.microsoft.com/en-us/library/ms998449.aspx .